1
|
Al-Ashkar I, Sallam M, Ibrahim A, Ghazy A, Al-Suhaibani N, Ben Romdhane W, Al-Doss A. Identification of Wheat Ideotype under Multiple Abiotic Stresses and Complex Environmental Interplays by Multivariate Analysis Techniques. PLANTS (BASEL, SWITZERLAND) 2023; 12:3540. [PMID: 37896004 PMCID: PMC10610392 DOI: 10.3390/plants12203540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Multiple abiotic stresses negatively impact wheat production all over the world. We need to increase productivity by 60% to provide food security to the world population of 9.6 billion by 2050; it is surely time to develop stress-tolerant genotypes with a thorough comprehension of the genetic basis and the plant's capacity to tolerate these stresses and complex environmental reactions. To approach these goals, we used multivariate analysis techniques, the additive main effects and multiplicative interaction (AMMI) model for prediction, linear discriminant analysis (LDA) to enhance the reliability of the classification, multi-trait genotype-ideotype distance index (MGIDI) to detect the ideotype, and the weighted average of absolute scores (WAASB) index to recognize genotypes with stability that are highly productive. Six tolerance multi-indices were used to test twenty wheat genotypes grown under multiple abiotic stresses. The AMMI model showed varying differences with performance indices, which disagreed with the trait and genotype differences used. The G01, G12, G16, and G02 were selected as the appropriate and stable genotypes using the MGIDI with the six tolerance multi-indices. The biplot features the genotypes (G01, G03, G11, G16, G17, G18, and G20) that were most stable and had high tolerance across the environments. The pooled analyses (LDA, MGIDI, and WAASB) showed genotype G01 as the most stable candidate. The genotype (G01) is considered a novel genetic resource for improving productivity and stabilizing wheat programs under multiple abiotic stresses. Hence, these techniques, if used in an integrated manner, strongly support the plant breeders in multi-environment trials.
Collapse
Affiliation(s)
- Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (A.I.); (A.G.); (N.A.-S.); (W.B.R.); (A.A.-D.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Chaudhary J, Gautam T, Gahlaut V, Singh K, Kumar S, Batra R, Gupta PK. Identification and characterization of RuvBL DNA helicase genes for tolerance against abiotic stresses in bread wheat (Triticum aestivum L.) and related species. Funct Integr Genomics 2023; 23:255. [PMID: 37498392 DOI: 10.1007/s10142-023-01177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Recombination UVB (sensitivity) like (RuvBL) helicase genes represent a conserved family of genes, which are known to be involved in providing tolerance against abiotic stresses like heat and drought. We identified nine wheat RuvBL genes, one each on nine different chromosomes, belonging to homoeologous groups 2, 3, and 4. The lengths of genes ranged from 1647 to 2197 bp and exhibited synteny with corresponding genes in related species including Ae. tauschii, Z. mays, O. sativa, H. vulgare, and B. distachyon. The gene sequences were associated with regulatory cis-elements and transposable elements. Two genes, namely TaRuvBL1a-4A and TaRuvBL1a-4B, also carried targets for a widely known miRNA, tae-miR164. Gene ontology revealed that these genes were closely associated with ATP-dependent formation of histone acetyltransferase complex. Analysis of the structure and function of RuvBL proteins revealed that the proteins were localized mainly in the cytoplasm. A representative gene, namely TaRuvBL1a-4A, was also shown to be involved in protein-protein interactions with ten other proteins. On the basis of phylogeny, RuvBL proteins were placed in two sub-divisions, namely RuvBL1 and RuvBL2, which were further classified into clusters and sub-clusters. In silico studies suggested that these genes were differentially expressed under heat/drought. The qRT-PCR analysis confirmed that expression of TaRuvBL genes differed among wheat cultivars, which differed in the level of thermotolerance. The present study advances our understanding of the biological role of wheat RuvBL genes and should help in planning future studies on RuvBL genes in wheat including use of RuvBL genes in breeding thermotolerant wheat cultivars.
Collapse
Affiliation(s)
- Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Vijay Gahlaut
- Council of Scientific & Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India
- Department of Biotechnology, University Center for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Kalpana Singh
- Department of Bioinformatics, College of animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Sourabh Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
| | - Ritu Batra
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
- IIMT University, 'O' Pocket, Ganga Nagar, Meerut, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India.
| |
Collapse
|
3
|
Aizaz M, Ahmad W, Asaf S, Khan I, Saad Jan S, Salim Alamri S, Bilal S, Jan R, Kim KM, Al-Harrasi A. Characterization of the Seed Biopriming, Plant Growth-Promoting and Salinity-Ameliorating Potential of Halophilic Fungi Isolated from Hypersaline Habitats. Int J Mol Sci 2023; 24:ijms24054904. [PMID: 36902334 PMCID: PMC10003710 DOI: 10.3390/ijms24054904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Salinity stress is one of the major abiotic factors limiting crop yield in arid and semi-arid regions. Plant growth-promoting fungi can help plants thrive in stressful conditions. In this study, we isolated and characterized 26 halophilic fungi (endophytic, rhizospheric, and soil) from the coastal region of Muscat, Oman, for plant growth-promoting activities. About 16 out of 26 fungi were found to produce IAA, and about 11 isolates (MGRF1, MGRF2, GREF1, GREF2, TQRF4, TQRF5, TQRF5, TQRF6, TQRF7, TQRF8, TQRF2) out of 26 strains were found to significantly improve seed germination and seedling growth of wheat. To evaluate the effect of the above-selected strains on salt tolerance in wheat, we grew wheat seedlings in 150 mM, 300 mM NaCl and SW (100% seawater) treatments and inoculated them with the above strains. Our findings showed that fungal strains MGRF1, MGRF2, GREF2, and TQRF9 alleviate 150 mM salt stress and increase shoot length compared to their respective control plants. However, in 300 mM stressed plants, GREF1 and TQRF9 were observed to improve shoot length. Two strains, GREF2 and TQRF8, also promoted plant growth and reduced salt stress in SW-treated plants. Like shoot length, an analogous pattern was observed in root length, and different salt stressors such as 150 mM, 300 mM, and SW reduced root length by up to 4%, 7.5%, and 19.5%, respectively. Three strains, GREF1, TQRF7, and MGRF1, had higher catalase (CAT) levels, and similar results were observed in polyphenol oxidase (PPO), and GREF1 inoculation dramatically raised the PPO level in 150 mM salt stress. The fungal strains had varying effects, with some, such as GREF1, GREF2, and TQRF9, showing a significant increase in protein content as compared to their respective control plants. Under salinity stress, the expression of DREB2 and DREB6 genes was reduced. However, the WDREB2 gene, on the other hand, was shown to be highly elevated during salt stress conditions, whereas the opposite was observed in inoculated plants.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Waqar Ahmad
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ibrahim Khan
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Syed Saad Jan
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Safiya Salim Alamri
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: (K.-M.K.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
- Correspondence: (K.-M.K.); (A.A.-H.)
| |
Collapse
|
4
|
Pandey A, Harohalli Masthigowda M, Kumar R, Pandey GC, Awaji SM, Singh G, Pratap Singh G. Physio-biochemical characterization of wheat genotypes under temperature stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:131-143. [PMID: 36733838 PMCID: PMC9886710 DOI: 10.1007/s12298-022-01267-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/22/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Thermal stress is a major abiotic stress in wheat and is highly complex in mechanism. A large area in northwestern plain zones (NWPZ), which is the wheat bowl of India is affected by heat stress. Climate change also causes an abrupt increase in temperature at different growth stages of wheat. Thus, wiser selection of stress tolerant varieties is an important strategy to combat the climate change effect. The present study aims for physiological and biochemical screening of timely sown NWPZ wheat varieties (WB2, HD3086, DBW88, DPW621-50, DBW17, HD2967 and PBW550) of India for their thermal stress tolerance along with heat tolerant (RAJ3765) and susceptible checks (RAJ4014) at seedling stage. The experiment was conducted in completely randomized design under controlled laboratory condition and heat stress was induced at 37 °C at seedling stage. Later different physio-biochemical traits were studied in both control and stress seedlings. All traits exhibited significant variations among genotypes under heat stress condition. Root and shoot weight, relative water content, chlorophyll content index and chlorophyll fluorescence reduced significantly, whereas membrane leakage, osmotic potential, catalase, ascorbate peroxidase, guaiacol peroxidase, malondialdehyde content and proline content were increased in stress plants. A tolerance matrix was prepared based on stress response of the genotypes for each trait and a final tolerance score was given to each genotype. Based on this tolerance matrix, DBW88 and PBW550 were identified as tolerant, DPW621-50, DBW17 and HD2967 as moderately susceptible and HD3086 and WB2 as susceptible to heat stress. Earlier studies parade that seedling level stress tolerance has high correlation with adult level stress tolerance under field condition in wheat. Hence, this study helps in wiser selection of varieties for sowing in NWPZ based on weather forecast of the location for creating varietal mosaic in context of climate change.
Collapse
Affiliation(s)
- Ankita Pandey
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
- Biosciences and Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan 304022 India
| | | | - Rakesh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
- University of California, Berkeley, CA 94720 USA
| | - Girish Chandra Pandey
- Biosciences and Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan 304022 India
| | - Sushma M. Awaji
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | | |
Collapse
|
5
|
Jain N, Shiv A, Sinha N, Singh PK, Prasad P, Balyan HS, Gupta PK. Leaf rust responsive miRNA and their target genes in wheat. Funct Integr Genomics 2022; 23:14. [PMID: 36550370 DOI: 10.1007/s10142-022-00928-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
Small RNA sequencing (sRNA-seq) and degradome analysis were used for the identification of miRNAs and their target host genes in a pair of near-isogenic lines (NILs), which differed for the presence of leaf rust resistance gene Lr28. The study led to identification of (i) 506 known and 346 novel miRNAs; and (ii) 5054 target genes including 4557 in silico predicted and 497 degradome-based genes using 105 differentially expressed (DE) miRNAs. A subset of 128 targets (67 in silico + 61 degradome-based) was differentially expressed in RNA-seq data that was generated by us earlier using the same pair of NILs; among these 128 targets, 58 target genes exhibited an inverse relationship with the DE miRNAs (expression of miRNAs and activation/suppression of target genes). Eight miRNAs which belonged to the conserved miRNA families and were known to be induced in response to fungal diseases in plants included the following: miR156, miR158, miR159, miR168, miR169, miR172, miR319, miR396. The target genes belonged to the following classes of genes known to be involved in downstream disease resistance pathways; peroxidases, sugar transporters, auxin response signaling, oxidation-reduction, etc. It was also noticed that although a majority of miRNAs and target genes followed the above classical inverse relationship, there were also examples, where no such relationship was observed. Among the target genes, there were also 51 genes that were not only regulated by miRNAs, but were also differentially methylated at sequences including the following segments: promotors, introns, TSS, exons. The results of the present study suggest a complex interplay among miRNA genes, target genes, and various epigenetic controls, which regulate the expression of genes involved in downstream pathways for disease resistance.
Collapse
Affiliation(s)
- Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Aalok Shiv
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Nivedita Sinha
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - P K Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Pramod Prasad
- Regional Station, ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, 171002, India
| | - H S Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
6
|
Kumar S, Jacob SR, Mir RR, Vikas VK, Kulwal P, Chandra T, Kaur S, Kumar U, Kumar S, Sharma S, Singh R, Prasad S, Singh AM, Singh AK, Kumari J, Saharan MS, Bhardwaj SC, Prasad M, Kalia S, Singh K. Indian Wheat Genomics Initiative for Harnessing the Potential of Wheat Germplasm Resources for Breeding Disease-Resistant, Nutrient-Dense, and Climate-Resilient Cultivars. Front Genet 2022; 13:834366. [PMID: 35846116 PMCID: PMC9277310 DOI: 10.3389/fgene.2022.834366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Wheat is one of the major staple cereal food crops in India. However, most of the wheat-growing areas experience several biotic and abiotic stresses, resulting in poor quality grains and reduced yield. To ensure food security for the growing population in India, there is a compelling need to explore the untapped genetic diversity available in gene banks for the development of stress-resistant/tolerant cultivars. The improvement of any crop lies in exploring and harnessing the genetic diversity available in its genetic resources in the form of cultivated varieties, landraces, wild relatives, and related genera. A huge collection of wheat genetic resources is conserved in various gene banks across the globe. Molecular and phenotypic characterization followed by documentation of conserved genetic resources is a prerequisite for germplasm utilization in crop improvement. The National Genebank of India has an extensive and diverse collection of wheat germplasm, comprising Indian wheat landraces, primitive cultivars, breeding lines, and collection from other countries. The conserved germplasm can contribute immensely to the development of wheat cultivars with high levels of biotic and abiotic stress tolerance. Breeding wheat varieties that can give high yields under different stress environments has not made much headway due to high genotypes and environmental interaction, non-availability of truly resistant/tolerant germplasm, and non-availability of reliable markers linked with the QTL having a significant impact on resistance/tolerance. The development of new breeding technologies like genomic selection (GS), which takes into account the G × E interaction, will facilitate crop improvement through enhanced climate resilience, by combining biotic and abiotic stress resistance/tolerance and maximizing yield potential. In this review article, we have summarized different constraints being faced by Indian wheat-breeding programs, challenges in addressing biotic and abiotic stresses, and improving quality and nutrition. Efforts have been made to highlight the wealth of Indian wheat genetic resources available in our National Genebank and their evaluation for the identification of trait-specific germplasm. Promising genotypes to develop varieties of important targeted traits and the development of different genomics resources have also been highlighted.
Collapse
Affiliation(s)
- Sundeep Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
- *Correspondence: Sundeep Kumar,
| | - Sherry R. Jacob
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-Kashmir), Jammu and Kashmir, India
| | - V. K. Vikas
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pawan Kulwal
- State Level Biotechnology Centre, Mahatma Phule Krishi Vidyapeeth, Rahuri, India
| | - Tilak Chandra
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Uttam Kumar
- Borlaug Institute for South Asia, Ludhiana, India
| | - Suneel Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh
| | - Ravinder Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-Jammu), Jammu and Kashmir, India
| | - Sai Prasad
- Indian Agriculture Research Institute Regional Research Station, Indore, India
| | - Anju Mahendru Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Amit Kumar Singh
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Jyoti Kumari
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - M. S. Saharan
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | | | - Manoj Prasad
- Laboratory of Plant Virology, National Institute of Plant Genome Research, New Delhi, India
| | - Sanjay Kalia
- Department of Biotechnology, Ministry of Science and Technology, New Delhi, India
| | - Kuldeep Singh
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
7
|
Abstract
Drought is one of the major abiotic constraints on wheat yields and also for sustainability of production levels around the world. In the near future, the occurrence likelihood of droughts is predicted to become more common, due to changing climatic conditions, thereby posing a serious threat to the food security system. Heterogeneity, in its time of occurrence and severity levels, is likely to further augment the complexity of drought conditions. Although wheat crop growth has progressively risen to good levels, as evident by notable increases in both area and production, the expected wheat demand for the ever-growing population is quite high. Besides crop yield volatility in the era of climate change and dwindling resources, “trait-based” breeding programs are required, so as to develop high yielding, climate resilient and stable genotypes, at a faster pace. For this to happen, a broad genetic base and wider adaptability to suit varied agro-ecologies would provide enough scope for their quicker spread. The current review places emphasis on making distinct categories of the wheat cultivars/advanced breeding lines, as tolerant, moderately tolerant or susceptible to drought stresses, duly supported by an extensive up-to-date literature base and will be useful for wheat researchers, in order to choose the best potential donors as parents, coupled with the associated traits for the development of drought-tolerant wheat varieties, and also to facilitate molecular studies.
Collapse
|
8
|
Smiley RW. Root-Lesion Nematodes Affecting Dryland Cereals in the Semiarid Pacific Northwest U.S.A. PLANT DISEASE 2021; 105:3324-3343. [PMID: 34236212 DOI: 10.1094/pdis-04-21-0883-fe] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Root-lesion nematodes (Pratylenchus spp.) are parasites that invade and deteriorate roots, thereby reducing the efficiency of water and nutrient uptake. Pratylenchus neglectus and P. thornei are the two species that are most prevalent and cause reduced yields of rainfed wheat and barley in semiarid regions of the Pacific Northwest. They are particularly damaging where wheat and barley are produced without irrigation in areas receiving less than 450 mm (18 in.) of precipitation annually. This review is focused on the biology and management of P. neglectus and P. thornei in semiarid rainfed agriculture. Characteristics of climates, soils, and crop production systems are described as a preface to constraints placed upon management options. Discussions include the economic importance, host ranges, and protocols for sampling and species identification. Discussion of disease management options include crop rotation, genetic resistance and tolerance, planting date, trap and biofumigant crops, crop nutrition, chemical and biological nematicides, and tillage. Predictions for rainfed agriculture in a period of changing climate are presented, as are suggestions for important areas of research including crop genetics, nematode testing, and communication of results, Pratylenchus biology, mechanisms of resistance, the phytobiome, and closing the "yield gap" between actual and attainable yields.
Collapse
Affiliation(s)
- Richard W Smiley
- Emeritus Professor of Plant Pathology, Oregon State University, Columbia Basin Agricultural Research Center, Pendleton, OR, U.S.A
| |
Collapse
|
9
|
Kesawat MS, Kherawat BS, Singh A, Dey P, Kabi M, Debnath D, Saha D, Khandual A, Rout S, Manorama, Ali A, Palem RR, Gupta R, Kadam AA, Kim HU, Chung SM, Kumar M. Genome-Wide Identification and Characterization of the Brassinazole-resistant ( BZR) Gene Family and Its Expression in the Various Developmental Stage and Stress Conditions in Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:8743. [PMID: 34445448 PMCID: PMC8395832 DOI: 10.3390/ijms22168743] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Brassinosteroids (BRs) play crucial roles in various biological processes, including plant developmental processes and response to diverse biotic and abiotic stresses. However, no information is currently available about this gene family in wheat (Triticum aestivum L.). In the present investigation, we identified the BZR gene family in wheat to understand the evolution and their role in diverse developmental processes and under different stress conditions. In this study, we performed the genome-wide analysis of the BZR gene family in the bread wheat and identified 20 TaBZR genes through a homology search and further characterized them to understand their structure, function, and distribution across various tissues. Phylogenetic analyses lead to the classification of TaBZR genes into five different groups or subfamilies, providing evidence of evolutionary relationship with Arabidopsis thaliana, Zea mays, Glycine max, and Oryza sativa. A gene exon/intron structure analysis showed a distinct evolutionary path and predicted the possible gene duplication events. Further, the physical and biochemical properties, conserved motifs, chromosomal, subcellular localization, and cis-acting regulatory elements were also examined using various computational approaches. In addition, an analysis of public RNA-seq data also shows that TaBZR genes may be involved in diverse developmental processes and stress tolerance mechanisms. Moreover, qRT-PCR results also showed similar expression with slight variation. Collectively, these results suggest that TaBZR genes might play an important role in plant developmental processes and various stress conditions. Therefore, this work provides valuable information for further elucidate the precise role of BZR family members in wheat.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- Institute for Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea;
- Faculty of Agriculture, Sri Sri University, Cuttack 754-006, India; (A.S.); (P.D.); (M.K.); (D.D.); (A.K.); (S.R.)
| | - Bhagwat Singh Kherawat
- Krishi Vigyan Kendra, Bikaner II, Swami Keshwanand Rajasthan Agricultural University, Bikaner 334603, India;
| | - Anupama Singh
- Faculty of Agriculture, Sri Sri University, Cuttack 754-006, India; (A.S.); (P.D.); (M.K.); (D.D.); (A.K.); (S.R.)
| | - Prajjal Dey
- Faculty of Agriculture, Sri Sri University, Cuttack 754-006, India; (A.S.); (P.D.); (M.K.); (D.D.); (A.K.); (S.R.)
| | - Mandakini Kabi
- Faculty of Agriculture, Sri Sri University, Cuttack 754-006, India; (A.S.); (P.D.); (M.K.); (D.D.); (A.K.); (S.R.)
| | - Debanjana Debnath
- Faculty of Agriculture, Sri Sri University, Cuttack 754-006, India; (A.S.); (P.D.); (M.K.); (D.D.); (A.K.); (S.R.)
| | - Debanjana Saha
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneshwar 752050, India;
| | - Ansuman Khandual
- Faculty of Agriculture, Sri Sri University, Cuttack 754-006, India; (A.S.); (P.D.); (M.K.); (D.D.); (A.K.); (S.R.)
| | - Sandeep Rout
- Faculty of Agriculture, Sri Sri University, Cuttack 754-006, India; (A.S.); (P.D.); (M.K.); (D.D.); (A.K.); (S.R.)
| | - Manorama
- Department of Dairy Microbiology, College of Dairy Science and Food Technology, Raipur 49200, India;
| | - Asjad Ali
- Department of Agriculture and Fisheries, Mareeba, QLD 4880, Australia;
| | - Ramasubba Reddy Palem
- Department of Medical Biotechnology, Biomedical Campus, Dongguk University, Seoul 10326, Korea;
| | - Ravi Gupta
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Avinash Ashok Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Korea;
| | - Hyun-Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea;
| | - Sang-Min Chung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Korea;
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Korea;
| |
Collapse
|
10
|
Genome-Wide Identification and Characterization of PIN-FORMED (PIN) Gene Family Reveals Role in Developmental and Various Stress Conditions in Triticum aestivum L. Int J Mol Sci 2021; 22:ijms22147396. [PMID: 34299014 PMCID: PMC8303626 DOI: 10.3390/ijms22147396] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
PIN-FORMED (PIN) genes play a crucial role in regulating polar auxin distribution in diverse developmental processes, including tropic responses, embryogenesis, tissue differentiation, and organogenesis. However, the role of PIN-mediated auxin transport in various plant species is poorly understood. Currently, no information is available about this gene family in wheat (Triticum aestivum L.). In the present investigation, we identified the PIN gene family in wheat to understand the evolution of PIN-mediated auxin transport and its role in various developmental processes and under different biotic and abiotic stress conditions. In this study, we performed genome-wide analysis of the PIN gene family in common wheat and identified 44 TaPIN genes through a homology search, further characterizing them to understand their structure, function, and distribution across various tissues. Phylogenetic analyses led to the classification of TaPIN genes into seven different groups, providing evidence of an evolutionary relationship with Arabidopsis thaliana and Oryza sativa. A gene exon/intron structure analysis showed a distinct evolutionary path and predicted the possible gene duplication events. Further, the physical and biochemical properties, conserved motifs, chromosomal, subcellular localization, transmembrane domains, and three-dimensional (3D) structure were also examined using various computational approaches. Cis-elements analysis of TaPIN genes showed that TaPIN promoters consist of phytohormone, plant growth and development, and stress-related cis-elements. In addition, expression profile analysis also revealed that the expression patterns of the TaPIN genes were different in different tissues and developmental stages. Several members of the TaPIN family were induced during biotic and abiotic stress. Moreover, the expression patterns of TaPIN genes were verified by qRT-PCR. The qRT-PCR results also show a similar expression with slight variation. Therefore, the outcome of this study provides basic genomic information on the expression of the TaPIN gene family and will pave the way for dissecting the precise role of TaPINs in plant developmental processes and different stress conditions.
Collapse
|