1
|
Wu Q, Zhang X, Qin M, Shi D, Li Y. Dual roles of LncRNA RNA143598: a biomarker for rheumatoid arthritis and its implications in cancer. Clin Rheumatol 2025:10.1007/s10067-025-07448-2. [PMID: 40279008 DOI: 10.1007/s10067-025-07448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/24/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a chronic autoimmune disease with complex pathological mechanisms, including immune system dysregulation and chronic inflammation. Recent studies indicate that long non-coding RNAs (LncRNAs) play key roles in immune regulation and have been implicated in the pathogenesis of multiple diseases, including RA and various types of cancer. Understanding the involvement of LncRNAs in RA and their potential transcriptional effects in cancer could provide novel insights into disease mechanisms and therapeutic targets. METHODS Using the GSE94519 dataset, we analyzed serum LncRNA profiles from RA patients and healthy controls. Differential expression genes (DEGs) were identified using GEO2R, and findings were validated via quantitative polymerase chain reaction (qPCR) in 39 RA and 53 healthy samples. Receiver operating characteristic (ROC) analysis was performed to evaluate diagnostic performance. A pan-cancer analysis of MTRNR2L1 was conducted using TCGA data, with immune infiltration assessed via ssGSEA. RESULTS RNA143598 was significantly upregulated in RA patients, and qPCR confirmed its diagnostic potential (AUC = 0.77). Pan cancer analysis shows that MTRNR2L1 is highly expressed in glioblastoma (GBM) and lowly expressed in head and neck squamous cell carcinoma (HNSC), with high GBM expression linked to poor prognosis. Immune infiltration analysis showed MTRNR2L1 correlated with CD8 + T cells, macrophages, and dendritic cells in GBM. CONCLUSION RNA143598 is a promising RA biomarker, and its transcription gene MTRNR2L1 demonstrates potential in cancer prognosis and immune regulation. These findings provide a foundation for future research on targeted therapies for RA and cancer. Key Points • RNA143598 is identified as a significant biomarker for diagnosing rheumatoid arthritis (RA), showing promise for clinical application. • Quantitative PCR validation demonstrates the diagnostic potential of RNA143598, with an area under the curve (AUC) of 0.77. • MTRNR2L1, which is RNA143598 transcribed gene, exhibits differential expression in different cancer types, with high levels associated with poor prognosis in glioblastoma (GBM). • Immune infiltration analysis links MTRNR2L1 expression to the presence of CD8 + T cells, macrophages, and dendritic cells, suggesting its role in immune regulation in GBM.
Collapse
Affiliation(s)
- Qiuhua Wu
- Department of Clinical Laboratory, First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou City, Huzhou, 313000, Zhejiang, China
| | - Xiaoxia Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou City, Huzhou, 313000, Zhejiang, China
| | - Meiyun Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou City, Huzhou, 313000, Zhejiang, China
| | - Danfei Shi
- Department of Pathology, First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou City, Huzhou, 313000, Zhejiang, China
| | - Yong Li
- Department of Clinical Laboratory, First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou City, Huzhou, 313000, Zhejiang, China.
| |
Collapse
|
2
|
Komitova KS, Dimitrov LD, Stancheva GS, Kyurkchiyan SG, Petkova V, Dimitrov SI, Skelina SP, Kaneva RP, Popov TM. A Critical Review on microRNAs as Prognostic Biomarkers in Laryngeal Carcinoma. Int J Mol Sci 2024; 25:13468. [PMID: 39769234 PMCID: PMC11676902 DOI: 10.3390/ijms252413468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
During the past decade, a vast number of studies were dedicated to unravelling the obscurities of non-coding RNAs in all fields of the medical sciences. A great amount of data has been accumulated, and consequently a natural need for organization and classification in all subfields arises. The aim of this review is to summarize all reports on microRNAs that were delineated as prognostic biomarkers in laryngeal carcinoma. Additionally, we attempt to allocate and organize these molecules according to their association with key pathways and oncogenes affected in laryngeal carcinoma. Finally, we critically analyze the common shortcomings and biases of the methodologies in some of the published papers in this area of research. A literature search was performed using the PubMed and MEDLINE databases with the keywords "laryngeal carcinoma" OR "laryngeal cancer" AND "microRNA" OR "miRNA" AND "prognostic marker" OR "prognosis". Only research articles written in English were included, without any specific restrictions on study type. We have found 43 articles that report 39 microRNAs with prognostic value associated with laryngeal carcinoma, and all of them are summarized along with the major characteristics and methodology of the respective studies. A second layer of the review is structural analysis of the outlined microRNAs and their association with oncogenes and pathways connected with the cell cycle (p53, CCND1, CDKN2A/p16, E2F1), RTK/RAS/PI3K cascades (EGFR, PI3K, PTEN), cell differentiation (NOTCH, p63, FAT1), and cell death (FADD, TRAF3). Finally, we critically review common shortcomings in the methodology of the papers and their possible effect on their results.
Collapse
Affiliation(s)
| | | | | | | | - Veronika Petkova
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | | | | | - Radka P. Kaneva
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | - Todor M. Popov
- Department of ENT, Medical University, 1000 Sofia, Bulgaria
| |
Collapse
|
3
|
Pashirzad M, Kesharwani P, Sahebkar A. The clinical prognostic significance of miR-140-5p expression in patients with cancer: A Meta and Bioinformatic analysis. Pathol Res Pract 2024; 261:155475. [PMID: 39067174 DOI: 10.1016/j.prp.2024.155475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
The prognostic value of microRNA-140-5p (miR-140-5p) expression in cancer patients has been investigated, but with inconsistent results. This meta-analysis aims to determine the prognostic significance of miR-140-5p expression in patients with various malignancies. A comprehensive literature search was conducted using PubMed, Web of Science, ProQuest, Cochrane, and Google Scholar to identify relevant studies published before June 2023. Pooled hazard ratios (HR) and odds ratios (OR) with 95 % confidence intervals (CI) were calculated to assess the prognostic importance and clinicopathological features of miR-140-5p in overall survival (OS) and disease-free survival (DFS) of cancer patients, respectively. The CancerMIRNome database and other OS analysis webservers were utilized to explore the prognostic value and expression profile of miR-140-5p. A total of 17 studies were included in the final analysis. The results demonstrated that decreased miR-140-5p expression was significantly associated with inferior OS (pooled HR 0.63; 95 % CI, 0.51-0.79; p < 0.001) and DFS (pooled HR 0.40; 95 % CI, 0.25-0.64; p < 0.001). Pooled ORs indicated a significant correlation between reduced miR-140-5p expression and positive lymph node metastasis (LNM; OR = 3.42; 95 % CI, 2.36-4.94; p < 0.001), advanced tumor stage (OR = 2.80; 95 % CI, 2.07-3.78; p < 0.001), and positive distant metastasis (DM; OR = 10.81; 95 % CI, 3.31-35.30; p < 0.001). No significant associations were observed between miR-140-5p expression and gender (OR = 0.94; 95 % CI, 0.70-1.28; p = 0.70), age (OR = 1.31; 95 % CI, 0.99-1.74; p = 0.06), tumor size (OR = 1.55; 95 % CI, 0.77-3.10; p = 0.22), and histological grade (OR = 1.20; 95 % CI, 0.46-3.10; p = 0.71). Subgroup analyses revealed that decreased miR-140-5p expression was associated with shorter OS in subgroups based on sample size (<100 or >100), tumor origin (GI or non-GI), and cancer type (GC/CRC). Bioinformatic analysis supported the finding that miR-140-5p was downregulated in most tumor tissues, and its reduced expression was linked to poor prognosis in patients with multiple malignancies. The prognostic significance of miR-140-5p in predicting reduced OS and DFS suggests that measuring miR-140-5p expression levels before treatment could serve as a valuable biomarker for identifying cancer patients with an unfavorable prognosis and improving clinical management.
Collapse
Affiliation(s)
- Mehran Pashirzad
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Song Z, Xu S, Gu X, Feng Q, Wang C. LncRNA PITPNA-AS1 mediates the diagnostic potential of miR-129-5p in prostate cancer. BMC Urol 2024; 24:146. [PMID: 39003446 PMCID: PMC11245843 DOI: 10.1186/s12894-024-01528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND LncRNA has an effective value in many diseases, which has long been applied in the diagnosis, treatment and prognosis of prostate cancer. This study focused on lncRNA PITPNA-AS1, and its diagnostic potential in prostate cancer has been explored. METHODS The expression of PITPNA-AS1 and miR-129-5p in prostate cancer serum and sample cells was determined by real-time quantitative polymerase chain reaction (RT-qPCR). The relationship between the expression of PITPNA-AS1 and clinicopathological parameters was considered. ROC curve prompted the diagnostic value of PITPNA-AS1. The effect of PITPNA-AS1 on prostate cancer cells was verified using vitro cells assay. Luciferase activity assay and RIP assay demonstrated the sponge relationship of PITPNA-AS1 to miR-129-5p. RESULTS PITPNA-AS1 level was increased, while miR-129-5p was obviously decreased in prostate cancer. PITPNA-AS1 expression was associated with Gleason grade, lymph node metastasis and TNM stage in patients. The area under the curve (AUC) was 0.910, with high sensitivity and specificity. PITPNA-AS1 was elucidated to directly target miR-129-5p, whereas silencing PITPNA-AS1 negatively affected prostate cancer cell proliferation, migration and invasion. Intervention of miR-129-5p inhibitor reversed the effect of silencing PITPNA-AS1 on cells. CONCLUSIONS PITPNA-AS1 was relatively highly expressed in prostate cancer and mediated the pathophysiological process of patients, which may serve as a diagnostic indicator. Silencing of the PITPNA-AS1 sponge miR-129-5p inhibited the biological function of the cells, indicating that PITPNA-AS1 may represent a novel therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Zhaolu Song
- Department of Urology Surgery, Jiaozhou Central Hospital of Qingdao, Shandong, 266300, China
| | - Silei Xu
- Medical School of University of Electronic Science and Technology of China, Chengdu, 610051, China
| | - Xiaohui Gu
- Department of Urinary Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, No. 32, West Section 2, 1st Ring Road, Qingyang District, Chengdu, 610031, China
| | - Qiang Feng
- Department of Urinary Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, No. 32, West Section 2, 1st Ring Road, Qingyang District, Chengdu, 610031, China.
| | - Chang Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou City, 510080, Guangdong Province, China.
| |
Collapse
|
5
|
Singh VK, Rajak N, Singh Y, Singh AK, Giri R, Garg N. Role of MicroRNA-21 in Prostate Cancer Progression and Metastasis: Molecular Mechanisms to Therapeutic Targets. Ann Surg Oncol 2024; 31:4795-4808. [PMID: 38758485 DOI: 10.1245/s10434-024-15453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
The role of noncoding RNA has made remarkable progress in understanding progression, metastasis, and metastatic castration-resistant prostate cancer (mCRPC). A better understanding of the miRNAs has enhanced our knowledge of their targeting mainly at the therapy level in solid tumors, such as prostate cancer (PCa). microRNAs (miRNAs) belong to a class of endogenous RNA that deficit encoded proteins. Therefore, the role of miRNAs has been well-coined in the progression and development of PCa. miR-21 has a dual nature in its work both as a tumor suppressor and oncogenic role, but most of the recent studies showed that miR-21 is a tumor promoter and also is involved in castration-resistant prostate cancer (CRPC). Upregulation of miR-21 suppresses programmed cell death and inducing metastasis and castration resistant in PCa. miR-21 is involved in the different stages, such as proliferation, angiogenesis, migration, and invasion, and plays an important role in the progression, metastasis, and advanced stages of PCa. Recently, various studies directly linked the role of high levels of miR-21 with a poor therapeutic response in the patient of PCa. In the present review, we have explained the molecular mechanisms/pathways of miR-21 in PCa progression, metastasis, and castration resistant and summarized the role of miR-21 in diagnosis and therapeutic levels in PCa. In addition, we have spotlighted the recent therapeutic strategies for targeting different stages of PCa.
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, D.C., DC, USA
| | - Naina Rajak
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Yashasvi Singh
- Department of Urology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Ankit Kumar Singh
- University Department of Botany Lalit Narayan Mithila University, Darbhanga, Bihar, India
| | - Rajanish Giri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India.
| |
Collapse
|
6
|
Evin D, Evinová A, Baranovičová E, Šarlinová M, Jurečeková J, Kaplán P, Poláček H, Halašová E, Dušenka R, Briš L, Brožová MK, Sivoňová MK. Integrative Metabolomic Analysis of Serum and Selected Serum Exosomal microRNA in Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2024; 25:2630. [PMID: 38473877 DOI: 10.3390/ijms25052630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) remains a lethal disease due to the absence of effective therapies. A more comprehensive understanding of molecular events, encompassing the dysregulation of microRNAs (miRs) and metabolic reprogramming, holds the potential to unveil precise mechanisms underlying mCRPC. This study aims to assess the expression of selected serum exosomal miRs (miR-15a, miR-16, miR-19a-3p, miR-21, and miR-141a-3p) alongside serum metabolomic profiling and their correlation in patients with mCRPC and benign prostate hyperplasia (BPH). Blood serum samples from mCRPC patients (n = 51) and BPH patients (n = 48) underwent metabolome analysis through 1H-NMR spectroscopy. The expression levels of serum exosomal miRs in mCRPC and BPH patients were evaluated using a quantitative real-time polymerase chain reaction (qRT-PCR). The 1H-NMR metabolomics analysis revealed significant alterations in lactate, acetate, citrate, 3-hydroxybutyrate, and branched-chain amino acids (BCAAs, including valine, leucine, and isoleucine) in mCRPC patients compared to BPH patients. MiR-15a, miR-16, miR-19a-3p, and miR-21 exhibited a downregulation of more than twofold in the mCRPC group. Significant correlations were predominantly observed between lactate, citrate, acetate, and miR-15a, miR-16, miR-19a-3p, and miR-21. The importance of integrating metabolome analysis of serum with selected serum exosomal miRs in mCRPC patients has been confirmed, suggesting their potential utility for distinguishing of mCRPC from BPH.
Collapse
Affiliation(s)
- Daniel Evin
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
- Clinic of Nuclear Medicine, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Andrea Evinová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Miroslava Šarlinová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Jana Jurečeková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Peter Kaplán
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Hubert Poláček
- Clinic of Nuclear Medicine, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Erika Halašová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Róbert Dušenka
- Clinic of Urology, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lukáš Briš
- Clinic of Urology, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Martina Knoško Brožová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Monika Kmeťová Sivoňová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
7
|
Peng Q, Xie T, Wang Y, Ho VWS, Teoh JYC, Chiu PKF, Ng CF. GLIS1, Correlated with Immune Infiltrates, Is a Potential Prognostic Biomarker in Prostate Cancer. Int J Mol Sci 2023; 25:489. [PMID: 38203661 PMCID: PMC10779070 DOI: 10.3390/ijms25010489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/09/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancer (PCa) is a prevalent malignant disease and the primary reason for cancer-related mortality among men globally. GLIS1 (GLIS family zinc finger 1) is a key regulator in various pathologies. However, the expression pattern, clinical relevance, and immunomodulatory function of GLIS1 in PCa remain unclear. In this study, GLIS1 was discovered to serve as a key gene in PCa by integrating mRNA and miRNA expression profiles from GEO database. We systematically explored the expression and prognostic values of GLIS1 in cancers using multiple databases. Additionally, we examined the functions of GLIS1 and the relationship between GLIS1 expression levels and immune infiltration in PCa. Results showed that GLIS1 was differentially expressed between normal and tumor tissues in various cancer types and was significantly low-expressed in PCa. Low GLIS1 expression was associated with poor PCa prognosis. GLIS1 was also involved in the activation, proliferation, differentiation, and migration of immune cells, and its expression showed a positive correlation with the infiltration of various immune cells. Moreover, GLIS1 expression was positively associated with various chemokines/chemokine receptors, indicating the involvement in regulating immune cell migration. In summary, GLIS1 is a potential prognostic biomarker and a therapeutic target to modulate anti-tumor immune response in PCa.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter Ka-Fung Chiu
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China; (Q.P.); (T.X.); (Y.W.); (V.W.-S.H.); (J.Y.-C.T.)
| | - Chi-Fai Ng
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China; (Q.P.); (T.X.); (Y.W.); (V.W.-S.H.); (J.Y.-C.T.)
| |
Collapse
|
8
|
Hashemi Karoii D, Azizi H. Functions and mechanism of noncoding RNA in regulation and differentiation of male mammalian reproduction. Cell Biochem Funct 2023; 41:767-778. [PMID: 37583312 DOI: 10.1002/cbf.3838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
Noncoding RNAs (ncRNAs) are active regulators of a wide range of biological and physiological processes, including the majority of mammalian reproductive events. Knowledge of the biological activities of ncRNAs in the context of mammalian reproduction will allow for a more comprehensive and comparative understanding of male sterility and fertility. In this review, we describe recent advances in ncRNA-mediated control of mammalian reproduction and emphasize the importance of ncRNAs in several aspects of mammalian reproduction, such as germ cell biogenesis and reproductive organ activity. Furthermore, we focus on gene expression regulatory feedback loops including hormones and ncRNA expression to better understand germ cell commitment and reproductive organ function. Finally, this study shows the role of ncRNAs in male reproductive failure and provides suggestions for further research.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
9
|
Manoj A, Ahmad MK, Prasad G, Kumar D, Mahdi AA, Kumar M. Screening and validation of novel serum panel of microRNA in stratification of prostate cancer. Prostate Int 2023; 11:150-158. [PMID: 37745909 PMCID: PMC10513910 DOI: 10.1016/j.prnil.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 09/26/2023] Open
Abstract
Background Owing to the heterogeneous nature of prostate cancer (PCa) and errors in the characterization of the disease, researchers have been trying to unveil molecular biomarkers like microRNA (miRNA) as diagnostic markers. The purpose of our study is to demonstrate the precision of a panel of miRNAs as biomarkers with diagnostic potential for risk stratification. Materials and methods The present study demonstrates the comparative expression profiles of miRNA-141,-1290,-100, and -335 in both tissue and serum, including Benign Prostate Hyperplasia (BPH) and PCa, with healthy volunteers. Firstly, we demonstrate the expression of all miRNAs in the discovery cohort, including metastasis and benign tissue, and later validate their non-invasive diagnostic potential in BPH and PCa with healthy volunteers. MiRNA was isolated from tissue and serum to be quantified by RT-PCR and analyzed for biomarker potential by receiver operating characteristic (ROC) curve analysis, followed by targetome analysis of each miRNA. Results Among the non-invasive miRNA assessed, it was seen that miRNA 141 (P = 0.0003) and miRNA 1290 (P < 0.0001) are oncogenic with significantly higher expression, while miRNA 100 (P = 0.0002) and miRNA 335 are tumor suppressor, in PCa as compared to controls. While for BPH, miRNA 141 (P = 0.003) and miRNA 335 (P = 0.0002) were found to be significantly oncogenic and tumor suppressors, respectively. The analysis of the ROC curve of panel miRNAs (miRNA-141,-1290, and -100) portrayed a significant area under the curve with greater sensitivity and specificity. Moreover, in-silico prediction of their respective targetomes represents their extensive involvement in PCa progression and various other cascades that aid in PCa networks. Conclusions To the best of our knowledge, we are going to report for the first time this panel of miRNA that can be used to accurately and efficiently diagnose BPH and PCa patients from healthy males.
Collapse
Affiliation(s)
- Anveshika Manoj
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Mohammad K. Ahmad
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Gautam Prasad
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Durgesh Kumar
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Abbas A. Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Manoj Kumar
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
10
|
Silva J, Tavares V, Afonso A, Garcia J, Cerqueira F, Medeiros R. Plasmatic MicroRNAs and Treatment Outcomes of Patients with Metastatic Castration-Resistant Prostate Cancer: A Hospital-Based Cohort Study and In Silico Analysis. Int J Mol Sci 2023; 24:ijms24109101. [PMID: 37240449 DOI: 10.3390/ijms24109101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies among men worldwide. Inevitably, all advanced PCa patients develop metastatic castration-resistant prostate cancer (mCRPC), an aggressive phase of the disease. Treating mCRPC is challenging, and prognostic tools are needed for disease management. MicroRNA (miRNA) deregulation has been reported in PCa, constituting potential non-invasive prognostic biomarkers. As such, this study aimed to evaluate the prognostic potential of nine miRNAs in the liquid biopsies (plasma) of mCRPC patients treated with second-generation androgen receptor axis-targeted (ARAT) agents, abiraterone acetate (AbA) and enzalutamide (ENZ). Low expression levels of miR-16-5p and miR-145-5p in mCRPC patients treated with AbA were significantly associated with lower progression-free survival (PFS). The two miRNAs were the only predictors of the risk of disease progression in AbA-stratified analyses. Low miR-20a-5p levels in mCRPC patients with Gleason scores of <8 were associated with worse overall survival (OS). The transcript seems to predict the risk of death regardless of the ARAT agent. According to the in silico analyses, miR-16-5p, miR-145-5p, and miR-20a-5p seem to be implicated in several processes, namely, cell cycle, proliferation, migration, survival, metabolism, and angiogenesis, suggesting an epigenetic mechanism related to treatment outcome. These miRNAs may represent attractive prognostic tools to be used in mCRPC management, as well as a step further in the identification of new potential therapeutic targets, to use in combination with ARAT for an improved treatment outcome. Despite the promising results, real-world validation is necessary.
Collapse
Affiliation(s)
- Jani Silva
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- AquaValor-Centro de Valorização e Transferência de Tecnologia da Água, Rua Dr. Júlio Martins, nº1, 5400-342 Chaves, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana Afonso
- Department of Oncology, Portuguese Institute of Oncology, Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal
| | - Juliana Garcia
- AquaValor-Centro de Valorização e Transferência de Tecnologia da Água, Rua Dr. Júlio Martins, nº1, 5400-342 Chaves, Portugal
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB)/Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Fátima Cerqueira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Instituto de Investigação, Inovação e Desenvolvimento Fernando Pessoa (FP-I3ID), Biomedical and Health Sciences (FP-BHS), Universidade Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Instituto de Investigação, Inovação e Desenvolvimento Fernando Pessoa (FP-I3ID), Biomedical and Health Sciences (FP-BHS), Universidade Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| |
Collapse
|
11
|
Jain G, Das P, Ranjan P, Neha, Valderrama F, Cieza-Borrella C. Urinary extracellular vesicles miRNA-A new era of prostate cancer biomarkers. Front Genet 2023; 14:1065757. [PMID: 36741322 PMCID: PMC9895092 DOI: 10.3389/fgene.2023.1065757] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Prostate cancer is the second most common male cancer worldwide showing the highest rates of incidence in Western Europe. Although the measurement of serum prostate-specific antigen levels is the current gold standard in PCa diagnosis, PSA-based screening is not considered a reliable diagnosis and prognosis tool due to its lower sensitivity and poor predictive score which lead to a 22%-43% overdiagnosis, unnecessary biopsies, and over-treatment. These major limitations along with the heterogeneous nature of the disease have made PCa a very unappreciative subject for diagnostics, resulting in poor patient management; thus, it urges to identify and validate new reliable PCa biomarkers that can provide accurate information in regard to disease diagnosis and prognosis. Researchers have explored the analysis of microRNAs (miRNAs), messenger RNAs (mRNAs), small proteins, genomic rearrangements, and gene expression in body fluids and non-solid tissues in search of lesser invasive yet efficient PCa biomarkers. Although the presence of miRNAs in body fluids like blood, urine, and saliva initially sparked great interest among the scientific community; their potential use as liquid biopsy biomarkers in PCa is still at a very nascent stage with respect to other well-established diagnostics and prognosis tools. Up to date, numerous studies have been conducted in search of PCa miRNA-based biomarkers in whole blood or blood serum; however, only a few studies have investigated their presence in urine samples of which less than two tens involve the detection of miRNAs in extracellular vesicles isolated from urine. In addition, there exists some discrepancy around the identification of miRNAs in PCa urine samples due to the diversity of the urine fractions that can be targeted for analysis such as urine circulating cells, cell-free fractions, and exosomes. In this review, we aim to discuss research output from the most recent studies involving the analysis of urinary EVs for the identification of miRNA-based PCa-specific biomarkers.
Collapse
Affiliation(s)
- Garima Jain
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Parimal Das
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prashant Ranjan
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Neha
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ferran Valderrama
- Centre for Biomedical Education, Cell Biology and Genetics Research Centre, St. George’s University of London, London, United Kingdom
| | - Clara Cieza-Borrella
- Centre for Biomedical Education, Cell Biology and Genetics Research Centre, St. George’s University of London, London, United Kingdom
| |
Collapse
|
12
|
Hashemi M, Mirdamadi MSA, Talebi Y, Khaniabad N, Banaei G, Daneii P, Gholami S, Ghorbani A, Tavakolpournegari A, Farsani ZM, Zarrabi A, Nabavi N, Zandieh MA, Rashidi M, Taheriazam A, Entezari M, Khan H. Pre-clinical and clinical importance of miR-21 in human cancers: Tumorigenesis, therapy response, delivery approaches and targeting agents. Pharmacol Res 2023; 187:106568. [PMID: 36423787 DOI: 10.1016/j.phrs.2022.106568] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
The field of non-coding RNA (ncRNA) has made significant progress in understanding the pathogenesis of diseases and has broadened our knowledge towards their targeting, especially in cancer therapy. ncRNAs are a large family of RNAs with microRNAs (miRNAs) being one kind of endogenous RNA which lack encoded proteins. By now, miRNAs have been well-coined in pathogenesis and development of cancer. The current review focuses on the role of miR-21 in cancers and its association with tumor progression. miR-21 has both oncogenic and onco-suppressor functions and most of the experiments are in agreement with the tumor-promoting function of this miRNA. miR-21 primarily decreases PTEN expression to induce PI3K/Akt signaling in cancer progression. Overexpression of miR-21 inhibits apoptosis and is vital for inducing pro-survival autophagy. miR-21 is vital for metabolic reprogramming and can induce glycolysis to enhance tumor progression. miR-21 stimulates EMT mechanisms and increases expression of MMP-2 and MMP-9 thereby elevating tumor metastasis. miR-21 is a target of anti-cancer agents such as curcumin and curcumol and its down-regulation impairs tumor progression. Upregulation of miR-21 results in cancer resistance to chemotherapy and radiotherapy. Increasing evidence has revealed the role of miR-21 as a biomarker as it is present in both the serum and exosomes making them beneficial biomarkers for non-invasive diagnosis of cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Motahare Sadat Ayat Mirdamadi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Nasrin Khaniabad
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Pouria Daneii
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Zoheir Mohammadian Farsani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
13
|
Bergez-Hernández F, Arámbula-Meraz E, Alvarez-Arrazola M, Irigoyen-Arredondo M, Luque-Ortega F, Martínez-Camberos A, Cedano-Prieto D, Contreras-Gutiérrez J, Martínez-Valenzuela C, García-Magallanes N. Expression Analysis of miRNAs and Their Potential Role as Biomarkers for Prostate Cancer Detection. Am J Mens Health 2022; 16:15579883221120989. [PMID: 36082407 PMCID: PMC9465588 DOI: 10.1177/15579883221120989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Prostate cancer (PCa) is the second most frequent cancer diagnosed in men worldwide. The detection methods for PCa are either unreliable, like prostate-specific antigen (PSA), or extremely invasive, such as in the case of biopsies. Therefore, there is an urgent necessity for reliable and less invasive detection procedures that can differentiate between patients with benign diseases and those with cancer. In this matter, microRNAs (miRNAs) are suggested as potential biomarkers for cancer. MiRNAs have been found to be dysregulated in several different cancers, and these genetic alterations may present specific signatures for a given malignancy. Here, we examined the expression of miR141-3p, miR145-5p, miR146a-5p, and miR148b-3p in human tissue samples of PCa (n = 41) and benign prostatic diseases (BPD) (n = 30) using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We combined the expression results with patient clinicopathological characteristics in logistic regression models to create accurate PCa predictive models. A model including information of miR148b-3p and patient age showed relevant prediction results (area under the curve [AUC] = 0.818, precision = 0.763, specificity = 0.762, and accuracy = 0.762). A model including all four miRNAs and patient age presented outstanding prediction results (AUC = 0.918, precision = 0.861, specificity = 0.861, and accuracy = 0.857). Our results represent a potential novel procedure based on logistic regression models that utilize miRNA expressions and patient age to assist with PCa diagnosis.
Collapse
Affiliation(s)
- Fernando Bergez-Hernández
- Posgrado en Ciencias Biomédicas,
Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa,
Culiacán Rosales, México
| | - Eliakym Arámbula-Meraz
- Laboratorio de Genética y
Biología Molecular, Facultad de Ciencias Químico Biológicas, Universidad
Autónoma de Sinaloa, Culiacán Rosales, México
| | | | - Martín Irigoyen-Arredondo
- Posgrado en Ciencias Biomédicas,
Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa,
Culiacán Rosales, México
| | - Fred Luque-Ortega
- Laboratorio de Ciencias Básicas,
Facultad de Odontología, Universidad Autónoma de Sinaloa, Culiacán Rosales,
México
| | - Alejandra Martínez-Camberos
- Posgrado en Ciencias Biomédicas,
Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa,
Culiacán Rosales, México
| | - Dora Cedano-Prieto
- Laboratorio de Genética y
Biología Molecular, Facultad de Ciencias Químico Biológicas, Universidad
Autónoma de Sinaloa, Culiacán Rosales, México
| | - José Contreras-Gutiérrez
- Centro de Investigación y
Docencia en Ciencias de la Salud, Hospital Civil de Culiacán, Universidad
Autónoma de Sinaloa, Culiacán Rosales, México
| | - Carmen Martínez-Valenzuela
- Laboratorio de Genotoxicología
“Dr Jesus Kumate Rodriguez,” Unidad de Investigación en Ambiente y Salud,
Universidad Autónoma de Occidente, Los Mochis, México
| | - Noemí García-Magallanes
- Laboratorio de Biomedicina y
Biología Molecular, Ingeniería en Biotecnología, Universidad Politécnica de
Sinaloa, Mazatlán, México,Noemí García Magallanes,
Laboratorio de Biomedicina y Biología Molecular, Ingeniería en
Biotecnología, Universidad Politécnica de Sinaloa, Carretera Municipal
Libre Mazatlán-Higueras s/n 3km col. Genaro Estrada, 82199 Mazatlán,
Sinaloa, México.
| |
Collapse
|
14
|
Levenson AS. Dietary stilbenes as modulators of specific miRNAs in prostate cancer. Front Pharmacol 2022; 13:970280. [PMID: 36091792 PMCID: PMC9449421 DOI: 10.3389/fphar.2022.970280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulated experimental data have suggested that natural plant products may be effective miRNA-modulating chemopreventive and therapeutic agents. Dietary polyphenols such as flavonoids, stilbenes, and lignans, among others, have been intensively studied for their miRNA-mediated cardioprotective, antioxidant, anti-inflammatory and anticancer properties. The aim of this review is to outline known stilbene-regulated miRNAs in cancer, with a special focus on the interplay between various miRNAs and MTA1 signaling in prostate cancer. MTA1 is an epigenetic reader and an oncogenic transcription factor that is overexpressed in advanced prostate cancer and metastasis. Not surprisingly, miRNAs that are linked to MTA1 affect cancer progression and the metastatic potential of cells. Studies led to the identification of MTA1-associated pro-oncogenic miRNAs, which are regulated by stilbenes such as resveratrol and pterostilbene. Specifically, it has been shown that inhibition of the activity of the MTA1 regulated oncogenic miR-17 family of miRNAs, miR-22, and miR-34a by stilbenes leads to inhibition of prostatic hyperplasia and tumor progression in mice and reduction of proliferation, survival and invasion of prostate cancer cells in vitro. Taken together, these findings implicate the use of resveratrol and its analogs as an attractive miRNA-mediated chemopreventive and therapeutic strategy in prostate cancer and the use of circulating miRNAs as potential predictive biomarkers for clinical development.
Collapse
|
15
|
The Overexpression of TOB1 Induces Autophagy in Gastric Cancer Cells by Secreting Exosomes. DISEASE MARKERS 2022; 2022:7925097. [PMID: 35465266 PMCID: PMC9019440 DOI: 10.1155/2022/7925097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022]
Abstract
We previously confirmed that transducer of ERBB2, 1 (TOB1) gene, can induce autophagy in gastric cancer cells. Studies have shown the biogenesis of exosomes overlaps with different autophagy processes, which helps to maintain the self-renewal and homeostasis of body cells. This study is aimed at verifying whether overexpressing TOB1 induces autophagy by secreting exosomes in gastric cancer cells and its underlying mechanisms. Differential ultracentrifugation was used to extracted the exosomes from the culture medium of gastric cancer cell line AGS-TOB1 ectopically overexpressing TOB1 (exo-AGS-TOB1, experimental group) and AGS-empty-vector cell line with low expression of endogenous TOB1 (exo-AGS-Vector, control group). Exosomal markers CD9 and TSG101 were determined in both the cell supernatants of exo-AGS-TOB1 and exo-AGS-Vector by Western blot. Under the transmission electron microscope (TEM), the exosomes were round and saucer-like vesicles with double-layer membrane structure, and the vesicles showed different translucency due to different contents. The peak size of exosomes detected by nanoparticle tracking analysis (NTA) was about 100 nm. When the exosomes of exo-AGS-TOB1 and exo-AGS-Vector were cocultured with TOB1 knockdown gastric cancer cell line HGC-27-TOB1-6E12 for 48 hours, the conversion of autophagy-related protein LC3-I to LC3-II in HGC-27-TOB1-6E12 gastric cancer cells cocultured with exo-AGS-TOB1 was significantly higher than that in the control group, and the ratio of LC3-II/LC3-I was statistically different (P < 0.05). More autophagosomes in HGC-27-TOB1-6E12 cells cocultured with exo-AGS-TOB1 for 48 hours were observed under TEM, while fewer autophagosomes were found in the control group. Lastly, miRNAs were differentially expressed by cell supernatant-exosomal whole transcriptome sequencing. Thus, our results provide new insights into TOB1-induced autophagy in gastric cancer.
Collapse
|
16
|
Guo Y, Wang L, Qi Z, Liu Y, Tian K, Qiang H, Wang P, Zhou G, Zhang X, Xu S. A novel strategy for orthogonal genetic regulation on different RNA targeted loci simultaneously. RNA Biol 2022; 19:1172-1178. [PMID: 36350790 PMCID: PMC9648401 DOI: 10.1080/15476286.2022.2141507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
No current RNA-targeted interference tools have been reported to simultaneously up and down-regulate different gene expressions. Here we characterized an RNA-targeted genetic regulatory strategy composed of a flap endonuclease 1 (FEN1) and specific mis-hairpin DNA probes (mis-hpDNA), to realize the orthogonal genetic regulation. By targeting mRNA, the strategy hindered the translation and silenced genes in human cells with efficiencies of ~60%. By targeting miRNA, the strategy prevented the combination of miRNA to its specific mRNA and increased this mRNA expression by about 3-folds. In combination, we simultaneously performed CXCR4 gene knock-down (~50%) and EGFR gene activation (1.5-folds) in human cells. Although the functional property can be further improved, this RNA-targeted orthogonal genetic regulating strategy is complementary to classical tools.
Collapse
Affiliation(s)
- Yongjian Guo
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China,School of Biopharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Liang Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China,Institute of Binjiang, Zhejiang University, Hangzhou, 310053, China
| | - Zhen Qi
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China,Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210000, China
| | - Yu Liu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Kun Tian
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Huanran Qiang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Pei Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Guohua Zhou
- Department of Pharmacology, Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000, China
| | - Xiaobo Zhang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China,CONTACT Xiaobo Zhang School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Shu Xu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China,Shu Xu School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| |
Collapse
|
17
|
Oh-Hohenhorst SJ, Lange T. Role of Metastasis-Related microRNAs in Prostate Cancer Progression and Treatment. Cancers (Basel) 2021; 13:cancers13174492. [PMID: 34503302 PMCID: PMC8431208 DOI: 10.3390/cancers13174492] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In this review article we summarize the current literature on the pro- and anti-metastatic roles of distinct microRNAs in prostate cancer with a particular focus on their impact on invasion, migration and epithelial-to-mesenchymal transition. Moreover, we give a brief overview on how this knowledge developed so far into novel therapeutic approaches to target metastatic prostate cancer. Abstract Prostate cancer (PCa) is one of the most prevalent cancer types in males and the consequences of its distant metastatic deposits are the leading cause of PCa mortality. Therefore, identifying the causes and molecular mechanisms of hematogenous metastasis formation is of considerable clinical importance for the future development of improved therapeutic approaches. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level by targeting messenger RNAs. Numerous studies have identified miRNAs as promotors or inhibitors of metastasis and revealed, in part, their targeting pathways in PCa. Because miRNAs are remarkably stable and can be detected in both tissue and body fluid, its potential as specific biomarkers for metastasis and therapeutic response is also currently under preclinical evaluation. In the present review, we focus on miRNAs that are supposed to initiate or suppress metastasis by targeting several key mRNAs in PCa. Metastasis-suppressing miRNAs include miR-33a-5p, miR-34, miR-132 and miR-212, miR-145, the miR-200 family (incl. miR-141-3p), miR-204-5p, miR-532-3p, miR-335, miR-543, miR-505-3p, miR 19a 3p, miR-802, miR-940, and miR-3622a. Metastasis-promoting RNAs, such as miR-9, miR-181a, miR-210-3, miR-454, miR-671-5p, have been shown to increase the metastatic potential of PCa cells. Other metastasis-related miRNAs with conflicting reports in the literature are also discussed (miR-21 and miR-186). Finally, we summarize the recent developments of miRNA-based therapeutic approaches, as well as current limitations in PCa. Taken together, the metastasis-controlling miRNAs provide the potential to be integrated in the strategy of diagnosis, prognosis, and treatment of metastatic PCa. Nevertheless, there is still a lack of consistency between certain miRNA signatures and reproducibility, which impedes clinical implementation.
Collapse
Affiliation(s)
- Su Jung Oh-Hohenhorst
- Martini-Klinik, Prostate Cancer Centre, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal (ICM), Montreal, QC H2X 0A9, Canada
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Correspondence:
| |
Collapse
|