1
|
El Tabaa MM, Faheem H, Elballal MS, Rashad E, Mohsen M, El Tabaa MM. The PPAR-α agonist oleoyethanolamide (OEA) ameliorates valproic acid-induced steatohepatitis in rats via suppressing Wnt3a/β-catenin and activating PGC-1α: Involvement of network pharmacology and molecular docking. Eur J Pharmacol 2025; 991:177306. [PMID: 39880183 DOI: 10.1016/j.ejphar.2025.177306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/23/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Liver damage is one of the most severe side effects of valproic acid (VPA) therapy. Research indicates that PPAR-α prevents Wnt3a/β-catenin-induced PGC-1α dysregulation, which is linked to liver injury. Although PPAR-α activation has hepatoprotective effects, its role in preventing VPA-induced liver injury remains unclear. Our research used network analysis, molecular docking, and in-vivo validation to predict and assess targets and pathways associated with the hepatoprotective effects of oleoylethanolamide (OEA), a PPAR-α agonist, on VPA-induced steatohepatitis. For in-vivo experiments, 24 rats were assigned to V, OEA, VPA, and OEA + VPA. Liver functions, TGs, cholesterol, and LDL were tested. Hepatic levels of PPAR-α, ACO, TNF-α, IL-1β, HO-1, MDA, and TAC, along with Wnt3a/β-catenin, PGC-1α, and Nrf2 expression were assessed. Further, NF-κB, Bax, Bcl-2, and caspase-3 expression were detected immunohistochemically. Network pharmacology identified 258 targets for OEA-steatohepatitis connection, including NFKB1, PPARA, and NFE2L2, in addition to TNF, non-alcoholic fatty liver, NF-κB, PPAR, and WNT signaling, as contributing to steatohepatitis pathogenesis. The docking revealed a strong affinity between OEA and Wnt3a, β-catenin, and PGC-1α. Therefore, we postulated that the hepatoprotective effect of OEA may be due to Wnt3a/β-catenin-mediated inactivation of PGC1-α pathway. In vivo, OEA inhibited Wnt3a/β-catenin and increased PGC1-α by activating PPAR-α. Hence, PGC1-α reduced fat cell β-oxidation and NF-κB-mediated inflammation. OEA lessened MDA and raised TAC to mitigate oxidative damage. OEA additionally reduced apoptosis by lowering Bax/Bcl-2 ratio and caspase-3. In summary, PPAR-α involvement in the protective effects of OEA against VPA-induced steatohepatitis can be confirmed by suppressing Wnt3a/β-catenin and activating PGC-1α signaling.
Collapse
Affiliation(s)
| | - Heba Faheem
- Physiology Department, Faculty of Medicine, Tanta University, Egypt.
| | - Mohammed Salah Elballal
- Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Mohamed Mohsen
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt.
| |
Collapse
|
2
|
Kadam R, Palkar M, Pingili RB. Mechanisms involved in the valproic acid-induced hepatotoxicity: a comprehensive review. Toxicol Mech Methods 2025:1-16. [PMID: 39871487 DOI: 10.1080/15376516.2025.2459176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Adverse drug reactions (ADR) remain a challenge in modern healthcare, particularly given the increasing complexity of therapeutics. An anticonvulsant medicine which is frequently used in treatment of epilepsy and other neurological conditions is valproic acid (VPA), is frequently associated with hepatotoxicity, a severe ADR that complicates its clinical use, which can take two different forms: Type I, which is defined by dose-dependent and reversible liver damage, and Type II, an idiosyncratic reaction that can result in severe liver failure, frequently complicates its clinical application. Oxidative stress, the creation of reactive metabolites, mitochondrial dysfunction, carnitine shortage, immune-mediated reactions, glutathione depletion, and blockage of the bile salt export pump (BSEP) are some of the numerous underlying mechanisms of VA-induced hepatic damage. The production of reactive oxygen species and the liver's antioxidant protection are out of balance as a cause of oxidative stress, which is a significant factor in VPA intoxication. VPA can also accelerate the build-up of fatty acids, which increases the risk of steatosis, due to its interaction with the metabolism of carnitine. Immune-mediated processes have been shown to increase liver injury, implying that the immunity system may possibly be involved in VPA hepatotoxicity. Hepatocyte injury and cholestasis are caused by BSEP inhibition, which impairs bile flow. The complex interaction between biochemical and cellular mechanisms that underlie valproic acid's hepatotoxic potential calls for additional research to clarify the precise pathways implicated and create mitigation techniques for this ADR.
Collapse
Affiliation(s)
- Rohan Kadam
- Department of Pharmacology, SVKM's NMIMS School of Pharmacy and Technology Management, Babulde, Shirpur, India
| | - Mahesh Palkar
- Department of Pharmaceutical Chemistry, SVKM's NMIMS Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, India
| | - Ravindra Babu Pingili
- Department of Pharmacology, SVKM's NMIMS School of Pharmacy and Technology Management, Babulde, Shirpur, India
| |
Collapse
|
3
|
Tang L, Zhu J, Zhuge S, Yu J, Jiang G. Perfluorooctane sulfonate induces hepatotoxicity through promoting inflammation, cell death and autophagy in a rat model. J Toxicol Sci 2025; 50:45-55. [PMID: 39894534 DOI: 10.2131/jts.50.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Perfluorooctane sulfonate (PFOS) is reported to cause hepatotoxicity in animals and humans. However, the underlying mechanism by which it affects organelle toxicity in the liver are not well elucidated yet. This study aimed to investigate the mechanisms underlying PFOS-induced hepatic toxicity, focusing on inflammation, cell death, and autophagy. We established a PFOS-exposed Sprague-Dawley (SD) rat liver injury model by intraperitoneal injection of PFOS (1 mg/kg and 10 mg/kg body weight) every alternate day for 15 days. Our findings indicated that PFOS increased liver weight, caused lipid disorder and hepatic steatosis in rats. Meanwhile, PFOS disrupted the structure of mitochondria, increased accumulation of reactive oxygen species (ROS), repressed superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) levels, and elevated malondialdehyde (MDA) and nitric oxide synthase (NOS) amounts. We found PFOS induced inflammation as evidenced by activation of NOD-like receptor protein 3 (NLRP3), Cleaved cysteine-aspartic acid protease (caspase)1, tumor necrosis factor (TNF)α and interleukin (IL)-1β levels. Moreover, PFOS exposure significantly decreased B-cell lymphoma2 (Bcl2)/Bcl2 associated X (Bax) ratio and increased the protein expression of Cleaved caspase-3. Compared with the control group, PFOS upregulated the protein expression of necroptotic markers and autophagy-related proteins. In conclusion, PFOS induced inflammation, cell death, and autophagy through oxidative stress by ROS overload, thereby providing a mechanistic explanation for PFOS-induced hepatotoxicity.
Collapse
Affiliation(s)
- Leilei Tang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, China
| | - Jianjun Zhu
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, China
| | - Sheng Zhuge
- Department of Surgery, The First People's Hospital of Yuhang District
| | - Jiawen Yu
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, China
| | - Guojun Jiang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, China
| |
Collapse
|
4
|
Coelho AM, Queiroz IF, Perucci LO, Menezes TP, Lima WG, Talvani A, Costa DC. Piperine as an Herbal Alternative for the Prevention of Drug-Induced Liver Damage Caused by Paracetamol. Pharmaceuticals (Basel) 2024; 17:1477. [PMID: 39598389 PMCID: PMC11597450 DOI: 10.3390/ph17111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objective: Hepatic drug intoxication is becoming increasingly common with the increasing use of chronic medications. Piperine has emerged as a promising alternative for protecting the liver against drug-induced injury. We evaluated the prophylactic effects of piperine in C57BL/6 mice with an acute liver injury induced by a paracetamol (APAP) overdose. Methods: Piperine was administered at a dose of 20 mg/kg (P20) or 40 mg/kg (P40) for eight consecutive days before the animals were exposed to a hepatotoxic dose of paracetamol (500 mg/kg). The animals were euthanized 3 h after the paracetamol overdose. Results: The prophylactic treatment with piperine (P20 and P40) maintained the levels of alanine aminotransferase (ALT) and the biomarkers of oxidative damage (TBARS and carbonylated proteins), which were statistically similar to those for the control group. The extent of hepatocyte necrosis and TNF-α (tumor necrosis factor-alpha) levels were lower than those in the group exposed to liver injury (APAP group). Piperine modulated the gene expression of CYP2E1 (cytochrome P4502E1) and the inflammasome pathway (NLRP3, CASP-1, IL-1β, and IL-18), which play a crucial role in the inflammatory response. In the P40 group, the degree of hepatic hyperemia was similar to that in the control group, as was the increase in metalloproteinase 9 (MMP-9) activity. Conclusion: Piperine has demonstrated beneficial and promising effects for the prevention of liver injury resulting from paracetamol-induced drug intoxication.
Collapse
Affiliation(s)
- Aline Meireles Coelho
- Department of Biological Sciences (DECBI), Federal University of Ouro Preto (UFOP), Minas Gerais 35400-000, Brazil; (A.M.C.)
- Graduate Program in Biological Sciences (CBIOL), Federal University of Ouro Preto (UFOP), Minas Gerais 35400-000, Brazil
| | - Isabela Ferreira Queiroz
- Department of Biological Sciences (DECBI), Federal University of Ouro Preto (UFOP), Minas Gerais 35400-000, Brazil; (A.M.C.)
| | - Luiza Oliveira Perucci
- Center for Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Minas Gerais 35400-000, Brazil
| | - Tatiana Prata Menezes
- Graduate Program in Health and Nutrition (PPGSN), Federal University of Ouro Preto (UFOP), Minas Gerais 35400-000, Brazil
| | - Wanderson Geraldo Lima
- Department of Biological Sciences (DECBI), Federal University of Ouro Preto (UFOP), Minas Gerais 35400-000, Brazil; (A.M.C.)
- Graduate Program in Biological Sciences (CBIOL), Federal University of Ouro Preto (UFOP), Minas Gerais 35400-000, Brazil
| | - André Talvani
- Department of Biological Sciences (DECBI), Federal University of Ouro Preto (UFOP), Minas Gerais 35400-000, Brazil; (A.M.C.)
- Graduate Program in Health and Nutrition (PPGSN), Federal University of Ouro Preto (UFOP), Minas Gerais 35400-000, Brazil
| | - Daniela Caldeira Costa
- Department of Biological Sciences (DECBI), Federal University of Ouro Preto (UFOP), Minas Gerais 35400-000, Brazil; (A.M.C.)
- Graduate Program in Biological Sciences (CBIOL), Federal University of Ouro Preto (UFOP), Minas Gerais 35400-000, Brazil
- Graduate Program in Health and Nutrition (PPGSN), Federal University of Ouro Preto (UFOP), Minas Gerais 35400-000, Brazil
| |
Collapse
|
5
|
Demyashkin G, Blinova E, Grigoryan M, Parshenkov M, Skovorodko P, Ius V, Lebed A, Shegay P, Kaprin A. Neuroprotective Effects of Myricetin on PTZ-Induced Seizures in Mice: Evaluation of Oxidation, Neuroinflammation and Metabolism, and Apoptosis in the Hippocampus. Curr Issues Mol Biol 2024; 46:8914-8944. [PMID: 39194744 DOI: 10.3390/cimb46080527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Epilepsy is one of the most frequently diagnosed neurological diseases, but the neurobiological basis of the disease remains poorly understood. Immunophenotyping CBA mice brain (NeuN and caspase-8) in parallel with hippocampal neurons' functional status and survival rate assessment during acute epileptic PTZ-induced seizures is of particular interest. The aims of this study were to investigate the involvement of NeuN and caspase-8 in cell cycle regulation and the death of hippocampal neurons during PTZ-induced seizures in mice and to assess the therapeutic efficacy of Myricetin in the aforementioned experimental settings. Male CBA mice (n = 340) were divided into six groups to investigate the neuroprotective and antiepileptic effects of Myricetin and Valproic Acid in the PTZ-induced seizure model. Group I (control, n = 20) received a single intraperitoneal injection of NaCl 0.9% solution. Group II (PTZ only, n = 110) received a single intraperitoneal 45 mg/kg PTZ to induce seizures. Group III (Myricetin + PTZ, n = 90) was administered Myricetin orally at 200 mg/kg for 5 days, followed by a PTZ injection. Group IV (Valproic Acid + PTZ, n = 80) received intraperitoneal Valproic Acid at 100 mg/kg for 5 days, followed by PTZ. Group V (Myricetin + NaCl, n = 20) received Myricetin and NaCl. Group VI (Valproic Acid + NaCl, n = 20) received Valproic Acid and NaCl. Seizure severity was monitored using the modified Racine scale. Behavioral assessments included sensorimotor function tests, motor coordination using the rotarod test, and cognitive function via the Morris water maze. Brain tissues were collected and analyzed for oxidative stress markers, including malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH). Blood samples were analyzed for cytokine levels (IL-1β, IL-6, and TNF-α). Histological studies involved H&E and Nissl staining to evaluate general histopathology and neuronal density. Immunohistochemical analysis was conducted using antibodies against NeuN and caspase-8 to assess neuronal cell cycle regulation and apoptosis. PTZ-induced seizures caused significant oxidative stress and inflammation, leading to neuronal damage. Biochemical analyses showed elevated levels of MDA, SOD, GSH, IL-1β, IL-6, and TNF-α. Histological and immunohistochemical evaluations revealed a significant increase in caspase-8-positive neurons and a decrease in NeuN-positive neurons in the hippocampus and other brain regions, correlating with seizure severity. Myricetin and Valproic Acid treatments reduced oxidative stress markers and neuronal damage. Both treatments resulted in moderate neuronal protection, with fewer damaged neurons observed in the hippocampus, dentate gyrus, and other brain areas compared to the PTZ-only group. Summarizing, Myricetin administration showed promising neuroprotective effects. It significantly reduced oxidative stress markers, including MDA, and restored antioxidant enzyme activities (SOD and GSH), suggesting its antioxidative potential. Myricetin also effectively attenuated the elevation of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, indicating strong anti-inflammatory properties. Behavioral assessments revealed that Myricetin improved cognitive and motor functions in PTZ-treated mice, with notable reductions in seizure severity and mortality rates. Histological analyses supported these behavioral findings, with Nissl staining showing reduced neuronal damage and NeuN staining indicating better preservation of neuronal integrity in Myricetin-treated groups. Additionally, caspase-8 staining suggested a significant reduction in neuronal apoptosis.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Ekaterina Blinova
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
| | - Migran Grigoryan
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
| | - Mikhail Parshenkov
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
| | - Polina Skovorodko
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
| | - Vladimir Ius
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
| | - Anastasia Lebed
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia
| | - Petr Shegay
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Andrei Kaprin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Department of Urology and Operative Nephrology, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str.6, 117198 Moscow, Russia
| |
Collapse
|
6
|
Zhang Y, Song Q, E S, Guan X, Zhang Z, Juan Z, Sun X, Liang Y. RNA-seq based transcriptomic map reveals multiple pathways of necroptosis in treating myocardial ischemia reperfusion injury. Gene 2024; 906:148217. [PMID: 38341002 DOI: 10.1016/j.gene.2024.148217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/19/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Necroptosis has been shown to contribute to myocardial ischemia reperfusion injury (MIRI). This study aims to gain new insights into the signaling pathway of necroptosis in rat MIRI using RNA sequencing. MIRI was induced in male rats by ligating the left anterior descending coronary artery for 30 min, followed by reperfusion for 120 min. RNA sequencing was performed to obtain mRNA profiles of MIRI group and MIRI group treated with necrostatin-1 (Nec-1,an inhibitor of necroptosis). Differentially expressed genes (DEGs) were then identified. The DEGs were prominently enriched in the TNF-α signaling pathway, the MAPK signaling pathway and cytokine-cytokine receptor pathways. The majority of the results were associated with genes like Thumpd3,Egr2,Dot1l,Cyp1a1,Dbnl,which primarily regulate inflammatory response and apoptosis, particularly in myocardium. The above results suggested that Nec-1 might be involved in the regulation of necroptosis and the inflammatory response through the above-mentioned genes.
Collapse
Affiliation(s)
- Yijia Zhang
- School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Qingbiao Song
- School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Sihan E
- School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Xuehao Guan
- School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Zhiyu Zhang
- Department of Orthopedics, Affiliated Hospital of Weifang Medical University, Weifang 261035, China
| | - Zhaodong Juan
- School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Xiaotong Sun
- School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Yingxia Liang
- School of Anesthesiology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
7
|
Kang Y, Hepojoki J, Maldonado RS, Mito T, Terzioglu M, Manninen T, Kant R, Singh S, Othman A, Verma R, Uusimaa J, Wartiovaara K, Kareinen L, Zamboni N, Nyman TA, Paetau A, Kipar A, Vapalahti O, Suomalainen A. Ancestral allele of DNA polymerase gamma modifies antiviral tolerance. Nature 2024; 628:844-853. [PMID: 38570685 PMCID: PMC11041766 DOI: 10.1038/s41586-024-07260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Age of Onset
- Alleles
- COVID-19/immunology
- COVID-19/virology
- COVID-19/genetics
- DNA Polymerase gamma/genetics
- DNA Polymerase gamma/immunology
- DNA Polymerase gamma/metabolism
- DNA, Mitochondrial/immunology
- DNA, Mitochondrial/metabolism
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis, Tick-Borne/genetics
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/virology
- Founder Effect
- Gene Knock-In Techniques
- Herpes Simplex/genetics
- Herpes Simplex/immunology
- Herpes Simplex/virology
- Herpesvirus 1, Human/immunology
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Interferon Type I/immunology
- Mitochondrial Diseases/enzymology
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/immunology
- Mutation
- RNA, Mitochondrial/immunology
- RNA, Mitochondrial/metabolism
- SARS-CoV-2/immunology
Collapse
Affiliation(s)
- Yilin Kang
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Rocio Sartori Maldonado
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Takayuki Mito
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mügen Terzioglu
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula Manninen
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Sachin Singh
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Alaa Othman
- Swiss Multi-Omics Center, ETH Zürich, Zürich, Switzerland
| | - Rohit Verma
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Uusimaa
- Research Unit of Clinical Medicine and Medical Research Center, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Unit of Child Neurology, Oulu University Hospital, Oulu, Finland
| | - Kirmo Wartiovaara
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
| | - Lauri Kareinen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Finnish Food Safety Authority, Helsinki, Finland
| | - Nicola Zamboni
- Swiss Multi-Omics Center, ETH Zürich, Zürich, Switzerland
| | - Tuula Anneli Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Anders Paetau
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
| | - Anu Suomalainen
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland.
- HiLife, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Atef MM, Abou Hashish NA, Hafez YM, Selim AF, Ibrahim HA, Eltabaa EF, Rizk FH, Shalaby AM, Ezzat N, Alabiad MA, Elshamy AM. The potential protective effect of liraglutide on valproic acid induced liver injury in rats: Targeting HMGB1/RAGE axis and RIPK3/MLKL mediated necroptosis. Cell Biochem Funct 2023; 41:1209-1219. [PMID: 37771193 DOI: 10.1002/cbf.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023]
Abstract
Valproic acid (VPA) is a commonly used drug for management of epilepsy. Prolonged VPA administration increases the risk of hepatotoxicity. Liraglutide is a glucagon-like peptide 1 receptor (GLP-1R) agonist that act as a novel antidiabetic drug with broad-spectrum anti-inflammatory and antioxidant effects. This study tested the protective effect of liraglutide against VPA-induced hepatotoxicity elucidating the possible underlying molecular mechanisms. Forty adult male rats were allocated in to four equally sized groups; Group I (control group) received oral distilled water and subcutaneous normal saline for 2 weeks followed by subcutaneous normal saline only for 2 weeks. Group II (liraglutide group) received subcutaneous liraglutide dissolved in normal saline daily for 4 weeks. Group III (valproic acid-treated group) received sodium valproate dissolved in distilled water for 2 weeks. Group IV (Combined valproic acid & liraglutide treated group) received valproic acid plus liraglutide daily for 2 weeks which was continued for additional 2 weeks after valproic acid administration. The hepatic index was calculated. Serum AST, ALT, GGT, and ALP activities were estimated. Hepatic tissue homogenate MDA, GSH, SOD, HMGB1, MAPK, RIPK1, and RIPK3 levels were evaluated using ELISA. However, hepatic RAGE and MLKL messenger RNA expression levels using the QRT-PCR technique. Hepatic NF-κB and TNF-α were detected immunohistochemically. Results proved that liraglutide coadministration significantly decreased liver enzymes, MDA, HMGB1, MAPK, RIPK1 RIPK3, RAGE, and MLKL with concomitant increased GSH and SOD in comparison to the correspondent values in VPA-hepatotoxicity group. Conclusions: Liraglutide's protective effects against VPA-induced hepatotoxicity are triggered by ameliorating oxidative stress, inflammation, and necroptosis.
Collapse
Affiliation(s)
- Marwa Mohamed Atef
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Yasser Mostafa Hafez
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed Fawzy Selim
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hoda A Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman Fawzy Eltabaa
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fatma H Rizk
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Nadia Ezzat
- Department of Toxicology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Ali Alabiad
- Department of Pathology, Faculty of Medicine, Zagazig University, Tanta, Egypt
| | - Amira M Elshamy
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
9
|
Molavinia S, Moosavi M, Hejazi S, Azadnasab R, Mansouri E, Khodayar MJ. Metformin alleviates sodium arsenite-induced hepatotoxicity and glucose intolerance in mice by suppressing oxidative stress, inflammation, and apoptosis. J Trace Elem Med Biol 2023; 80:127299. [PMID: 37690370 DOI: 10.1016/j.jtemb.2023.127299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Epidemiological studies have shown that exposure to sodium arsenite (NaAsO2) causes diabetes and hepatotoxicity. Metformin (MET), an oral hypoglycemic agent, has long been used in diabetes therapy. In addition, MET has been shown to have hepatoprotective effects. In this study, we investigated the effects of MET on NaAsO2-induced hepatotoxicity and glucose intolerance in mice. METHODS Mice were divided into four groups: Groups I and II received distilled water and NaAsO2 (10 mg/kg, p.o.) for five weeks, respectively. Groups III and IV were treated with NaAsO2 (10 mg/kg, p.o.) for three weeks, followed by MET (125 and 250 mg/kg, p.o.) for the last two weeks before NaAsO2. A glucose tolerance test was performed on day 35. The serum and tissue parameters were also evaluated. RESULTS Histopathological examination revealed NaAsO2-induced liver and pancreatic damage. NaAsO2 caused hyperglycemia, glucose intolerance, and a significant increase in liver function enzymes. Administration of NaAsO2 significantly reduced hepatic superoxide dismutase, catalase, glutathione peroxidase, and total thiol levels and increased the content of reactive thiobarbituric acid substances. In addition, it led to an increase in liver nitric oxide levels and protein expression of tumor necrosis factor-α, nuclear factor kappa B, and cysteine-aspartic proteases-3. In contrast, treatment with MET (250 mg/kg) significantly improved NaAsO2-induced biochemical and histopathological changes. CONCLUSION Our findings suggest that the significant effects of MET against NaAsO2-induced hepatotoxicity and glucose intolerance may be exerted via the regulation of oxidative stress, followed by suppression of inflammation and apoptosis.
Collapse
Affiliation(s)
- Shahrzad Molavinia
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrnoosh Moosavi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Hejazi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azadnasab
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and molecular research center, Medical Basic Sciences Research Institute, Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
10
|
Gao S, Chen X, Yu Z, Du R, Chen B, Wang Y, Cai X, Xu J, Chen J, Duan H, Cai Y, Zheng G. Progress of research on the role of active ingredients of Citri Reticulatae Pericarpium in liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154836. [PMID: 37119760 DOI: 10.1016/j.phymed.2023.154836] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Liver is a vital organ responsible for metabolizing and detoxifying both endogenous and exogenous substances in the body. However, it is susceptible to damage from chemical and natural toxins. The high incidence and mortality rates of liver disease and its associated complications impose a significant economic burden and survival pressure on patients and their families. Various liver diseases exist, including cholestasis, viral and non-viral hepatitis, fatty liver disease, drug-induced liver injury, alcoholic liver injury, and severe end-stage liver diseases such as cirrhosis, hepatocellular carcinoma (HCC), and cholangiocellular carcinoma (CCA). Recent research has shown that flavonoids found in Citri Reticulatae Pericarpium (CRP) have the potential to normalize blood glucose, cholesterol levels, and liver lipid levels. Additionally, these flavonoids exhibit anti-inflammatory properties, prevent oxidation and lipid peroxidation, and reduce liver toxicity, thereby preventing liver injury. Given these promising findings, it is essential to explore the potential of active components in CRP for developing new drugs to treat liver diseases. OBJECTIVE Recent studies have revealed that flavonoids, including hesperidin (HD), hesperetin (HT), naringenin (NIN), nobiletin (NOB), naringin (NRG), tangerine (TN), and erodcyol (ED), are the primary bioactive components in CRP. These flavonoids exhibit various therapeutic effects on liver injury, including anti-oxidative stress, anti-cytotoxicity, anti-inflammatory, anti-fibrosis, and anti-tumor mechanisms. In this review, we have summarized the research progress on the hepatoprotective effects of HD, HT, NIN, NOB, NRG, TN, ED and limonene (LIM), highlighting their underlying molecular mechanisms. Despite their promising effects, the current clinical application of these active ingredients in CRP has some limitations. Therefore, further studies are needed to explore the full potential of these flavonoids and develop new therapeutic strategies for liver diseases. METHODS For this review, we conducted a systematic search of three databases (ScienceNet, PubMed, and Science Direct) up to July 2022, using the search terms "CRP active ingredient," "liver injury," and "flavonoids." The search data followed the PRISMA standard. RESULTS Our findings indicate that flavonoids found in CRP can effectively reduce drug-induced liver injury, alcoholic liver injury, and non-alcoholic liver injury. These therapeutic effects are mainly attributed to the ability of flavonoids to improve liver resistance to oxidative stress and inflammation while normalizing cholesterol and liver lipid levels by exhibiting anti-free radical and anti-lipid peroxidation properties. CONCLUSION Our review provides new insights into the potential of active components in CRP for preventing and treating liver injury by regulating various molecular targets within different cell signaling pathways. This information can aid in the development of novel therapeutic strategies for liver disease.
Collapse
Affiliation(s)
- Shuhan Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaojing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhiqian Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Rong Du
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Baizhong Chen
- Guangdong Xinbaotang Biological Technology Co., Ltd, Guangdong Jiangmen, 529000, China
| | - Yuxin Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoting Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiepei Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiamin Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huiying Duan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Guodong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
11
|
Ezhilarasan D, Mani U. Valproic acid induced liver injury: An insight into molecular toxicological mechanism. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103967. [PMID: 36058508 DOI: 10.1016/j.etap.2022.103967] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Valproic acid (VPA) is an anti-seizure drug that causes idiosyncratic liver injury. 2-propyl-4-pentenoic acid (Δ4VPA), a metabolite of VPA, has been implicated in VPA-induced hepatotoxicity. This review summarizes the pathogenesis involved in VPA-induced liver injury. The VPA induce liver injury mainly by i) liberation of Δ4VPA metabolites; ii) decrease in glutathione stores and antioxidants, resulting in oxidative stress; iii) inhibition of fatty acid β-oxidation, inducing mitochondrial DNA depletion and hypermethylation; a decrease in proton leak; oxidative phosphorylation impairment and ATP synthesis decrease; iv) induction of fatty liver via inhibition of carnitine palmitoyltransferase I, enhancing nuclear receptor peroxisome proliferator-activated receptor-gamma and acyl-CoA thioesterase 1, and inducing long-chain fatty acid uptake and triglyceride synthesis. VPA administration aggravates liver injury in individuals with metabolic syndromes. Therapeutic drug monitoring, routine serum levels of transaminases, ammonia, and lipid parameters during VPA therapy may thus be beneficial in improving the safety profile or preventing the progression of DILI.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600 077, India.
| | - Uthirappan Mani
- Animal House Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| |
Collapse
|
12
|
Molaei S, Amiri F, Salimi R, Ferdowsi S, Bahadori M. Therapeutic effects of mesenchymal stem cells-conditioned medium derived from suspension cultivation or silymarin on liver failure mice. Mol Biol Rep 2022; 49:10315-10325. [PMID: 36097106 DOI: 10.1007/s11033-022-07785-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Common treatments of liver disease failed to meet all the needs in this important medical field. It results in an urgent need for proper some new adjuvant therapies. Mesenchymal stem cells (MSCs) and their derivatives are promising tools in this regard. We aimed to compare the Silymarin, as traditional treatment with mesenchymal stem cell conditioned medium (MSC-CM), as a novel strategy, both with therapeutic potentialities in term of liver failure (LF) treatment. METHODS AND RESULTS Mice models with liver failure were induced with CCl4 and were treated in the groups as follows: normal mice receiving DMEM-LG medium as control, LF-mice receiving DMEM-LG medium as sham, LF-mice receiving Silymarin as LF-SM, and LF-mice receiving MSC sphere CM as LF-MSC-CM. Biochemical, histopathological, molecular and protein level parameters were evaluated using blood and liver samples. Liver enzymes, MicroRNA-122 values as well as necrotic score were significantly lower in the LF-SM and LF-MSC-CM groups compared to sham. LF-SM showed significantly higher level of total antioxidant capacity and malondialdehyde than that of LF-MSC-CM groups. Sph-MSC-CM not only induced more down-regulated expression of fibrinogen-like protein 1 and receptor interacting protein kinases1 but also led to higher expression level of keratinocyte growth factor. LF-MSC-CM showed less mortality rate compared to other groups. CONCLUSIONS Hepato-protective potentialities of Sph-MSC-CM are comparable to those of Silymarin. More inhibition of necroptosis/ necrosis and inflammation might result in rapid liver repair in case of MSC-CM administration.
Collapse
Affiliation(s)
- Sedigheh Molaei
- Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Para Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Rasoul Salimi
- Department of Emergency Medicine, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirin Ferdowsi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Marzie Bahadori
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
13
|
Steele JW, Lin YL, Chen N, Wlodarczyk BJ, Chen Q, Attarwala N, Venkatesalu M, Cabrera RM, Gross SS, Finnell RH. Embryonic Hypotaurine Levels Contribute to Strain-Dependent Susceptibility in Mouse Models of Valproate-Induced Neural Tube Defects. Front Cell Dev Biol 2022; 10:832492. [PMID: 35265619 PMCID: PMC8898900 DOI: 10.3389/fcell.2022.832492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 01/24/2023] Open
Abstract
Valproic acid (VPA, valproate, Depakote) is a commonly used anti-seizure medication (ASM) in the treatment of epilepsy and a variety of other neurological disorders. While VPA and other ASMs are efficacious for management of seizures, they also increase the risk for adverse pregnancy outcomes, including neural tube defects (NTDs). Thus, the utility of these drugs during pregnancy and in women of childbearing potential presents a continuing public health challenge. Elucidating the underlying genetic or metabolic risk factors for VPA-affected pregnancies may lead to development of non-teratogenic ASMs, novel prevention strategies, or more targeted methods for managing epileptic pregnancies. To address this challenge, we performed unbiased, whole embryo metabolomic screening of E8.5 mouse embryos from two inbred strains with differential susceptibility to VPA-induced NTDs. We identified metabolites of differential abundance between the two strains, both in response to VPA exposure and in the vehicle controls. Notable enriched pathways included lipid metabolism, carnitine metabolism, and several amino acid pathways, especially cysteine and methionine metabolism. There also was increased abundance of ω-oxidation products of VPA in the more NTD-sensitive strain, suggesting differential metabolism of the drug. Finally, we found significantly reduced levels of hypotaurine in the susceptible strain regardless of VPA status. Based on this information, we hypothesized that maternal supplementation with L-carnitine (400 mg/kg), coenzyme A (200 mg/kg), or hypotaurine (350 mg/kg) would reduce VPA-induced NTDs in the sensitive strain and found that administration of hypotaurine prior to VPA exposure significantly reduced the occurrence of NTDs by close to one-third compared to controls. L-carnitine and coenzyme A reduced resorption rates but did not significantly reduce NTD risk in the sensitive strain. These results suggest that genetic variants or environmental exposures influencing embryonic hypotaurine status may be factors in determining risk for adverse pregnancy outcomes when managing the health care needs of pregnant women exposed to VPA or other ASMs.
Collapse
Affiliation(s)
- John W. Steele
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Ying Linda Lin
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Nellie Chen
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Bogdan J. Wlodarczyk
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, United States
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, United States
| | - Madhu Venkatesalu
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Robert M. Cabrera
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, United States
| | - Richard H. Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|