1
|
Lertpatipanpong P, Moon H, Seo JE, Kim M, Baek SJ. Characterization of feline nonsteroidal anti-inflammatory drug activated gene-1 (fNAG-1) and its protective function in kidney cells. BMC Vet Res 2025; 21:364. [PMID: 40399974 PMCID: PMC12093827 DOI: 10.1186/s12917-025-04781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/23/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Domestic cats are susceptible to obesity and chronic renal failure, leading to significant health risks. Nonsteroidal anti-inflammatory drug-activated gene (NAG-1), also known as growth differentiation factor 15 (GDF15), is a member of the transforming growth factor-β superfamily and has been associated with anti-obesity properties and preservation of kidney function. While the NAG-1 sequence has been extensively studied in several species, a comprehensive understanding of feline NAG-1 remains limited. This study aimed to investigate the nucleotide sequence of feline NAG-1 and its biological role in kidney protection through in-vitro experiments. METHODS The feline NAG-1 cDNA was isolated from the feline uterus, and its sequence was analyzed and compared to sequences from other species, including humans. Expression patterns of feline NAG-1 in various tissues, particularly the liver and kidney, were determined. Furthermore, the effects of different phytochemicals and NSAIDs known to induce NAG-1 expression were assessed using Crandell-Rees Feline Kidney (CRFK) cells. RESULTS The analysis revealed that feline NAG-1 shares similarities with human NAG-1 and exhibits high expression levels in the liver and kidney of cats. Treatment with tolfenamic acid, quercetin, and resveratrol significantly increased NAG-1 expression in CRFK cells. Subsequently, CRFK cells overexpressing feline NAG-1 were utilized to investigate the functional roles of NAG-1 in feline kidney health. High-content screening analysis demonstrated that NAG-1 overexpression in cat kidney cells enhanced mitochondrial membrane potential, reduced reactive oxygen species (ROS) generation in both whole cells and mitochondria, and downregulated the expression of Bax, a pro-apoptotic protein, under conditions of ROS-induced stress. These findings indicate the renoprotective role of NAG-1. CONCLUSION This study highlights the significant role of NAG-1 in feline kidney cells, revealing its high expression in the liver and kidney and demonstrating its protective effects on kidney function. These results underscore the potential of NAG-1 as a key factor in kidney protection. Future research should focus on further elucidating the molecular pathways involved and exploring therapeutic strategies to harness NAG-1 for managing obesity-related renal dysfunction in cats.
Collapse
Affiliation(s)
- Pattawika Lertpatipanpong
- Laboratory of Signal Transduction, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Hyunjin Moon
- Laboratory of Signal Transduction, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jung Eun Seo
- Laboratory of Signal Transduction, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Minsu Kim
- Center for Veterinary Integrative Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Joon Baek
- Laboratory of Signal Transduction, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Center for Veterinary Integrative Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Zhao Q, Huang Y, Fu N, Cui C, Peng X, Kang H, Xiao J, Ke G. Podocyte senescence: from molecular mechanisms to therapeutics. Ren Fail 2024; 46:2398712. [PMID: 39248407 PMCID: PMC11385655 DOI: 10.1080/0886022x.2024.2398712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
As an important component of the glomerular filtration membrane, the state of the podocytes is closely related to kidney function, they are also key cells involved in aging and play a central role in the damage caused by renal aging. Therefore, understanding the aging process of podocytes will allow us to understand their susceptibility to injury and identify targeted protective mechanisms. In fact, the process of physiological aging itself can induce podocyte senescence. Pathological stresses, such as oxidative stress, mitochondrial damage, secretion of senescence-associated secretory phenotype, reduced autophagy, oncogene activation, altered transcription factors, DNA damage response, and other factors, play a crucial role in inducing premature senescence and accelerating aging. Senescence-associated-β-galactosidase (SA-β-gal) is a marker of aging, and β-hydroxybutyric acid treatment can reduce SA-β-gal activity to alleviate cellular senescence and damage. In addition, CCAAT/enhancer-binding protein-α, transforming growth factor-β signaling, glycogen synthase kinase-3β, cycle-dependent kinase, programmed cell death protein 1, and plasminogen activator inhibitor-1 are closely related to aging. The absence or elevation of these factors can affect aging through different mechanisms. Podocyte injury is not an independent process, and injured podocytes interact with the surrounding epithelial cells or other kidney cells to mediate the injury or loss of podocytes. In this review, we discuss the manifestations, molecular mechanisms, biomarkers, and therapeutic drugs for podocyte senescence. We included elamipretide, lithium, calorie restriction, rapamycin; and emerging treatment strategies, such as gene and immune therapies. More importantly, we summarize how podocyte interact with other kidney cells.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongzhang Huang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningying Fu
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caixia Cui
- Department of Nephrology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xuan Peng
- Department of Nephrology, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, China
| | - Haiyan Kang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Xiao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guibao Ke
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Liu J, Guo B, Liu Q, Zhu G, Wang Y, Wang N, Yang Y, Fu S. Cellular Senescence: A Bridge Between Diabetes and Microangiopathy. Biomolecules 2024; 14:1361. [PMID: 39595537 PMCID: PMC11591988 DOI: 10.3390/biom14111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Cellular senescence is a state of permanent cell cycle arrest and plays an important role in many vascular lesions. This study found that the cells of diabetic patients have more characteristics of senescence, which may cause microvascular complications. Cell senescence, as one of the common fates of cells, links microangiopathy and diabetes. Cell senescence in a high-glucose environment can partially elucidate the mechanism of diabetic microangiopathy, and various types of cellular senescence induced by it can promote the progression of diabetic microangiopathy. Still, the molecular mechanism of microangiopathy-related cellular senescence has not yet been clearly studied. Building on recent research evidence, we herein summarize the fundamental mechanisms underlying the development of cellular senescence in various microangiopathies associated with diabetes. We gradually explain how cellular senescence serves as a key driver of diabetic microangiopathy. At the same time, the treatment of basic senescence mechanisms such as cellular senescence may have a great impact on the pathogenesis of the disease, may be more effective in preventing the development of diabetic microangiopathy, and may provide new ideas for the clinical treatment and prognosis of diabetic microangiopathy.
Collapse
Affiliation(s)
- Jiahui Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Buyu Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Qianqian Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Guomao Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Yaqi Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Na Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Yichen Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Songbo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Endocrine Disease, Lanzhou 730000, China
| |
Collapse
|
4
|
Kohandel Z, Darrudi M, Naseri K, Samini F, Aschner M, Pourbagher-Shahri AM, Samarghandian S. The Role of Resveratrol in Aging and Senescence: A Focus on Molecular Mechanisms. Curr Mol Med 2024; 24:867-875. [PMID: 37278035 DOI: 10.2174/1566524023666230602162949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Resveratrol (Res), a polyphenol found in red wine, has been shown to decelerate aging, the progressive loss of physiological integrity and cellular senescence, characterized by the inability to progress through the cell cycle. No successful clinical trials have yet to be completed in humans on dose limitations. Yet, the potent anti-aging and anti-senescence efficacy of Res has been documented in several in vivo animal models. In this review, we highlight the molecular mechanisms of Res efficacy in antiaging disorders, such as diabetes, neurodegenerative disorders, eye diseases, and cardiovascular diseases.
Collapse
Affiliation(s)
- Zeynab Kohandel
- Department of Biology, Faculty of Sciences, University of Tehran, Iran
| | - Majid Darrudi
- Department of Basic Sciences, Neyshabur University of Medical Sciences, Neyshabur, 9318614139, Iran
| | - Kobra Naseri
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariborz Samini
- Department of Neurosurgery, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
5
|
Bi M, Qin Y, Wang L, Zhang J. The protective role of resveratrol in diabetic wound healing. Phytother Res 2023; 37:5193-5204. [PMID: 37767805 DOI: 10.1002/ptr.7981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 09/29/2023]
Abstract
Diabetic wounds are severe complications of diabetes mellitus (DM), which have difficulty in healing. Although diverse treatments have been used, the prognosis of diabetic wounds is not satisfactory; therefore, an effective therapy to accelerate diabetic wound healing is urgently needed. In our review, we summarized that resveratrol can promote diabetic wound healing by protecting against hyperglycemia, inflammation, oxidative stress, vascular pathology, infection, and peripheral neuropathy. To clarify it clearly, we highlighted its underlying mechanisms of protective effects of resveratrol against diabetic wounds, and high-quality studies are needed to firmly establish its clinical efficacy. Otherwise, with the development of material sciences, resveratrol can exert its therapeutic effectiveness efficiently; however, more high-quality studies are needed to confirm the clinical efficacy of resveratrol on diabetic wounds.
Collapse
Affiliation(s)
- Minglei Bi
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Yonghong Qin
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Lerong Wang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Jin Zhang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
6
|
Lan KC, Peng PJ, Chang TY, Liu SH. Resveratrol Alleviates Advanced Glycation End-Products-Related Renal Dysfunction in D-Galactose-Induced Aging Mice. Metabolites 2023; 13:metabo13050655. [PMID: 37233696 DOI: 10.3390/metabo13050655] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
The elderly have higher concentrations of advanced glycation end-products (AGEs). AGEs are considered risk factors that accelerate aging and cause diabetic nephropathy. The effects of AGEs on renal function in the elderly remain to be clarified. This study aimed to explore the role of AGEs in renal function decline in the elderly and the protective effect of resveratrol, a stilbenoid polyphenol, comparing it with aminoguanidine (an AGEs inhibitor). A D-galactose-induced aging mouse model was used to explore the role of AGEs in the process of renal aging. The mice were administered D-galactose subcutaneously for eight weeks in the presence or absence of orally administered aminoguanidine or resveratrol. The results showed that the serum levels of AGEs and renal function markers BUN, creatinine, and cystatin C in the mice significantly increased after the administration of D-galactose, and this outcome could be significantly reversed by treatment with aminoguanidine or resveratrol. The protein expression levels for apoptosis, fibrosis, and aging-related indicators in the kidneys were significantly increased, which could also be reversed by treatment with aminoguanidine or resveratrol. These findings suggest that resveratrol could alleviate AGEs-related renal dysfunction through the improvement of renal cellular senescence, apoptosis, and fibrosis in D-galactose-induced aging in mice.
Collapse
Affiliation(s)
- Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Pei-Jin Peng
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Ting-Yu Chang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404333, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei 100233, Taiwan
| |
Collapse
|
7
|
Chengolova Z, Ivanov Y, Godjevargova T. Comparison of Identification and Quantification of Polyphenolic Compounds in Skins and Seeds of Four Grape Varieties. Molecules 2023; 28:molecules28104061. [PMID: 37241801 DOI: 10.3390/molecules28104061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of this study was to identify and quantify polyphenolic compounds in skin extracts from four Bulgarian grape varieties and compare them to those of seed extracts. The values of total phenolic contents, flavonoids, anthocyanins, procyanidins and an ascorbic acid in grape skin extracts were determined. The antioxidant capacities of skin extracts were evaluated using four different methods. The total phenolic content of skin extracts was 2-3 times lower than those of seed extracts. The significant difference between total parameter values of individual grape varieties were also found. According to the total phenolic content and antioxidant capacity of skin extracts, the different grape varieties were arranged in the following order: Marselan ≥ Pinot Noir ˃ Cabernet Sauvignon ˃ Tamyanka. The individual compounds in the grape skin extracts were determined using RP-HPLC and compared with those of the seed extracts. The determined composition of skin extracts was significantly different from the seed extracts' composition. Quantitative evaluation of the procyanidins and catechins in the skins was carried out. A correlation between phenolic contents, individual compounds and antioxidant capacity of different extracts was found. The studied grape extracts have a potential to be applied as natural antioxidants in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Zlatina Chengolova
- Department Biotechnology, University "Prof. Dr. A. Zlatarov", 8010 Burgas, Bulgaria
| | - Yavor Ivanov
- Department Biotechnology, University "Prof. Dr. A. Zlatarov", 8010 Burgas, Bulgaria
| | - Tzonka Godjevargova
- Department Biotechnology, University "Prof. Dr. A. Zlatarov", 8010 Burgas, Bulgaria
| |
Collapse
|
8
|
Ma J, Li C, Liu T, Zhang L, Wen X, Liu X, Fan W. Identification of Markers for Diagnosis and Treatment of Diabetic Kidney Disease Based on the Ferroptosis and Immune. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9957172. [PMID: 36466094 PMCID: PMC9712001 DOI: 10.1155/2022/9957172] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 08/05/2023]
Abstract
BACKGROUND In advanced diabetic kidney disease (DKD), iron metabolism and immune dysregulation are abnormal, but the correlation is not clear. Therefore, we aim to explore the potential mechanism of ferroptosis-related genes in DKD and their relationship with immune inflammatory response and to identify new diagnostic biomarkers to help treat and diagnose DKD. METHODS Download data from gene expression omnibus (GEO) database and FerrDb database, and construct random forest tree (RF) and support vector machine (SVM) model to screen hub ferroptosis genes (DE-FRGs). We used consistent unsupervised consensus clustering to cluster DKD samples, and enrichment analysis was performed by Gene Set Variation Analysis (GSVA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) and then assessed immune cell infiltration abundance using the single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT algorithms. Ferroptosis scoring system was established based on the Boruta algorithm, and then, core compounds were screened, and binding sites were predicted by Coremine Medical database. RESULTS We finally established a 7-gene signature (DUSP1, PRDX6, PEBP1, ZFP36, GABARAPL1, TSC22D3, and RGS4) that exhibited good stability across different datasets. Consistent clustering analysis divided the DKD samples into two ferroptosis modification patterns. Meanwhile, autophagy and peroxisome pathways and immune-related pathways can participate in the regulation of ferroptosis modification patterns. The abundance of immune cell infiltration differs significantly across patterns. Further, molecular docking results showed that the core compound could bind to the protein encoded by the core gene. CONCLUSIONS Our findings suggest that ferroptosis modification plays a crucial role in the diversity and complexity of the DKD immune microenvironment, and the ferroptosis score system can be used to effectively verify the relationship between ferroptosis and immune cell infiltration in DKD patients. Kaempferol and quercetin may be potential drugs to improve the immune and inflammatory mechanisms of DKD by affecting ferroptosis.
Collapse
Affiliation(s)
- JingYuan Ma
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - ChangYan Li
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Tao Liu
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Le Zhang
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, California 92521, USA
| | - XiaoLing Wen
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - XiaoLing Liu
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - WenXing Fan
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| |
Collapse
|
9
|
Potential Molecular Mechanisms of Ephedra Herb in the Treatment of Nephrotic Syndrome Based on Network Pharmacology and Molecular Docking. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9214589. [PMID: 35837376 PMCID: PMC9276517 DOI: 10.1155/2022/9214589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/30/2022] [Accepted: 06/11/2022] [Indexed: 01/17/2023]
Abstract
Objective To explore the possible mechanisms of Ephedra herb (EH) in the treatment of nephrotic syndrome (NS) by using network pharmacology and molecular docking in this study. Methods Active ingredients and related targets of EH were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and the gene names corresponding to the proteins were found through the UniProt database. Then, target genes related to NS were screened out from GeneCards, PharmGKB, and OMIM databases. Next, the intersection targets were obtained successfully through Venn diagram, which were also seen as key target genes of EH and NS. Cytoscape 3.9.0 software was used to construct the effective “active ingredient-target” network diagram, and “drug-ingredient-target-disease (D-I-T-D)” network diagram. After that, the STRING database was used to construct a protein-protein interaction (PPI) network. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment involved in the targets were performed by the DAVID database and ClueGO plugin in Cytoscape. Finally, AutoDockTools software was used for molecular docking to verify the binding strength between main active ingredients and key target proteins. Results A total of 22 main active ingredients such as quercetin, kaempferol, luteolin, and naringenin were obtained, which could act on 105 targets related to NS. Through PPI network, 53 core targets such as AKT1, TNF, IL6, VEGFA, and IL1B were found, which might play a crucial role in the treatment of NS. Meanwhile, these targets were significantly involved in PI3K-Akt signaling pathway, TNF signaling pathway, AGE-RAGE signaling pathway, hepatitis B, and pathways in cancer through GO and KEGG enrichment analysis. The docking results indicated that active ingredients such as kaempferol, luteolin, quercetin, and naringenin all had good binding to the target protein AKT1 or TNF. Among them, luteolin and naringenin binding with AKT1 showed the best binding energy (-6.2 kcal/mol). Conclusion This study indicated that the potential mechanism of EH in treating NS may be related to PI3K-Akt signaling pathway, TNF signaling pathway, and AGE-RAGE signaling pathway, which provided better approaches for exploring the mechanism in treating NS and new ideas for further in vivo and in vitro experimental verifications.
Collapse
|
10
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|