1
|
Geraldes C, Tavares L, Gil S, Oliveira M. Antibiotic heteroresistance and persistence: an additional aid in hospital acquired infections by Enterococcus spp.? Future Microbiol 2024; 19:1407-1418. [PMID: 39229839 PMCID: PMC11552482 DOI: 10.1080/17460913.2024.2393003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Enterococcus, particularly E. faecium and E. faecalis, are responsible for many hospital-acquired infections. With their intrinsic antibiotic resistance and ability to form biofilms, enterococcal infections are already challenging to manage. However, when heterogenous populations are present, such as those exhibiting heteroresistance and persistence, the complexity of these infections increases exponentially not only due to their treatment but also due to their difficult diagnosis. In this study, we provide a summary of the current understanding of both heteroresistance and persistence in terms of mechanisms, diagnosis and treatment and subsequently review recent literature pertaining to these susceptibility types specifically in enterococci.
Collapse
Affiliation(s)
- Catarina Geraldes
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal & Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Luís Tavares
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal & Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Solange Gil
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal & Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- BICU - Biological Isolation & Containment Unit, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Manuela Oliveira
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal & Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- cE3c - Centre for Ecology, Evolution & Environmental Changes & CHANGE—Global Change & Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
2
|
Zhu L, Yang X, Fu X, Yang P, Lin X, Wang F, Shen Z, Wang J, Sun F, Qiu Z. Pheromone cCF10 inhibits the antibiotic persistence of Enterococcus faecalis by modulating energy metabolism. Front Microbiol 2024; 15:1408701. [PMID: 39040910 PMCID: PMC11260814 DOI: 10.3389/fmicb.2024.1408701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Bacterial resistance presents a major challenge to both the ecological environment and human well-being, with persistence playing a key role. Multiple studies were recently undertaken to examine the factors influencing the formation of persisters and the underlying process, with a primary focus on Gram-negative bacteria and Staphylococcus aureus (Gram-positive bacteria). Enterococcus faecalis (E. faecalis) is capable of causing a variety of infectious diseases, but there have been few studies of E. faecalis persisters. Previous studies have shown that the sex pheromone cCF10 secreted by E. faecalis induces conjugative plasmid transfer. However, whether the pheromone cCF10 regulates the persistence of E. faecalis has not been investigated. Methods As a result, we investigated the effect and potential molecular mechanism of pheromone cCF10 in regulating the formation of persisters in E. faecalis OG1RF using a persistent bacteria model. Results and discussion The metabolically active E. faecalis OG1RF reached a persistence state and temporarily tolerated lethal antibiotic concentrations after 8 h of levofloxacin hydrochloride (20 mg/mL) exposure, exhibiting a persistence rate of 0.109 %. During the growth of E. faecalis OG1RF, biofilm formation was a critical factor contributing to antibiotic persistence, whereas 10 ng/mL cCF10 blocked persister cell formation. Notably, cCF10 mediated the antibiotic persistence of E. faecalis OG1RF via regulating metabolic activity rather than suppressing biofilm formation. The addition of cCF10 stimulated the Opp system and entered bacterial cells, inhibiting (p)ppGpp accumulation, thus maintaining the metabolically active state of bacteria and reducing persister cell generation. These findings offer valuable insights into the formation, as well as the control mechanism of E. faecalis persisters.
Collapse
Affiliation(s)
- Li Zhu
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, China
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaobo Yang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xinyue Fu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Panpan Yang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xiaoli Lin
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Guizhou, China
| | - Feng Wang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Zhiqiang Shen
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jingfeng Wang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Feilong Sun
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, China
| | - Zhigang Qiu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
3
|
Zhang H, Zhang X, Liang S, Wang J, Zhu Y, Zhang W, Liu S, Schwarz S, Xie F. Bactericidal synergism between phage endolysin Ply2660 and cathelicidin LL-37 against vancomycin-resistant Enterococcus faecalis biofilms. NPJ Biofilms Microbiomes 2023; 9:16. [PMID: 37024490 PMCID: PMC10078070 DOI: 10.1038/s41522-023-00385-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Antibiotic resistance and the ability to form biofilms of Enterococcus faecalis have compromised the choice of therapeutic options, which triggered the search for new therapeutic strategies, such as the use of phage endolysins and antimicrobial peptides. However, few studies have addressed the synergistic relationship between these two promising options. Here, we investigated the combination of the phage endolysin Ply2660 and the antimicrobial peptide LL-37 to target drug-resistant biofilm-producing E. faecalis. In vitro bactericidal assays were used to demonstrate the efficacy of the Ply2660-LL-37 combination against E. faecalis. Larger reductions in viable cell counts were observed when Ply2660 and LL-37 were applied together than after individual treatment with either substance. Transmission electron microscopy revealed that the Ply2660-LL-37 combination could lead to severe cell lysis of E. faecalis. The mode of action of the Ply2660-LL-37 combination against E. faecalis was that Ply2660 degrades cell wall peptidoglycan, and subsequently, LL-37 destroys the cytoplasmic membrane. Furthermore, Ply2660 and LL-37 act synergistically to inhibit the biofilm formation of E. faecalis. The Ply2660-LL-37 combination also showed a synergistic effect for the treatment of established biofilm, as biofilm killing with this combination was superior to each substance alone. In a murine peritoneal septicemia model, the Ply2660-LL-37 combination distinctly suppressed the dissemination of E. faecalis isolates and attenuated organ injury, being more effective than each treatment alone. Altogether, our findings indicate that the combination of a phage endolysin and an antimicrobial peptide may be a potential antimicrobial strategy for combating E. faecalis.
Collapse
Affiliation(s)
- Huihui Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinyuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siyu Liang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wanjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163, Berlin, Germany.
| | - Fang Xie
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
4
|
Asadollahi P, Sadeghifard N, Kazemian H, Pakzad I, Kalani BS. In silico Study of the Proteins Involved in the Persistence of Brucella spp. Curr Drug Discov Technol 2023; 20:1-13. [PMID: 35929636 DOI: 10.2174/1570163819666220805161821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND One of the major problems with Brucella infections is its tendency to become chronic and recurrent, providing a hindrance to the management of this infection. It has been proposed that chronicity is greatly affected by a phenomenon called persistence in bacteria. Several mechanisms are involved in bacterial persistence, including the type II toxin-antitoxin system, the SOS and oxidative and stringent responses. METHODS In this in silico study, these persistence mechanisms in Brucella spp. were investigated. RESULTS The structure and the interactions between modules involved in these systems were designed, and novel peptides that can interfere with some of these important mechanisms were developed. CONCLUSION Since peptide-based therapeutics are a new and evolving field due to their ease of production, we hope that peptides developed in this study, as well as the information about the structure and interactions of modules of persistence mechanisms, can further be used to design drugs against Brucella persister cells in the hope of restraining the chronic nature of Brucellosis.
Collapse
Affiliation(s)
- Parisa Asadollahi
- Department of Microbiology, Faculty of Medicine, Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Nourkhoda Sadeghifard
- Department of Microbiology, Faculty of Medicine, Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hossein Kazemian
- Department of Microbiology, Faculty of Medicine, Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Iraj Pakzad
- Department of Microbiology, Faculty of Medicine, Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Behrooz Sadeghi Kalani
- Department of Microbiology, Faculty of Medicine, Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
5
|
Liu X, Xiong Y, Shi Y, Deng X, Deng Q, Liu Y, Yu Z, Li D, Zheng J, Li P. In vitro activities of licochalcone A against planktonic cells and biofilm of Enterococcus faecalis. Front Microbiol 2022; 13:970901. [PMID: 36338074 PMCID: PMC9634178 DOI: 10.3389/fmicb.2022.970901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2023] Open
Abstract
This study aims to evaluate the in vitro antibacterial and anti-biofilm activities of licochalcone A on Enterococcus faecalis and to investigate the possible target genes of licochalcone A in E. faecalis. This study found that licochalcone A had antibacterial activities against E. faecalis, with the MIC50 and MIC90 were 25 μM. Licochalcone A (at 4 × MIC) indicated a rapid bactericidal effect on E. faecalis planktonic cells, and killed more E. faecalis planktonic cells (at least 3-log10 cfu/ml) than vancomycin, linezolid, or ampicillin at the 2, 4, and 6 h of the time-killing test. Licochalcone A (at 10 × MIC) significantly reduced the production of E. faecalis persister cells (at least 2-log10 cfu/ml) than vancomycin, linezolid, or ampicillin at the 24, 48, 72, and 96 h of the time-killing test. Licochalcone A (at 1/4 × MIC) significantly inhibited the biofilm formation of E. faecalis. The RNA levels of biofilm formation-related genes, agg, esp, and srtA, markedly decreased when the E. faecalis isolates were treated with licochalcone A at 1/4 × MIC for 6 h. To explore the possible target genes of licochalcone A in E. faecalis, the licochalcone A non-sensitive E. faecalis clones were selected in vitro by induction of wildtype strains for about 140 days under the pressure of licochalcone A, and mutations in the possible target genes were detected by whole-genome sequencing. This study found that there were 11 nucleotide mutations leading to nonsynonymous mutations of 8 amino acids, and among these amino acid mutations, there were 3 mutations located in transcriptional regulator genes (MarR family transcriptional regulator, TetR family transcriptional regulator, and MerR family transcriptional regulator). In conclusion, this study found that licochalcone A had an antibacterial effect on E. faecalis, and significantly inhibited the biofilm formation of E. faecalis at subinhibitory concentrations.
Collapse
Affiliation(s)
- Xiaoju Liu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yanpeng Xiong
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yiyi Shi
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiangbin Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yansong Liu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Duoyun Li
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
6
|
Xia M, Zhuo N, Ren S, Zhang H, Yang Y, Lei L, Hu T. Enterococcus faecalis rnc gene modulates its susceptibility to disinfection agents: a novel approach against biofilm. BMC Oral Health 2022; 22:416. [PMID: 36127648 PMCID: PMC9490916 DOI: 10.1186/s12903-022-02462-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Enterococcus faecalis (E. faecalis) plays an important role in the failure of root canal treatment and refractory periapical periodontitis. As an important virulence factor of E. faecalis, extracellular polysaccharide (EPS) serves as a matrix to wrap bacteria and form biofilms. The homologous rnc gene, encoding Ribonuclease III, has been reported as a regulator of EPS synthesis. In order to develop novel anti-biofilm targets, we investigated the effects of the rnc gene on the biological characteristics of E. faecalis, and compared the biofilm tolerance towards the typical root canal irrigation agents and traditional Chinese medicine fluid Pudilan. METHODS E. faecalis rnc gene overexpression (rnc+) and low-expression (rnc-) strains were constructed. The growth curves of E. faecalis ATCC29212, rnc+, and rnc- strains were obtained to study the regulatory effect of the rnc gene on E. faecalis. Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and crystal violet staining assays were performed to evaluate the morphology and composition of E. faecalis biofilms. Furthermore, the wild-type and mutant biofilms were treated with 5% sodium hypochlorite (NaOCl), 2% chlorhexidine (CHX), and Pudilan. The residual viabilities of E. faecalis biofilms were evaluated using crystal violet staining and colony counting assays. RESULTS The results demonstrated that the rnc gene could promote bacterial growth and EPS synthesis, causing the EPS-barren biofilm morphology and low EPS/bacteria ratio. Both the rnc+ and rnc- biofilms showed increased susceptibility to the root canal irrigation agents. The 5% NaOCl group showed the highest biofilm removing effect followed by Pudilan and 2% CHX. The colony counting results showed almost complete removal of bacteria in the 5% NaOCl, 2% CHX, and Chinese medicine agents' groups. CONCLUSIONS This study concluded that the rnc gene could positively regulate bacterial proliferation, EPS synthesis, and biofilm formation in E. faecalis. The rnc mutation caused an increase in the disinfectant sensitivity of biofilm, indicating a potential anti-biofilm target. In addition, Pudilan exhibited an excellent ability to remove E. faecalis biofilm.
Collapse
Affiliation(s)
- Mengying Xia
- Department of Preventive Dentistry, West China Hospital of Stomatology, Key Laboratory of Oral Diseases, Sichuan University, NO. 14 Third Section Renmin South Road, Chengdu, China
| | - Niya Zhuo
- Department of Preventive Dentistry, West China Hospital of Stomatology, Key Laboratory of Oral Diseases, Sichuan University, NO. 14 Third Section Renmin South Road, Chengdu, China
| | - Shirui Ren
- Department of Preventive Dentistry, West China Hospital of Stomatology, Key Laboratory of Oral Diseases, Sichuan University, NO. 14 Third Section Renmin South Road, Chengdu, China
| | - Hongyu Zhang
- Department of Preventive Dentistry, West China Hospital of Stomatology, Key Laboratory of Oral Diseases, Sichuan University, NO. 14 Third Section Renmin South Road, Chengdu, China
| | - Yingming Yang
- Department of Preventive Dentistry, West China Hospital of Stomatology, Key Laboratory of Oral Diseases, Sichuan University, NO. 14 Third Section Renmin South Road, Chengdu, China.
| | - Lei Lei
- Department of Preventive Dentistry, West China Hospital of Stomatology, Key Laboratory of Oral Diseases, Sichuan University, NO. 14 Third Section Renmin South Road, Chengdu, China.
| | - Tao Hu
- Department of Preventive Dentistry, West China Hospital of Stomatology, Key Laboratory of Oral Diseases, Sichuan University, NO. 14 Third Section Renmin South Road, Chengdu, China
| |
Collapse
|