1
|
Zhao Y, Zhang Y, Zhang K, Tian J, Teng H, Xu Z, Xu J, Shao H, Jia W. Molybdenum Can Regulate the Expression of Molybdase Genes, Affect Molybdase Activity and Metabolites, and Promote the Cell Wall Bio-Synthesis of Tobacco Leaves. BIOLOGY 2025; 14:66. [PMID: 39857296 PMCID: PMC11762813 DOI: 10.3390/biology14010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Molybdenum (Mo) is widely used as a micronutrient fertilizer to improve plant growth and soil quality. However, the interactions between cell wall biosynthesis and molybdenum have not been explored sufficiently. This study thoroughly investigated the regulatory effects of different concentrations of Mo on tobacco cell wall biosynthesis from physiological and metabolomic aspects. The results indicate that Mo treatment increased the Mo content of tobacco variety K326. Moreover, it significantly up-regulated the gene expression levels of molybdases (NR, AO, SO, XDH) and molybdate transporters in tobacco, whereby the gene expression levels of NR were upregulated by 28.48%, 52.51%, 173.05%, and 246.21%, respectively; and MOT1 and MOT2 were upregulated by 21.49/8.67%, 66.05/30.44%, 93.05/93.26%, and 166.11/114.29%, respectively. Additionally, Mo treatment regulated the synthesis of related enzymes, effectively promoted plant growth, and significantly increased biomass and dry matter accumulation, with the biomass in the leaves increasing significantly by 30.73%, 40.72%, 46.34%, and 12.88%, respectively. The FT-NIR spectroscopy results indicate that after Mo was applied to the soil, the quantity of C-O-C, -COOH, C-H, and N-H functional groups increased. Concurrently, the contents of cellulose, hemicellulose, lignin, protopectin, and soluble pectin in the leaves significantly increased, wherein the content of soluble pectin and hemicellulose increased significantly by 31.01/288.82%, 40.69/343.43%, 69.93/241.73%, and 196.88/223.26%, respectively. Furthermore, the cell walls thickened, increasing the ability of the plant to withstand disturbances. The metabolic network diagrams indicate that Mo regulated galactose metabolism, and arginine and proline acid biosynthesis. The contents of carbohydrates, spermidine, proline, quinic acid, IAA, flavonoids, and other substances were increased, increasing the levels of polysaccharides and pectin within the cell wall, controlling lignin production, and successfully enhancing resistance to abiotic stress. These results offer important perspectives for further investigations into the role of trace elements.
Collapse
Affiliation(s)
- Yuan Zhao
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Yu Zhang
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Kai Zhang
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Jiashu Tian
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Huanyu Teng
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Zicheng Xu
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Jiayang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China;
| | - Huifang Shao
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| | - Wei Jia
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Y.Z.); (Y.Z.); (K.Z.); (J.T.); (H.T.); (Z.X.)
| |
Collapse
|
2
|
Guo M, Si E, Hou J, Yao L, Wang J, Meng Y, Ma X, Li B, Wang H. Pgmiox mediates stress response and plays a critical role for pathogenicity in Pyrenophora graminea, the agent of barley leaf stripe. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112308. [PMID: 39490446 DOI: 10.1016/j.plantsci.2024.112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Barley leaf stripe is an important disease caused by Pyenophora graminea that affects barley yields in the world. Ascorbic acid (AsA) interacts with key elements of a complex network orchestrating plant defense mechanisms, thereby influencing the outcome of plant-pathogen interaction. Myo-inositol oxygenase (MIOX) is a pivotal enzyme involved in plants development and environmental stimuli. However, MIOX has described functions in plants but has not been characterized in fungi. In this study, we characterized the Pgmiox gene in P. graminea pathogenesis through annotated on the metabolic pathway of ascorbic acid aldehyde. Our analysis suggested that the Pgmiox protein had a typical conserved MIOX domain. Multiple alignment analysis indicated that the P. graminea MIOX orthologue clustered with MIOX proteins of Pyrenophora species. RNA interference successfully reduced transcript abundance of Pgmiox in six transformant lines compared to wild type, and the transformants were further less virulent on the host plant barley. Transformants of Pgmiox had significant reductions in vegetative growth and pathogenicity, which had increased resistance to tebuconazole and carbendazim. In addition, Pgmiox is associated with ionic, drought, osmotic, oxidative, and heavy metal stress tolerance in P. graminea. In conclusion, our findings reveal that Pgmiox may be widely utilized by fungi to enhance pathogenesis and holds significant potential for the development of durable P. graminea resistance through genetic modifications.
Collapse
Affiliation(s)
- Ming Guo
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Erjing Si
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jingjing Hou
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Lirong Yao
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Juncheng Wang
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaxiong Meng
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaole Ma
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Baochun Li
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huajun Wang
- Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
3
|
Guo W, Chen J, Liu L, Ren Y, Guo R, Ding Y, Li Y, Chai J, Sun Y, Guo C. MsMIOX2, encoding a MsbZIP53-activated myo-inositol oxygenase, enhances saline-alkali stress tolerance by regulating cell wall pectin and hemicellulose biosynthesis in alfalfa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:998-1013. [PMID: 39283985 DOI: 10.1111/tpj.17032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 11/01/2024]
Abstract
Alfalfa is one of the most widely cultivated forage crops worldwide. However, soil salinization restricts alfalfa growth and development and affects global productivity. The plant cell wall is the first barrier against various stresses. Therefore, elucidating the alterations in cell wall architecture is crucial for stress adaptation. This study aimed to clarify the impact of myo-inositol oxygenase 2 (MsMIOX2) on cell wall pectin and hemicellulose biosynthesis under saline-alkali stress and identify the upstream transcription factors that govern MsMIOX2. MsMIOX2 activation induced cell wall pectin and hemicellulose accumulation under saline-alkali stress. The effects of MsMIOX2 in saline-alkali tolerance were investigated by characterizing its overexpression and RNA interference lines. MsMIOX2 overexpression positively regulated the antioxidant system and photosynthesis in alfalfa under saline-alkali stress. MsMIOX2 exhibited myo-inositol oxygenase activity, which increased polysaccharide contents, facilitated pectin and hemicellulose biosynthesis, and extended the cell wall thickness. However, MsMIOX2 RNA interference decreased cell wall thickness and alleviated alfalfa saline-alkali stress tolerance. In addition, MsbZIP53 was identified as an upstream transcriptional MsMIOX2 regulator by yeast one-hybrid, electrophoretic mobility shift assay, dual-luciferase, and beta-glucuronidase assays. MsbZIP53 overexpression increased MsMIOX2 expression, elevated MIOX activity, reinforced the antioxidant system and photosynthesis, and increased saline-alkali stress tolerance in alfalfa. In conclusion, this study presents a novel perspective for elucidating the molecular mechanisms of saline-alkali stress tolerance in alfalfa and emphasizes the potential use of MsMIOX2 in alfalfa breeding.
Collapse
Affiliation(s)
- Weileng Guo
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Jiaxin Chen
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Lei Liu
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Yuekun Ren
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Rui Guo
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Yang Ding
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ying Li
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Juqi Chai
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Yuanqing Sun
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Changhong Guo
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| |
Collapse
|
4
|
Xu Q, Liu C, Zhang Z, Cao Z, Liang M, Ye C, Lin Z, Deng X, Ye J, Bosch M, Chai L. Myo-inositol oxygenase CgMIOX3 alleviates S-RNase-induced inhibition of incompatible pollen tubes in pummelo. PLANT PHYSIOLOGY 2024; 196:856-869. [PMID: 38991562 DOI: 10.1093/plphys/kiae372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024]
Abstract
Pummelo (Citrus grandis L. Osbeck) exhibits S-RNase-based self-incompatibility (SI), during which S-RNase cytotoxicity inhibits pollen tubes in an S-haplotype-specific manner. The entry of S-RNase into self-pollen tubes triggers a series of reactions. However, these reactions are still poorly understood in pummelo. In the present study, we used S-RNases as baits to screen a pummelo pollen cDNA library and characterized a myo-inositol oxygenase (CgMIOX3) that physically interacts with S-RNases. CgMIOX3 is highly expressed in pummelo pollen tubes, and its downregulation leads to a reduction in pollen tube growth. Upon entering pollen tubes, S-RNases increase the expression of CgMIOX3 and enhance its activity by directly binding to it in an S-haplotype-independent manner. CgMIOX3 improves pollen tube growth under oxidative stress through ascorbic acid (AsA) accumulation and increases the length of self-pollen tubes. Furthermore, over-expression of CgMIOX3 increases the relative length of self-pollen tubes growing in the style of petunia (Petunia hybrida). This study provides intriguing insights into the pumelo SI system, revealing a regulatory mechanism mediated by CgMIOX3 that plays an important role in the resistance of pollen tubes to S-RNase cytotoxicity.
Collapse
Affiliation(s)
- Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenchen Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhezhong Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonghong Cao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei Liang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changning Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongcheng Lin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EB, UK
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Zhao K, Gao Z, Nizamani MM, Hu M, Li M, Li X, Wang J. Mechanisms of Litchi Response to Postharvest Energy Deficiency via Energy and Sugar Metabolisms. Foods 2024; 13:2288. [PMID: 39063372 PMCID: PMC11275267 DOI: 10.3390/foods13142288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
In the post-harvest phase, fruit is inexorably subjected to extrinsic stressors that expedite energy expenditure and truncate the storage lifespan. The present study endeavors to elucidate the response strategies of litchi to the alterations of energy state caused by 2,4-Dinitrophenol (DNP) treatment through energy metabolism and sugar metabolism. It was observed that the DNP treatment reduced the energy state of the fruit, exacerbated membrane damage and triggered rapid browning in the pericarp after 24 h of storage. Furthermore, the expression of genes germane to energy metabolism (LcAtpB, LcAOX1, LcUCP1, LcAAC1, and, LcSnRK2) reached their peak within the initial 24 h of storage, accompanied by an elevation in the respiratory rate, which effectively suppressed the rise in browning index of litchi pericarp. The study also posits that, to cope with the decrease of energy levels and membrane damage, litchi may augment the concentrations of fructose, glucose, inositol, galactose, and sorbose, thus safeguarding the canonical metabolic functions of the fruit. Collectively, these findings suggest that litchi can modulate energy and sugar metabolism to cope with fruit senescence under conditions of energy deficiency. This study significantly advances the understanding of the physiological responses exhibited by litchi fruit to post-harvest external stressors.
Collapse
Affiliation(s)
- Kunkun Zhao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (K.Z.); (Z.G.)
| | - Zhaoyin Gao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (K.Z.); (Z.G.)
| | - Mir Muhammad Nizamani
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang 550025, China;
| | - Meijiao Hu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.H.); (M.L.)
| | - Min Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.H.); (M.L.)
| | - Xiaohui Li
- Hainan Inspection and Detection Center for Modern Agriculture, Haikou 570100, China
| | - Jiabao Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (K.Z.); (Z.G.)
| |
Collapse
|
6
|
Pineda M, Barón M, Pérez-Bueno ML. Diverse projected climate change scenarios affect the physiology of broccoli plants to different extents. PHYSIOLOGIA PLANTARUM 2024; 176:e14269. [PMID: 38528313 DOI: 10.1111/ppl.14269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
Climate change caused by global warming involves crucial plant growth factors such as atmospheric CO2 concentration, ambient temperature or water availability. These stressors usually co-occur, causing intricate alterations in plant physiology and development. This work focuses on how elevated atmospheric CO2 levels, together with the concomitant high temperature, would affect the physiology of a relevant crop, such as broccoli. Particular attention has been paid to those defence mechanisms that contribute to plant fitness under abiotic stress. Results show that both photosynthesis and leaf transpiration were reduced in plants grown under climate change environments compared to those grown under current climate conditions. Furthermore, an induction of carbohydrate catabolism pointed to a redistribution from primary to secondary metabolism. This result could be related to a reinforcement of cell walls, as well as to an increase in the pool of antioxidants in the leaves. Broccoli plants, a C3 crop, grown under an intermediate condition showed activation of those adaptive mechanisms, which would contribute to coping with abiotic stress, as confirmed by reduced levels of lipid peroxidation relative to current climate conditions. On the contrary, the most severe climate change scenario exceeded the adaptive capacity of broccoli plants, as shown by the inhibition of growth and reduced vigour of plants. In conclusion, only a moderate increase in atmospheric CO2 concentration and temperature would not have a negative impact on broccoli crop yields.
Collapse
Affiliation(s)
- Mónica Pineda
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council, Granada, Spain
| | - Matilde Barón
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council, Granada, Spain
| | - María Luisa Pérez-Bueno
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council, Granada, Spain
- Department of Plant Physiology, Facultad de Farmacia, University of Granada, Granada, Spain
| |
Collapse
|
7
|
Gangwar H, Kumari P, Gahlaut V, Kumar S, Jaiswal V. Identification and comprehensive analysis of MIPSs in Rosaceae and their expression under abiotic stresses in rose ( Rosa chinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:1021297. [PMID: 36407582 PMCID: PMC9669799 DOI: 10.3389/fpls.2022.1021297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The Myo-Inositol-1-phosphate synthase (MIPS) gene family is involved in the myo-inositol synthesis and plays a significant role in signal transduction, membrane biogenesis, oligosaccharides synthesis, auxin storage and transport, programmed cell death and abiotic stress tolerance in plants. This study comprehensively identified the MIPS genes in Rosaceae plant species, and 51 MIPS genes were identified from 26 Rosaceae species. The phylogenetic analysis divided the MIPSs into two clades (clade I; subfamily Amygdaloideae specific, and clade II; subfamily Rosoideae specific). MIPS genes of all 26 Rosaceae species consist of similar gene structure, motif and domain composition, which shows their conserved nature. The cis-regulatory elements (CREs) analysis revealed that most Rosaceae MIPS genes play a role in growth, development, and stress responses. Furthermore, the qRT-PCR analysis also revealed the involvement of RcMIPS gene in plant development and response to abiotic stresses, including drought and heat. The results of the present study contribute to the understanding of the biological function of Rosaceae MIPS genes, and that could be used in further functional validations.
Collapse
Affiliation(s)
- Himanshi Gangwar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priya Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vijay Gahlaut
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|