1
|
Yao M, Wang B, Li Z, Wu S, Zhao B, Sun N, Xiao H, Wang J, Liu G, Huang T. Se-methylselenocysteine inhibits inflammatory response in an LPS-stimulated chicken HD11 macrophage-like cell model through the NFKB2 pathway. Front Vet Sci 2025; 11:1503436. [PMID: 39846017 PMCID: PMC11751066 DOI: 10.3389/fvets.2024.1503436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025] Open
Abstract
Among the various sources of selenium supplementations, the Se-methylselenocysteine (SeMC) is a natural organic selenium compound that has been demonstrated to have multiple advantages in terms of metabolism efficiency and biosafety in animals. Nevertheless, the genome-wide impact of SeMC on gene transcription remains to be elucidated. In this study, we employed an LPS-stimulated chicken HD11 macrophage-like cell model to identify the principal transcription factors involved in transcriptome regulation responsible for SeMC treatment. RNA-seq identified 3,263 transcripts that exhibited a statistically significant differential expression between the SeMC-treated group and the control group and 1,344 transcripts that exhibited a statistically significant differential expression between the LPS + SeMC- and LPS-treated groups (FDR < 0.05, FDR > 1.5). The bioinformatic analysis identified six transcription factors (NFKB2, RFX2, E2F5, ETV5, BACH1, and E2F7) as potential candidate genes for transcriptome regulation in SeMC-treated HD11 cells. Subsequent experimental verification demonstrated that SeMC suppressed the inflammatory response in an LPS-stimulated chicken HD11 cell model via the TXN2-NF-κB pathway. The administration SeMC was observed to reduce the production of ROS as well as the transcription and translation of inflammatory cytokines in both cell culture and in vivo animal studies. One candidate pathway by which SeMC exerts its effects is through the targeting of the transcription factor, NFKB2, by selenoprotein TXN2. This study identified key transcription factors and revealed one of the potential mechanisms through which SeMC exerts its anti-inflammatory effects from the perspective of transcriptional regulation.
Collapse
Affiliation(s)
- Min Yao
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Binyu Wang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Zitong Li
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Suqing Wu
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Bingyu Zhao
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Ning Sun
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Huiping Xiao
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Jianwu Wang
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Guoping Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Tinghua Huang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| |
Collapse
|
2
|
Li N, Yun B, Zeng L, Lv Y, Zhou Y, Fang M, Li S, Chen Y, Huang E, Zhang L, Jiang Y, Zhang H, Li J, Yuan X. The antisense lncRNA of TAB2 that prevents oxidative stress to enhance the follicular growth in mammals. Commun Biol 2024; 7:1246. [PMID: 39358475 PMCID: PMC11447032 DOI: 10.1038/s42003-024-06960-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
LncRNAs are highly implicated in oxidative stress (OS) during the growth of mammalian follicles. TAK1 binding protein 2 gene (TAB2) has been suggested to involve in the normal apoptosis and proliferation of granulosa cells (GCs), the main supporting cells in ovarian follicles. In this study, we found that TAB2 increased the expressions of SOD1, P50, and P65 to suppress the OS, thereby inhibiting the apoptosis and promoting the proliferation in GCs. Notably, DNMTs appeared to mediate the expression of TAB2 without the changes of DNA methylation at TAB2's promoter. We identified an antisense lncRNA of TAB2, discovered that DNA methylation regulated the transcription of TAB2-AS in GCs, and found TAB2-AS medicated the follicular growth of ovaries in vivo. Mechanistically, the hypomethylation of the CpG site (-1759/-1760) activated the transcription of TAB2-AS, and the 1-155 nt and 156-241 nt of TAB2-AS were respectively complementary to 4368-4534 nt and 4215-4300 nt of TAB2's mRNA to increase the expression of TAB2. Moreover, TAB2-AS inhibited the OS and apoptosis of GCs, while promoted the proliferation of GCs to expedite the follicular growth, which was in line with that of TAB2. Collectively, these findings revealed the antisense lncRNA mechanism mediated by DNA methylation, and TAB2-AS might be the target to control OS during follicular growth in mammals.
Collapse
Affiliation(s)
- Nian Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Bing Yun
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Liqing Zeng
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yuanyuan Lv
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yinqi Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ming Fang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Shuo Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yongcai Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Enyuan Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Liuhong Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yao Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, 6149, Australia
| | - Hao Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
3
|
Krakowiak A, Pietrasik S. New Insights into Oxidative and Reductive Stress Responses and Their Relation to the Anticancer Activity of Selenium-Containing Compounds as Hydrogen Selenide Donors. BIOLOGY 2023; 12:875. [PMID: 37372159 DOI: 10.3390/biology12060875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Redox balance is important for the homeostasis of normal cells, but also for the proliferation, progression, and survival of cancer cells. Both oxidative and reductive stress can be harmful to cells. In contrast to oxidative stress, reductive stress and the therapeutic opportunities underlying the mechanisms of reductive stress in cancer, as well as how cancer cells respond to reductive stress, have received little attention and are not as well characterized. Therefore, there is recent interest in understanding how selective induction of reductive stress may influence therapeutic treatment and disease progression in cancer. There is also the question of how cancer cells respond to reductive stress. Selenium compounds have been shown to have chemotherapeutic effects against cancer, and their anticancer mechanism is thought to be related to the formation of their metabolites, including hydrogen selenide (H2Se), which is a highly reactive and reducing molecule. Here, we highlight recent reports on the molecular mechanism of how cells recognize and respond to oxidative and reductive stress (1) and the mechanisms through which different types of selenium compounds can generate H2Se (2) and thus selectively affect reductive stress under controlled conditions, which may be important for their anticancer effects.
Collapse
Affiliation(s)
- Agnieszka Krakowiak
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Sylwia Pietrasik
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
5
|
Ebselen inhibits enterovirus A71-induced apoptosis through reactive oxygen species-mediated signaling pathway. Mol Biol Rep 2023; 50:2991-3000. [PMID: 36653729 DOI: 10.1007/s11033-022-08116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/11/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Enterovirus A71 (EV-A71)is a prevalent infection in severe hand, foot and mouth disease HFMD and can induce acute central nervous system seizures. The three EV-A71 vaccines now circulating in the market are produced for a single subtype. While EV-A71 is constantly evolving and the vaccine's efficacy is gradually reducing, no specialized anti-EV-A71 medication has yet been developed. Therefore, it is crucial to consistently develop new anti-EV-A71 medications. METHOD Ebselen, an organoselenium molecule with glutathione oxidase-like activity, is resistant to a range of viruses. In this investigation, we used the Cell counting kit-8 (CCK-8 kit) assay in a Vero cell model to confirm the effectiveness of ebselen against EV-A71 infection. Later, to examine ebselen's anti-EV-A71 mechanism, we measured the apoptosis level of cells in different treatment groups through Annexin V, JC-1, and cell cycle assays, as well as the intracellular reactive oxygen species (ROS) concentration. Ebselen may have an impact on the apoptotic signaling pathway caused by EV-A71 infection, according to the results of a caspase-3 activity experiment. RESULT The results showed that Ebselen protected cell damage from ROS generation, decreased the frequency of EV-A71-induced apoptosis, and inhibited caspase-3-mediated apoptosis by lowering caspase-3 activity. CONCLUSION To summarize, ebselen is a promising anti-EV-A71 medication.
Collapse
|
6
|
Garbo S, Di Giacomo S, Łażewska D, Honkisz-Orzechowska E, Di Sotto A, Fioravanti R, Zwergel C, Battistelli C. Selenium-Containing Agents Acting on Cancer-A New Hope? Pharmaceutics 2022; 15:pharmaceutics15010104. [PMID: 36678733 PMCID: PMC9860877 DOI: 10.3390/pharmaceutics15010104] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Selenium-containing agents are more and more considered as an innovative potential treatment option for cancer. Light is shed not only on the considerable advancements made in understanding the complex biology and chemistry related to selenium-containing small molecules but also on Se-nanoparticles. Numerous Se-containing agents have been widely investigated in recent years in cancer therapy in relation to tumour development and dissemination, drug delivery, multidrug resistance (MDR) and immune system-related (anti)cancer effects. Despite numerous efforts, Se-agents apart from selenocysteine and selenomethionine have not yet reached clinical trials for cancer therapy. The purpose of this review is to provide a concise critical overview of the current state of the art in the development of highly potent target-specific Se-containing agents.
Collapse
Affiliation(s)
- Sabrina Garbo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| |
Collapse
|