1
|
Lin KY, Huang YW, Hou LY, Chen HC, Wu Y, Chen IH, Huang YP, Lee SC, Hu CC, Tsai CH, Hsu YH, Lin NS. Proviral insights of glycolytic enolase in Bamboo mosaic virus replication associated with chloroplasts and mitochondria. Proc Natl Acad Sci U S A 2025; 122:e2415089122. [PMID: 40327700 DOI: 10.1073/pnas.2415089122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/20/2025] [Indexed: 05/08/2025] Open
Abstract
Diverse single-stranded RNA viruses employ different host cellular organelles or membrane systems to compartmentalize their replication intermediates and proviral factors, ensuring robust replication. Replication of Bamboo mosaic virus (BaMV), an Alphaflexiviridae family, is tightly associated with chloroplasts and dynamic cytosolic viral replication complex (VRC) clusters. BaMV VRC clusters comprise double-stranded viral RNA, BaMV replicase (RepBaMV), and mitochondrial outer membrane protein, voltage-dependent anion channel (VDAC). In this study, we demonstrate that host glycolytic enolase (ENO) binds to untranslated regions of BaMV RNA independently of ENO hydrolytic activity. However, the structural integrity of ENO is essential for its direct interaction with RepBaMV, and its positive regulating role in BaMV replication and the size of BaMV VRC clusters. Additionally, ENO, pyruvate kinase (PYK), and VDAC colocalize within cytosolic BaMV VRC clusters embedded in the convoluted endomembrane reticulum (ER) along with ER-targeted viral movement proteins under BaMV infection. This association suggests that the ENO-PYK-VDAC metabolon, with ENO serving as a scaffold to link chloroplasts and mitochondria, may play a pivotal role in BaMV robust replication. Collectively, our findings offer significant insights into how glycolytic ENO acts in BaMV replication.
Collapse
Affiliation(s)
- Kuan-Yu Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Liang-Yu Hou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-Chuan Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yu Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shu-Chuan Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
2
|
Liu X, Clemens DL, Lee BY, Aguirre R, Horwitz MA, Zhou ZH. Structure, identification and characterization of the RibD-enolase complex in Francisella. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.02.641097. [PMID: 40093042 PMCID: PMC11908141 DOI: 10.1101/2025.03.02.641097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Francisella tularensis is a highly infectious bacterium, a Tier 1-select agent, and the causative agent of tularemia, a potentially fatal zoonotic disease. In this study originally aiming to identify anti-tularemia drug targets, we serendipitously determined the atomic structures and identified their components of the native RibD-enolase protein complex in Francisella novicida; and subsequently systematically characterized the catalytic functions of the RibD-enolase complex. Originally discovered as individually protein in Escherichia coli and yeast, respectively, RibD and enolase are two essential enzymes involved in distinct metabolic pathways, both of which could serve as potential therapeutic targets for tularemia treatment and prevention. Our biochemical validation using pull-down assays confirmed the formation of this complex in vivo, revealing that all eluted RibD is bound to enolase, while the majority of enolase remained uncomplexed. Structural analysis reveals unique features of the Francisella complex, including key RibD-enolase interactions that mediate complex assembly and β-strand swapping between RibD subunits. Furthermore, molecular dynamics simulations of the ligand-bound RibD-enolase complex highlight localized conformational changes within the substrate-binding sites and suggest a gating mechanism between RibD's substrate and cofactor-binding sites to ensure efficient uptake and turnover. Despite the physical association between RibD and enolase, enzymatic assays indicated their catalytic activities are independent of each other, thus the complex may have alternative functional roles that warrant further exploration. Our study provides the first structural and biochemical characterization of the RibD-enolase complex, establishing a foundation for further investigations into its functional significance in Francisella and potential antibacterial development.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- The California NanoSystems Institute (CNSI), UCLA, Los Angeles, CA 90095, USA
| | | | - Bai-Yu Lee
- Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Roman Aguirre
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- The California NanoSystems Institute (CNSI), UCLA, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Marcus A. Horwitz
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- The California NanoSystems Institute (CNSI), UCLA, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Serrat J, Torres-Valle M, De Marco Verissimo C, Siles-Lucas M, González-Miguel J. Binding and cleavage of pro-urokinase by a tegument extract of Fasciola hepatica newly excysted juveniles activate the host fibrinolytic system. Vet Res 2025; 56:20. [PMID: 39856784 PMCID: PMC11762853 DOI: 10.1186/s13567-025-01449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/26/2024] [Indexed: 01/27/2025] Open
Abstract
Plasmin, the final product of fibrinolysis, is a broad-spectrum serine protease that degrades extracellular matrix (ECM) components, a function exploited by multiple pathogens for dissemination purposes. The trematode Fasciola hepatica is the leading cause of fasciolosis, a major disease of livestock and an emerging zoonosis in humans. Infection success depends on the ability of F. hepatica newly excysted juveniles (FhNEJ) to penetrate the host intestinal wall, a process that remains incompletely understood. We have previously shown that FhNEJ are capable of binding plasminogen (PLG), the zymogen of plasmin, on their tegument surface, which leads to plasmin generation in the presence of host-derived PLG activators and subsequent degradation of laminin, a major component of the intestinal ECM. Here, we describe the interaction between a tegument extract of FhNEJ and the precursor of the urokinase-type PLG activator (pro-u-PA). We found that F. hepatica cathepsins B3, L3, enolase and glutathione S-transferase mediate this interaction, suggesting a multifactorial or moonlighting role for these proteins. Additionally, our results revealed that the tegument of FhNEJ contains a protease that is capable of cleaving and activating pro-u-PA into its catalytically active form, which positively impacts the capacity of the parasites to generate plasmin from the host PLG. Collectively, our findings indicate that FhNEJ interact with the host fibrinolytic system at multiple levels, reinforcing the potential of targeting this interaction as a strategy to prevent FhNEJ trans-intestinal migration and infection success.
Collapse
Affiliation(s)
- Judit Serrat
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - María Torres-Valle
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | | | - Mar Siles-Lucas
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain.
| |
Collapse
|
4
|
Luo X, Luan C, Zhou J, Ye Y, Zhang W, Jain R, Zhang E, Chen N. Glycolytic enzyme Enolase-1 regulates insulin gene expression in pancreatic β-cell. Biochem Biophys Res Commun 2024; 706:149735. [PMID: 38461647 DOI: 10.1016/j.bbrc.2024.149735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
Enolase-1 (Eno1) plays a critical role in regulating glucose metabolism; however, its specific impact on pancreatic islet β-cells remains elusive. This study aimed to provide a preliminary exploration of Eno1 function in pancreatic islet β-cells. The findings revealed that the expression of ENO1 mRNA in type 2 diabetes donors was significantly increased and positively correlated with HbA1C and negatively correlated with insulin gene expression. A high level of Eno1 in human insulin-secreting rat INS-1832/13 cells with co-localization with intracellular insulin proteins was accordingly observed. Silencing of Eno1 using siRNA or inhibiting Eno1 protein activity with an Eno1 antagonist significantly reduced insulin secretion and insulin content in β-cells, while the proinsulin/insulin content ratio remained unchanged. This reduction in β-cells function was accompanied by a notable decrease in intracellular ATP and mitochondrial cytochrome C levels. Overall, our findings confirm that Eno1 regulates the insulin secretion process, particularly glucose metabolism and ATP production in the β-cells. The mechanism primarily involves its influence on insulin production, suggesting that Eno1 represents a potential target for β-cell protection and diabetes treatment.
Collapse
Affiliation(s)
- Xiumei Luo
- , Department of Endocrinology, Fudan University Zhongshan Hospital Xiamen Branch, No668. Jinhu Road, Xiamen, 361000, China
| | - Cheng Luan
- , Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Jan Waldenströms Gata 35, 20502, Malmö, Sweden
| | - Jingqi Zhou
- , Department of Endocrinology, Fudan University Zhongshan Hospital Xiamen Branch, No668. Jinhu Road, Xiamen, 361000, China
| | - Yingying Ye
- , Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Jan Waldenströms Gata 35, 20502, Malmö, Sweden
| | - Wei Zhang
- , Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Ruchi Jain
- , Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Jan Waldenströms Gata 35, 20502, Malmö, Sweden
| | - Enming Zhang
- , Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Jan Waldenströms Gata 35, 20502, Malmö, Sweden.
| | - Ning Chen
- , Department of Endocrinology, Fudan University Zhongshan Hospital Xiamen Branch, No668. Jinhu Road, Xiamen, 361000, China.
| |
Collapse
|
5
|
Lincz LF, Theron DZ, Barry DL, Scorgie FE, Sillar J, Sefhore O, Enjeti AK, Skelding KA. High Expression of ENO1 and Low Levels of Circulating Anti-ENO1 Autoantibodies in Patients with Myelodysplastic Neoplasms and Acute Myeloid Leukaemia. Cancers (Basel) 2024; 16:884. [PMID: 38473245 DOI: 10.3390/cancers16050884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
In solid tumours, high expression of the glycolytic enzyme, α-enolase (ENO1), predicts for poor patient overall survival (OS), and circulating autoantibodies to ENO1 correlate positively with diagnosis and negatively with advanced disease. Although ENO1 is one of the most highly expressed genes in acute myeloid leukaemia (AML), its potential role as a biomarker in AML or its precursor, myelodysplastic neoplasms (MDS), has not been investigated. A meta-analysis of nine AML online datasets (n = 1419 patients) revealed that high ENO1 expression predicts for poor OS (HR = 1.22, 95% CI: 1.10-1.34, p < 0.001). Additionally, when compared to AML in remission (n = 5), ENO1 protein detected by immunohistochemistry was significantly higher at diagnosis in bone marrow from both AML (n = 5, p < 0.01) and MDS patients (n = 12, p < 0.05), and did not correlate with percentage of blasts (r = 0.28, p = 0.21). AML patients (n = 34) had lower circulating levels of ENO1 autoantibodies detected by ELISA compared to 26 MDS and 18 controls (p = 0.003). However, there was no difference in OS between AML patients with high vs. low levels of anti-ENO1 autoantibodies (p = 0.77). BM immunostaining for ENO1 and patient monitoring of anti-ENO1 autoantibody levels may be useful biomarkers for MDS and AML.
Collapse
Affiliation(s)
- Lisa F Lincz
- Haematology Department, Calvary Mater Newcastle, Waratah, NSW 2298, Australia
- University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, Lookout Road, New Lambton, NSW 2305, Australia
| | - Danielle Z Theron
- University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Daniel L Barry
- University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Fiona E Scorgie
- Haematology Department, Calvary Mater Newcastle, Waratah, NSW 2298, Australia
- Hunter Medical Research Institute, Lookout Road, New Lambton, NSW 2305, Australia
| | - Jonathan Sillar
- Haematology Department, Calvary Mater Newcastle, Waratah, NSW 2298, Australia
- University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, Lookout Road, New Lambton, NSW 2305, Australia
- New South Wales Health Pathology, John Hunter Hospital, Lookout Road, New Lambton, NSW 2305, Australia
| | - Opelo Sefhore
- Haematology Department, Calvary Mater Newcastle, Waratah, NSW 2298, Australia
- New South Wales Health Pathology, John Hunter Hospital, Lookout Road, New Lambton, NSW 2305, Australia
| | - Anoop K Enjeti
- Haematology Department, Calvary Mater Newcastle, Waratah, NSW 2298, Australia
- University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, Lookout Road, New Lambton, NSW 2305, Australia
- New South Wales Health Pathology, John Hunter Hospital, Lookout Road, New Lambton, NSW 2305, Australia
| | - Kathryn A Skelding
- University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, Lookout Road, New Lambton, NSW 2305, Australia
| |
Collapse
|