1
|
Cogliati M, Chidebelu PE, Hitchcock M, Chen M, Rickerts V, Ackermann S, Desnos Ollivier M, Inácio J, Nawrot U, Florek M, Kwon-Chung KJ, Yang DH, Firacative C, Puime CA, Escandon P, Bertout S, Roger F, Xu J. Multi-locus sequence typing and phylogenetics of Cryptococcus neoformans AD hybrids. Fungal Genet Biol 2024; 170:103861. [PMID: 38128716 DOI: 10.1016/j.fgb.2023.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Hybrid AD strains of the human pathogenic Cryptococcus neoformans species complex have been reported from many parts of the world. However, their origin, diversity, and evolution are incompletely understood. In this study, we analyzed 102 AD hybrid strains representing 21 countries on five continents. For each strain, we obtained its mating type and its allelic sequences at each of the seven loci that have been used for genotyping haploid serotypes A and D strains of the species complex by the Cryptococcus research community. Our results showed that most AD hybrids exhibited loss of heterozygosity at one or more of the seven analyzed loci. Phylogenetic and population genetic analyses of the allelic sequences revealed multiple origins of the hybrids within each continent, dating back to one million years ago in Africa and up to the present in other continents. We found evidence for clonal reproduction and long-distance dispersal of these hybrids in nature. Comparisons with the global haploid serotypes A and D strains identified new alleles and new haploid multi-locus genotypes in AD hybrids, consistent with the presence of yet-to-be discovered genetic diversity in haploid populations of this species complex in nature. Together, our results indicate that AD hybrids can be effectively genotyped using the same multi-locus sequencing type approach as that established for serotypes A and D strains. Our comparisons of the AD hybrids among each other as well as with the global haploid serotypes A and D strains revealed novel genetic diversity as well as evidence for multiple origins and dynamic evolution of these hybrids in nature.
Collapse
Affiliation(s)
- M Cogliati
- Lab. Medical Mycology, Dept. Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy.
| | - P E Chidebelu
- Department of Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - M Hitchcock
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - M Chen
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Chanzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | - M Desnos Ollivier
- Institut Pasteur, Université de Paris, CNRS UMR2000, Molecular Mycology Unit, National Reference Center for Invasive Mycoses and Antifungals, Paris, France
| | - J Inácio
- School of Applied Sciences, University of Brighton, Brighton, UK
| | - U Nawrot
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | - M Florek
- Department of Pathology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - K J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases NIH, Bethesda, USA
| | - D-H Yang
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases NIH, Bethesda, USA
| | - C Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad de Rosario, Bogotá, Colombia
| | - C A Puime
- Unidad de Parasitología y Micología, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Montevideo, Uruguay
| | - P Escandon
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - S Bertout
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM, Montpellier, France
| | - F Roger
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM, Montpellier, France
| | - J Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Howard-Jones AR, Sparks R, Pham D, Halliday C, Beardsley J, Chen SCA. Pulmonary Cryptococcosis. J Fungi (Basel) 2022; 8:1156. [PMID: 36354923 PMCID: PMC9696922 DOI: 10.3390/jof8111156] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 07/25/2023] Open
Abstract
Pulmonary cryptococcosis describes an invasive lung mycosis caused by Cryptococcus neoformans or Cryptococcus gattii complex. It is often a high-consequence disease in both immunocompromised and immunocompetent populations, and may be misdiagnosed as pulmonary malignancy, leading to a delay in therapy. Epidemiology follows that of cryptococcal meningoencephalitis, with C. gattii infection more common in certain geographic regions. Diagnostic tools include histopathology, microscopy and culture, and the detection of cryptococcal polysaccharide antigen or Cryptococcus-derived nucleic acids. All patients with lung cryptococcosis should have a lumbar puncture and cerebral imaging to exclude central nervous system disease. Radiology is key, both as an adjunct to laboratory testing and as the initial means of detection in asymptomatic patients or those with non-specific symptoms. Pulmonary cryptococcomas (single or multiple) may also be associated with disseminated disease and/or cryptococcal meningitis, requiring prolonged treatment regimens. Optimal management for severe disease requires extended induction (amphotericin B and flucytosine) and consolidation therapy (fluconazole) with close clinical monitoring. Susceptibility testing is of value for epidemiology and in regions where relatively high minimum inhibitory concentrations to azoles (particularly fluconazole) have been noted. Novel diagnostic tools and therapeutic agents promise to improve the detection and treatment of cryptococcosis, particularly in low-income settings where the disease burden is high.
Collapse
Affiliation(s)
- Annaleise R. Howard-Jones
- Centre for Infectious Diseases & Microbiology Laboratory Services, New South Wales Health Pathology—Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sparks
- Centre for Infectious Diseases & Microbiology Laboratory Services, New South Wales Health Pathology—Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - David Pham
- Centre for Infectious Diseases & Microbiology Laboratory Services, New South Wales Health Pathology—Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Catriona Halliday
- Centre for Infectious Diseases & Microbiology Laboratory Services, New South Wales Health Pathology—Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Justin Beardsley
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2006, Australia
- Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases & Microbiology Laboratory Services, New South Wales Health Pathology—Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Alama-Bermejo G, Meyer E, Atkinson SD, Holzer AS, Wiśniewska MM, Kolísko M, Bartholomew JL. Transcriptome-Wide Comparisons and Virulence Gene Polymorphisms of Host-Associated Genotypes of the Cnidarian Parasite Ceratonova shasta in Salmonids. Genome Biol Evol 2021; 12:1258-1276. [PMID: 32467979 PMCID: PMC7487138 DOI: 10.1093/gbe/evaa109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
Ceratonova shasta is an important myxozoan pathogen affecting the health of salmonid fishes in the Pacific Northwest of North America. Ceratonova shasta exists as a complex of host-specific genotypes, some with low to moderate virulence, and one that causes a profound, lethal infection in susceptible hosts. High throughput sequencing methods are powerful tools for discovering the genetic basis of these host/virulence differences, but deep sequencing of myxozoans has been challenging due to extremely fast molecular evolution of this group, yielding strongly divergent sequences that are difficult to identify, and unavoidable host contamination. We designed and optimized different bioinformatic pipelines to address these challenges. We obtained a unique set of comprehensive, host-free myxozoan RNA-seq data from C. shasta genotypes of varying virulence from different salmonid hosts. Analyses of transcriptome-wide genetic distances and maximum likelihood multigene phylogenies elucidated the evolutionary relationship between lineages and demonstrated the limited resolution of the established Internal Transcribed Spacer marker for C. shasta genotype identification, as this marker fails to differentiate between biologically distinct genotype II lineages from coho salmon and rainbow trout. We further analyzed the data sets based on polymorphisms in two gene groups related to virulence: cell migration and proteolytic enzymes including their inhibitors. The developed single-nucleotide polymorphism-calling pipeline identified polymorphisms between genotypes and demonstrated that variations in both motility and protease genes were associated with different levels of virulence of C. shasta in its salmonid hosts. The prospective use of proteolytic enzymes as promising candidates for targeted interventions against myxozoans in aquaculture is discussed. We developed host-free transcriptomes of a myxozoan model organism from strains that exhibited different degrees of virulence, as a unique source of data that will foster functional gene analyses and serve as a base for the development of potential therapeutics for efficient control of these parasites.
Collapse
Affiliation(s)
- Gema Alama-Bermejo
- Department of Microbiology, Oregon State University.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.,Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni (CIMAS), CCT CONICET - CENPAT, San Antonio Oeste, Argentina
| | - Eli Meyer
- Department of Integrative Biology, Oregon State University
| | | | - Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Monika M Wiśniewska
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Martin Kolísko
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | |
Collapse
|
4
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev Camb Philos Soc 2020; 95:1198-1232. [PMID: 32301582 PMCID: PMC7539958 DOI: 10.1111/brv.12605] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The question of how phenotypic and genomic complexity are inter-related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental Sciences, Universitat Pompeu Fabra (UPF)Dr. Aiguader 88, 08003BarcelonaSpain
- ICREAPg. Lluís Companys 23, 08010BarcelonaSpain
| |
Collapse
|
5
|
Samarasinghe H, Vogan A, Pum N, Xu J. Patterns of allele distribution in a hybrid population of the Cryptococcus neoformans species complex. Mycoses 2019; 63:275-283. [PMID: 31774582 DOI: 10.1111/myc.13040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND The sister yeast species Cryptococcus neoformans (serotype A) and Cryptococcus deneoformans (serotype D) are causative agents of deadly cryptococcosis and fungal meningoencephalitis. These haploid yeasts can hybridise in nature, giving rise to AD hybrids that are predominantly diploid or aneuploid. Despite their increasing prevalence in clinical settings, much remains unknown about the allelic distribution patterns in AD hybrid strains. OBJECTIVES This study aims to characterise allele distributions in AD hybrids derived from the same basidium as well as from multiple basidia in a laboratory-derived C neoformans × C deneoformans hybrid cross. METHODS We dissected a total of 1625 basidiospores from 31 basidia. The 297 basidiospores that successfully germinated were genotyped by molecular characterisation of 33 markers using PCR-RFLP, with at least two markers on each of the 14 chromosomes in the genome. RESULTS Of the 297 strains, 294 contained at least one heterozygous locus, with a mean heterozygosity of ~30% per strain. Most hybrid genomes and chromosomes displayed significantly distorted allele distributions, with offspring originating from the same basidium tended to have alleles at different loci from the same parent. More basidia were skewed in favour of C deneoformans alleles, the mitochondria-donor parent, than the C neoformans alleles. CONCLUSIONS The divergence between C neoformans and C deneoformans genomes has likely created co-adapted allelic combinations, with their co-segregation in hybrid offspring imparting a significant fitness benefit. However, the diversity of genotypes recovered here in a single hybridisation event indicates the enormous capacity of AD hybrids for adaptation and diversification.
Collapse
Affiliation(s)
| | - Aaron Vogan
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Nicole Pum
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Cogliati M, Desnos-Ollivier M, McCormick-Smith I, Rickerts V, Ferreira-Paim K, Meyer W, Boekhout T, Hagen F, Theelen B, Inácio J, Alonso B, Colom MF, Trilles L, Montagna MT, De Donno A, Susever S, Ergin C, Velegraki A, Ellabib MS, Nardoni S, Macci C, Trovato L, Dipineto L, Akcaglar S, Mlinaric-Missoni E, Bertout S, Vencá ACF, Sampaio AC, Criseo G, Ranque S, Çerikçioğlu N, Marchese A, Vezzulli L, Ilkit M, Pasquale V, Polacheck I, Lockhart SR. Genotypes and population genetics of cryptococcus neoformans and cryptococcus gattii species complexes in Europe and the mediterranean area. Fungal Genet Biol 2019; 129:16-29. [PMID: 30953839 PMCID: PMC12041884 DOI: 10.1016/j.fgb.2019.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
A total of 476 European isolates (310 Cryptococcus neoformans var. grubii, 150 C. neoformans var. neoformans, and 16 C. gattii species complex) from both clinical and environmental sources were analyzed by multi-locus sequence typing. Phylogenetic and population genetic analyses were performed. Sequence analysis identified 74 sequence types among C. neoformans var. neoformans (VNIV), 65 among C. neoformans var. grubii (56 VNI, 8 VNII, 1 VNB), and 5 among the C. gattii species complex (4 VGI and 1 VGIV) isolates. ST23 was the most frequent genotype (22%) among VNI isolates which were mostly grouped in a large clonal cluster including 50% of isolates. Among VNIV isolates, a predominant genotype was not identified. A high percentage of autochthonous STs were identified in both VNI (71%) and VNIV (96%) group of isolates. The 16 European C. gattii species complex isolates analyzed in the present study originated all from the environment and all belonged to a large cluster endemic in the Mediterranean area. Population genetic analysis confirmed that VNI group of isolates were characterized by low variability and clonal expansion while VNIV by a higher variability and a number of recombination events. However, when VNI and VNIV environmental isolates were compared, they showed a similar population structure with a high percentage of shared mutations and the absence of fixed mutations. Also linkage disequilibrium analysis reveals differences between clinical and environmental isolates showing a key role of PLB1 allele combinations in host infection as well as the key role of LAC1 allele combinations for survival of the fungus in the environment. The present study shows that genetic comparison of clinical and environmental isolates represents a first step to understand the genetic characteristics that cause the shift of some genotypes from a saprophytic to a parasitic life style.
Collapse
Affiliation(s)
- Massimo Cogliati
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy.
| | - Marie Desnos-Ollivier
- Institut Pasteur, Molecular Mycology Unit, National Reference Center for Invasive Mycoses & Antifungal, CNRS UMR2000, Paris, France
| | | | | | - Kennio Ferreira-Paim
- Molecular Mycology Research Laboratory, Center for Infectious Diseases, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashier Institute for Emerging Infectious Diseases and Biosecurity, University of Sydney, Westmead Hospital, (Research and Educational Network) Westmead Institute for Medical Research, Westmead, NSW, Australia; Department of Microbiology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Center for Infectious Diseases, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashier Institute for Emerging Infectious Diseases and Biosecurity, University of Sydney, Westmead Hospital, (Research and Educational Network) Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; Institute of Biodiversity and Ecosystem Dynamic (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Joäo Inácio
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Beatriz Alonso
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK; Instituto de Investigación Sanitaria Gregorio Marañón (IisGM), Hospital Gegorio Marañón, Madrid, Spain
| | | | | | | | | | | | | | - Aristea Velegraki
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Cristina Macci
- National Research Council, Research Institute on Terrestrial Ecosystems (IRET), Pisa, Italy
| | | | | | | | | | - Sebastien Bertout
- Unité Mixte Internationale "Recherches Translationnelles sur l'infection à VIH et les Maladies Infectieuses", Université de Montpellier, Montpellier, France
| | - Ana C F Vencá
- Instituto de Higiene e Medicina Tropical, Lisbon, Portugal
| | - Ana C Sampaio
- Universidade de Trás-os-Montes e Alto Douro, CITAB, Quinta dos Prados, Vila Real, Portugal
| | - Giuseppe Criseo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Stéphane Ranque
- Aix-Marseille University, IRD, APHM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | | | - Anna Marchese
- Sezione di Microbiologia del DISC, Università di Genova-IRCCS Policlinico San Martino Genova, Genova, Italy
| | - Luigi Vezzulli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università di Genova, Genova, Italy
| | - Macit Ilkit
- University of Çukurova Sarıçam, Adana, Turkey
| | | | | | | |
Collapse
|
7
|
Cogliati M, Prigitano A, Esposto MC, Romanò L, Grancini A, Zani A, Tortorano AM. Epidemiological trends of cryptococcosis in Italy: Molecular typing and susceptibility pattern of Cryptococcus neoformans isolates collected during a 20-year period. Med Mycol 2019; 56:963-971. [PMID: 29373716 DOI: 10.1093/mmy/myx152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/23/2017] [Indexed: 11/13/2022] Open
Abstract
In the present study clinical data and isolates from cases of cryptococcosis recorded during clinical surveys carried out in Italy from 1997 to 2016, were investigated. Molecular typing and antifungal susceptibility testing were performed in order to delineate the epidemiological trend of cryptococcosis in Italy and to define wild-type population for four different antifungal compounds. During the studied period, a total of 302 cases collected from 32 centers of 11 Italian regions were recorded. Analysis of clinical data showed a significant increase of frequency (from 7% to 38%) of cryptococcosis in human immunodeficiency virus (HIV)-negative patients primarily with hematologic malignancies and solid organ transplantations. The prevalence of the molecular types has significantly changed during the study period, showing an increase of VNIII isolates from 11% to 41% in HIV-negative patients, and a decrease of VNIV isolates from 36% to 16%. Antifungal susceptibility testing allowed us to calculate the epidemiological cut-off for flucytosine (1 mg/l), fluconazole (8 mg/l), itraconazole (0.5 mg/l), and voriconazole (0.25 mg/l). Most of the isolates were wild-type strains. Comparison of the MIC distributions according to molecular types showed that VNIV isolates had lower MICs for fluconazole and itraconazole than the VNI and VIII isolates. The current study emphasizes that the epidemiology of cryptococcosis in Italy has significantly changed over the last decades.
Collapse
Affiliation(s)
- Massimo Cogliati
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Anna Prigitano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Maria Carmela Esposto
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Luisa Romanò
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Anna Grancini
- UOS Microbiology, Central Laboratory, I.R.C.C.S. Foundation, Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Alberto Zani
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Anna Maria Tortorano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
8
|
Samarasinghe H, Xu J. Hybrids and hybridization in the Cryptococcus neoformans and Cryptococcus gattii species complexes. INFECTION GENETICS AND EVOLUTION 2018; 66:245-255. [PMID: 30342094 DOI: 10.1016/j.meegid.2018.10.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/28/2018] [Accepted: 10/16/2018] [Indexed: 12/29/2022]
Abstract
The basidiomycetous yeasts of the Cryptococcus neoformans and Cryptococcus gattii species complexes (CNSC and CGSC respectively) are the causative agents of cryptococcosis, a set of life-threatening diseases affecting the central nervous system, lungs, skin, and other body sites of humans and other mammals. Both the CNSC and CGSC can be subdivided into varieties, serotypes, molecular types, and lineages based on structural variations, molecular characteristics and genetic sequences. Hybridization between the haploid lineages within and between the two species complexes is known to occur in natural and clinical settings, giving rise to intraspecific and interspecific diploid/aneuploid hybrid strains. Since their initial discovery in 1977, cryptococcal hybrids have been increasingly discovered in both clinical and environmental settings with over 30% of all cryptococcal infections in some regions of Europe being caused by hybrid strains. This review summarizes the major findings to date on cryptococcal hybrids, including their possible origins, prevalence, genomic profiles and phenotypic characteristics. Our analyses suggest that CNSC and CGSC can be an excellent model system for studying fungal hybridization.
Collapse
Affiliation(s)
- Himeshi Samarasinghe
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
9
|
Cogliati M, Puccianti E, Montagna MT, De Donno A, Susever S, Ergin C, Velegraki A, Ellabib MS, Nardoni S, Macci C, Trovato L, Dipineto L, Rickerts V, Akcaglar S, Mlinaric-Missoni E, Bertout S, Vencà AC, Sampaio AC, Criseo G, Ranque S, Çerikçioğlu N, Marchese A, Vezzulli L, Ilkit M, Desnos-Ollivier M, Pasquale V, Polacheck I, Scopa A, Meyer W, Ferreira-Paim K, Hagen F, Boekhout T, Dromer F, Varma A, Kwon-Chung KJ, Inácio J, Colom MF. Fundamental niche prediction of the pathogenic yeastsCryptococcus neoformansandCryptococcus gattiiin Europe. Environ Microbiol 2017; 19:4318-4325. [DOI: 10.1111/1462-2920.13915] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/07/2017] [Accepted: 08/26/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Massimo Cogliati
- Dip. Scienze Biomediche per la Salute; Università degli Studi di Milano; Milano Italy
| | - Erika Puccianti
- Dip. Scienze Biomediche per la Salute; Università degli Studi di Milano; Milano Italy
| | | | | | | | | | - Aristea Velegraki
- Medical School National and Kapodistrian University of Athens; Athens Greece
| | | | | | - Cristina Macci
- Istituto per lo Studio degli Ecosistemi (ISE), National Research Council (CNR); Pisa Italy
| | | | | | | | | | | | - Sebastien Bertout
- Unité Mixte Internationale “Recherches Translationnelles sur l'infection à VIH et les Maladies Infectieuses”; Université de Montpellier; Montpellier France
| | - Ana C.F. Vencà
- Instituto de Higiene e Medicina Tropical; Lisbon Portugal
| | - Ana C. Sampaio
- Universidade de Trás-os-Montes e Alto Douro, CITAB; Vila Real Quinta dos Prados Portugal
| | - Giuseppe Criseo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Italy
| | | | | | - Anna Marchese
- Sezione di Microbiologia del DISC; Università di Genova-IRCCS San Martino IST Genova; Genova Italy
| | - Luigi Vezzulli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV); Università di Genova; Genova Italy
| | - Macit Ilkit
- University of Çukurova Sarıçam; Adana Turkey
| | | | | | | | - Antonio Scopa
- Università degli Studi della Basilicata; Potenza Italy
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, CIDM, MBI, Sydney Medical School-Westmead Hospital; University of Sydney/Westmead Millennium Institute; Westmead NSW Australia
| | - Kennio Ferreira-Paim
- Molecular Mycology Research Laboratory, CIDM, MBI, Sydney Medical School-Westmead Hospital; University of Sydney/Westmead Millennium Institute; Westmead NSW Australia
| | - Ferry Hagen
- Department of Medical Microbiology and Infectious-Diseases; Canisius-Wilhelmina Hospital; Nijmegen The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, and Institute for Biodiversity and Ecosystem Dynamic Institute; University of Amsterdam; Amsterdam The Netherlands
| | - Françoise Dromer
- Institut Pasteur, CNRS; Unité de Mycologie Moléculaire; Paris France
| | - Ashok Varma
- National Institute of Allergy and Infectious Diseases; Bethesda MD USA
| | | | - Joäo Inácio
- School of Pharmacy and Biomolecular Sciences; University of Brighton; Brighton UK
| | | |
Collapse
|
10
|
Aminnejad M, Cogliati M, Duan S, Arabatzis M, Tintelnot K, Castañeda E, Lazéra M, Velegraki A, Ellis D, Sorrell TC, Meyer W. Identification and Characterization of VNI/VNII and Novel VNII/VNIV Hybrids and Impact of Hybridization on Virulence and Antifungal Susceptibility Within the C. neoformans/C. gattii Species Complex. PLoS One 2016; 11:e0163955. [PMID: 27764108 PMCID: PMC5072701 DOI: 10.1371/journal.pone.0163955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Cryptococcus neoformans and C. gattii are pathogenic basidiomycetous yeasts and the commonest cause of fungal infection of the central nervous system. Cryptococci are typically haploid but several inter-species, inter-varietal and intra-varietal hybrids have been reported. It has a bipolar mating system with sexual reproduction occurring normally between two individuals with opposite mating types, α and a. This study set out to characterize hybrid isolates within the C. neoformans/C. gattii species complex: seven unisexual mating intra-varietal VNI/VNII (αAAα) and six novel inter-varietal VNII/VNIV (aADα). The URA5-RFLP pattern for VNII/VNIV (aADα) differs from the VNIII (αADa) hybrids. Analysis of the allelic patterns of selected genes for AD hybrids showed 79% or more heterozygosis for the studied loci except for CBS132 (VNIII), which showed 50% of heterozygosity. MALDI-TOF MS was applied to hybrids belonging to different sero/mating type allelic patterns. All hybrid isolates were identified as belonging to the same hybrid group with identification scores ranging between 2.101 to 2.634. All hybrids were virulent when tested in the Galleria mellonella (wax moth) model, except for VNII/VNIV (aADα) hybrids. VNI/VGII hybrids were the most virulent hybrids. Hybrids recovered from larvae manifested a significant increase in capsule and total cell size and produced a low proportion (5-10%) of giant cells compared with the haploid control strains. All strains expressed the major virulence factors-capsule, melanin and phospholipase B-and grew well at 37°C. The minimal inhibitory concentration of nine drugs was measured by micro-broth dilution and compared with published data on haploid strains. MICs were similar amongst hybrids and haploid parental strains. This is the first study reporting natural same sex αAAα intra-varietal VNI/VNII hybrids and aADα inter-varietal VNII/VNIV hybrids.
Collapse
Affiliation(s)
- Mojgan Aminnejad
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School – Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Institute for Medical Research, Sydney, Australia
| | - Massimo Cogliati
- Laboratory Micologia Medica, Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy
| | - Shuyao Duan
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School – Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Institute for Medical Research, Sydney, Australia
| | - Michael Arabatzis
- Mycology Research Laboratory, Department of Microbiology, Medical School, National Kapodistrian University of Athens, Athens, Greece
| | | | | | - Marcia Lazéra
- Mycology Laboratory, National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Aristea Velegraki
- Mycology Research Laboratory, Department of Microbiology, Medical School, National Kapodistrian University of Athens, Athens, Greece
| | - David Ellis
- School of Molecular & Biomedical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Tania C. Sorrell
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School – Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Institute for Medical Research, Sydney, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School – Westmead Hospital, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Institute for Medical Research, Sydney, Australia
| |
Collapse
|
11
|
Multilocus analysis reveals large genetic diversity in Kluyveromyces marxianus strains isolated from Parmigiano Reggiano and Pecorino di Farindola cheeses. Int J Food Microbiol 2016; 233:1-10. [DOI: 10.1016/j.ijfoodmicro.2016.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/16/2016] [Accepted: 05/30/2016] [Indexed: 02/02/2023]
|
12
|
Bennett RJ, Forche A, Berman J. Rapid mechanisms for generating genome diversity: whole ploidy shifts, aneuploidy, and loss of heterozygosity. Cold Spring Harb Perspect Med 2014; 4:cshperspect.a019604. [PMID: 25081629 DOI: 10.1101/cshperspect.a019604] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human fungal pathogens can exist in a variety of ploidy states, including euploid and aneuploid forms. Ploidy change has a major impact on phenotypic properties, including the regulation of interactions with the human host. In addition, the rapid emergence of drug-resistant isolates is often associated with the formation of specific supernumerary chromosomes. Pathogens such as Candida albicans and Cryptococcus neoformans appear particularly well adapted for propagation in multiple ploidy states with novel pathways driving ploidy variation. In both species, heterozygous cells also readily undergo loss of heterozygosity (LOH), leading to additional phenotypic changes such as altered drug resistance. Here, we examine the sexual and parasexual cycles that drive ploidy variation in human fungal pathogens and discuss ploidy and LOH events with respect to their far-reaching roles in fungal adaptation and pathogenesis.
Collapse
Affiliation(s)
- Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, Maine 04011
| | - Judith Berman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455 Department of Molecular Microbiology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
13
|
Danesi P, Firacative C, Cogliati M, Otranto D, Capelli G, Meyer W. Multilocus sequence typing (MLST) and M13 PCR fingerprinting revealed heterogeneity amongstCryptococcusspecies obtained from Italian veterinary isolates. FEMS Yeast Res 2014; 14:897-909. [DOI: 10.1111/1567-1364.12178] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/16/2014] [Accepted: 06/26/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Patrizia Danesi
- Istituto Zooprofilattico Sperimentale delle Venezie; Legnaro Italy
- Department of Veterinary Medicine; University of Bari; Bari Italy
| | - Carolina Firacative
- Molecular Mycology Research Laboratory; Centre for Infectious Diseases and Microbiology; Sydney Medical School - Westmead Hospital; Marie Bashir Institute for Infectious Diseases and Biosecurity; The University of Sydney; Westmead Millennium Institute; Sydney NSW Australia
- Grupo de Microbiología; Instituto Nacional de Salud; Bogotá Colombia
| | - Massimo Cogliati
- Laboratorio di Micologia Medica; Istituto di Igiene e Medicina Preventiva; University of Milan; Milan Italy
| | - Domenico Otranto
- Department of Veterinary Medicine; University of Bari; Bari Italy
| | - Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie; Legnaro Italy
| | - Wieland Meyer
- Molecular Mycology Research Laboratory; Centre for Infectious Diseases and Microbiology; Sydney Medical School - Westmead Hospital; Marie Bashir Institute for Infectious Diseases and Biosecurity; The University of Sydney; Westmead Millennium Institute; Sydney NSW Australia
| |
Collapse
|
14
|
Large-Scale Chromosomal Changes and Associated Fitness Consequences in Pathogenic Fungi. CURRENT FUNGAL INFECTION REPORTS 2014; 8:163-170. [PMID: 25685251 DOI: 10.1007/s12281-014-0181-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pathogenic fungi encounter many different host environments to which they must adapt rapidly to ensure growth and survival. They also must be able to cope with alterations in established niches during long-term persistence in the host. Many eukaryotic pathogens have evolved a highly plastic genome, and large-scale chromosomal changes including aneuploidy, and loss of heterozygosity (LOH) can arise under various in vitro and in vivo stresses. Both aneuploidy and LOH can arise quickly during a single cell cycle, and it is hypothesized that they provide a rapid, albeit imprecise, solution to adaptation to stress until better and more refined solutions can be acquired by the organism. While LOH, with the extreme case of haploidization in Candida albicans, can purge the genome from recessive lethal alleles and/or generate recombinant progeny with increased fitness, aneuploidy, in the absence or rarity of meiosis, can serve as a non-Mendelian mechanism for generating genomic variation.
Collapse
|
15
|
Cogliati M. Global Molecular Epidemiology of Cryptococcus neoformans and Cryptococcus gattii: An Atlas of the Molecular Types. SCIENTIFICA 2013; 2013:675213. [PMID: 24278784 PMCID: PMC3820360 DOI: 10.1155/2013/675213] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/11/2012] [Indexed: 05/08/2023]
Abstract
Cryptococcosis is a fungal disease affecting more than one million people per year worldwide. The main etiological agents of cryptococcosis are the two sibling species Cryptococcus neoformans and Cryptococcus gattii that present numerous differences in geographical distribution, ecological niches, epidemiology, pathobiology, clinical presentation and molecular characters. Genotyping of the two Cryptococcus species at subspecies level supplies relevant information to understand how this fungus has spread worldwide, the nature of its population structure, and how it evolved to be a deadly pathogen. At present, nine major molecular types have been recognized: VNI, VNII, VNB, VNIII, and VNIV among C. neoformans isolates, and VGI, VGII, VGIII, and VGIV among C. gattii isolates. In this paper all the information available in the literature concerning the isolation of the two Cryptococcus species has been collected and analyzed on the basis of their geographical origin, source of isolation, level of identification, species, and molecular type. A detailed analysis of the geographical distribution of the major molecular types in each continent has been described and represented on thematic maps. This study represents a useful tool to start new epidemiological surveys on the basis of the present knowledge.
Collapse
Affiliation(s)
- Massimo Cogliati
- Lab. Micologia Medica, Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
- *Massimo Cogliati:
| |
Collapse
|
16
|
Morales L, Dujon B. Evolutionary role of interspecies hybridization and genetic exchanges in yeasts. Microbiol Mol Biol Rev 2012; 76:721-39. [PMID: 23204364 PMCID: PMC3510521 DOI: 10.1128/mmbr.00022-12] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Forced interspecific hybridization has been used in yeasts for many years to study speciation or to construct artificial strains with novel fermentative and metabolic properties. Recent genome analyses indicate that natural hybrids are also generated spontaneously between yeasts belonging to distinct species, creating lineages with novel phenotypes, varied genetic stability, or altered virulence in the case of pathogens. Large segmental introgressions from evolutionarily distant species are also visible in some yeast genomes, suggesting that interspecific genetic exchanges occur during evolution. The origin of this phenomenon remains unclear, but it is likely based on weak prezygotic barriers, limited Dobzhansky-Muller (DM) incompatibilities, and rapid clonal expansions. Newly formed interspecies hybrids suffer rapid changes in the genetic contribution of each parent, including chromosome loss or aneuploidy, translocations, and loss of heterozygosity, that, except in a few recently studied cases, remain to be characterized more precisely at the genomic level by use of modern technologies. We review here known cases of natural or artificially formed interspecies hybrids between yeasts and discuss their potential importance in terms of genome evolution. Problems of meiotic fertility, ploidy constraint, gene and gene product compatibility, and nucleomitochondrial interactions are discussed and placed in the context of other known mechanisms of yeast genome evolution as a model for eukaryotes.
Collapse
Affiliation(s)
- Lucia Morales
- Institut Pasteur, Unité de Génétique Moléculaire des Levures CNRS UMR3525, University Pierre and Marie Curie UFR927, Paris, France.
| | | |
Collapse
|
17
|
|
18
|
Firacative C, Trilles L, Meyer W. MALDI-TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C. gattii species complex. PLoS One 2012; 7:e37566. [PMID: 22666368 PMCID: PMC3362595 DOI: 10.1371/journal.pone.0037566] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/20/2012] [Indexed: 12/14/2022] Open
Abstract
Background The Cryptococcus neoformans/C. gattii species complex comprises two sibling species that are divided into eight major molecular types, C. neoformans VNI to VNIV and C. gattii VGI to VGIV. These genotypes differ in host range, epidemiology, virulence, antifungal susceptibility and geographic distribution. The currently used phenotypic and molecular identification methods for the species/molecular types are time consuming and expensive. As Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) offers an effective alternative for the rapid identification of microorganisms, the objective of this study was to examine its potential for the identification of C. neoformans and C. gattii strains at the intra- and inter-species level. Methodology Protein extracts obtained via the formic acid extraction method of 164 C. neoformans/C. gattii isolates, including four inter-species hybrids, were studied. Results The obtained mass spectra correctly identified 100% of all studied isolates, grouped each isolate according to the currently recognized species, C. neoformans and C. gattii, and detected potential hybrids. In addition, all isolates were clearly separated according to their major molecular type, generating greater spectral differences among the C. neoformans molecular types than the C. gattii molecular types, most likely reflecting a closer phylogenetic relationship between the latter. The number of colonies used and the incubation length did not affect the results. No spectra were obtained from intact yeast cells. An extended validated spectral library containing spectra of all eight major molecular types was established. Conclusions MALDI-TOF MS is a rapid identification tool for the correct recognition of the two currently recognized human pathogenic Cryptococcus species and offers a simple method for the separation of the eight major molecular types and the detection of hybrid strains within this species complex in the clinical laboratory. The obtained mass spectra provide further evidence that the major molecular types warrant variety or even species status.
Collapse
Affiliation(s)
- Carolina Firacative
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, Sydney Medical School–Westmead, The University of Sydney, Westmead Hospital, Sydney, Australia
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Luciana Trilles
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, Sydney Medical School–Westmead, The University of Sydney, Westmead Hospital, Sydney, Australia
- Laboratório de Micologia, Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, Sydney Medical School–Westmead, The University of Sydney, Westmead Hospital, Sydney, Australia
- * E-mail:
| |
Collapse
|