1
|
Chormey DS, Zaman BT, Borahan Kustanto T, Erarpat Bodur S, Bodur S, Tekin Z, Nejati O, Bakırdere S. Biogenic synthesis of novel nanomaterials and their applications. NANOSCALE 2023; 15:19423-19447. [PMID: 38018389 DOI: 10.1039/d3nr03843b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Despite the many benefits derived from the unique features and practicality of nanoparticles, the release of their toxic by-products or products from the synthesis stage into the environment could negatively impact natural resources and organisms. The physical and chemical methods for nanoparticle synthesis involve high energy consumption and the use of hazardous chemicals, respectively, going against the principles of green chemistry. Biological methods of synthesis that rely on extracts from a broad range of natural plants, and microorganisms, such as fungi, bacteria, algae, and yeast, have emerged as viable alternatives to the physical and chemical methods. Nanoparticles synthesized through biogenic pathways are particularly useful for biological applications that have high concerns about contamination. Herein, we review the physical and chemical methods of nanoparticle synthesis and present a detailed overview of the biogenic methods used for the synthesis of different nanoparticles. The major points discussed in this study are the following: (1) the fundamentals of the physical and chemical methods of nanoparticle syntheses, (2) the use of different biological precursors (microorganisms and plant extracts) to synthesize gold, silver, selenium, iron, and other metal nanoparticles, and (3) the applications of biogenic nanoparticles in diverse fields of study, including the environment, health, material science, and analytical chemistry.
Collapse
Affiliation(s)
- Dotse Selali Chormey
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Buse Tuğba Zaman
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
| | - Tülay Borahan Kustanto
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Sezin Erarpat Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
| | - Süleyman Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- İstinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010 İstanbul, Türkiye
- İstinye University, Scientific and Technological Research Application and Research Center, 34010 İstanbul, Türkiye
| | - Zeynep Tekin
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Omid Nejati
- İstinye University, Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, 34010, İstanbul, Türkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06670, Ankara, Türkiye
| |
Collapse
|
2
|
George J, Kumar VV. Polymeric membranes customized with super paramagnetic iron oxide nanoparticles for effective separation of pentachlorophenol and proteins in aqueous solution. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Ly QV, Cui L, Asif MB, Khan W, Nghiem LD, Hwang Y, Zhang Z. Membrane-based nanoconfined heterogeneous catalysis for water purification: A critical review ✰. WATER RESEARCH 2023; 230:119577. [PMID: 36638735 DOI: 10.1016/j.watres.2023.119577] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Progress in heterogeneous advanced oxidation processes (AOPs) is hampered by several issues including mass transfer limitation, limited diffusion of short-lived reactive oxygen species (ROS), aggregation of nanocatalysts, and loss of nanocatalysts to treated water. These issues have been addressed in recent studies by executing the heterogeneous AOPs in confinement, especially in the nanopores of catalytic membranes. Under nanoconfinement (preferably at the length of less than 25 nm), the oxidant-nanocatalyst interaction, ROS-micropollutant interaction and diffusion of ROS have been observed to significantly improve, which results in enhanced ROS yield and mass transfer, improved reaction kinetics and reduced matrix effect as compared to conventional heterogenous AOP configuration. Given the significance of nanoconfinement effect, this study presents a critical review of the current status of membrane-based nanoconfined heterogeneous catalysis system for the first time. A succinct overview of the nanoconfinement concept in the context of membrane-based nanofluidic platforms is provided to elucidate the theoretical and experimental findings related to reaction kinetics, reaction mechanisms and molecule transport in membrane-based nanoconfined AOPs vs. conventional AOPs. In addition, strategies to construct membrane-based nanoconfined catalytic systems are explained along with conflicting arguments/opinions, which provides critical information on the viability of these strategies and future research directions. To show the desirability and applicability of membrane-based nanoconfined catalysis systems, performance governing factors including operating conditions and water matrix effect are particularly focused. Finally, this review presents a systematic account of the opportunities and technological constraints in the development of membrane-based nanoconfined catalytic platform to realize effective micropollutant elimination in water treatment.
Collapse
Affiliation(s)
- Quang Viet Ly
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China; Department of Environmental Engineering, Seoul National University of Science and Technology, 01811 Seoul, Republic of Korea
| | - Lele Cui
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Waris Khan
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Yuhoon Hwang
- Department of Environmental Engineering, Seoul National University of Science and Technology, 01811 Seoul, Republic of Korea
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Lokhat D, Brijlal S, Naidoo DE, Premraj C, Kadwa E. Synthesis of Size-and-Shape-Controlled Iron Oxide Nanoparticles via Coprecipitation and In Situ Magnetic Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- David Lokhat
- Reactor Technology Research Group, School of Engineering, University of KwaZulu-Natal, Durban4041, South Africa
| | - Sonal Brijlal
- Reactor Technology Research Group, School of Engineering, University of KwaZulu-Natal, Durban4041, South Africa
| | - Durante Emil Naidoo
- Reactor Technology Research Group, School of Engineering, University of KwaZulu-Natal, Durban4041, South Africa
| | - Cémaine Premraj
- Reactor Technology Research Group, School of Engineering, University of KwaZulu-Natal, Durban4041, South Africa
| | - Ebrahim Kadwa
- Reactor Technology Research Group, School of Engineering, University of KwaZulu-Natal, Durban4041, South Africa
| |
Collapse
|
5
|
ElGharbi H, Henni A, Salama A, Zoubeik M, Kallel M. Toward an Understanding of the Role of Fabrication Conditions During Polymeric Membranes Modification: A Review of the Effect of Titanium, Aluminum, and Silica Nanoparticles on Performance. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Li N, Lu X, He M, Duan X, Yan B, Chen G, Wang S. Catalytic membrane-based oxidation-filtration systems for organic wastewater purification: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125478. [PMID: 33652213 DOI: 10.1016/j.jhazmat.2021.125478] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/31/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Catalytic membranes can simultaneously realize physical separation and chemical oxidation in one integrated system, which is the frontier technology for effective removal of organic containments in wastewater treatment. The catalytic membrane coupled with advanced oxidation processes (AOPs) not only significantly enhances the pollutant removal efficiency but also inhibits the fouling of the membrane via self-cleaning. In this review, the preparation approaches of catalytic membranes including blending, surface coating, and bottom-up synthesis are comprehensively summarized. The different integrated catalytic membrane systems coupled with photocatalysis, Fenton oxidation, persulfate activations, ozonation and electrocatalytic oxidation are discussed in terms of mechanisms and performance. Besides, the principles, influencing factors, advantages and issues of the different catalytic membrane/oxidation systems are outlined comparatively. Finally, the future challenges, and research directions are suggested, which is conducive to the design and development of catalytic membrane-oxidation systems for practical remediation of organic containing wastewater.
Collapse
Affiliation(s)
- Ning Li
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Xukai Lu
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Mengting He
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Beibei Yan
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
7
|
Trigueiro NSDS, Gonçalves BB, Dias FC, de Oliveira Lima EC, Rocha TL, Sabóia-Morais SMT. Co-exposure of iron oxide nanoparticles and glyphosate-based herbicide induces DNA damage and mutagenic effects in the guppy (Poecilia reticulata). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103521. [PMID: 33132197 DOI: 10.1016/j.etap.2020.103521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/24/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Iron oxide nanoparticles (IONPs) have been tested to remediate aquatic environments polluted by chemicals, such as pesticides. However, their interactive effects on aquatic organisms remain unknown. This study aimed to investigate the genotoxicity and mutagenicity of co-exposure of IONPs (γ-Fe2O3 NPs) and glyphosate-based herbicide (GBH) in the fish Poecilia reticulata. Thus, fish were exposed to citrate-functionalized γ-Fe2O3 NPs (0.3 mg L-1; 5.44 nm) alone or co-exposed to γ-Fe2O3 NPs (0.3 mg L-1) and GBH (65 and 130 μg of glyphosate L-1) during 14 and 21 days. The genotoxicity (DNA damage) was analyzed by comet assay, while the mutagenicity evaluated by micronucleus test (MN test) and erythrocyte nuclear abnormalities (ENA) frequency. The co-exposure induced clastogenic (DNA damage) and aneugenic (nuclear alterations) effects on guppies in a time-dependent pattern. Fish co-exposed to NPs and GBH (130 μg glyphosate L-1) showed high DNA damage when compared to NPs alone and control group, indicating synergic effects after 21 days of exposure. However, mutagenic effects (ENA) were observed in the exposure groups after 14 and 21 days. Results showed the potential genotoxic and mutagenic effects of maghemite NPs and GBH co-exposure to freshwater fish. The transformation and interaction of iron oxide nanoparticles with other pollutants, as herbicides, in the aquatic systems are critical factors in the environmental risk assessment of metal-based NPs.
Collapse
Affiliation(s)
- Nicholas Silvestre de Souza Trigueiro
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Bruno Bastos Gonçalves
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Felipe Cirqueira Dias
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| | - Simone Maria Teixeira Sabóia-Morais
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
8
|
Pan Z, Lin Y, Sarkar B, Owens G, Chen Z. Green synthesis of iron nanoparticles using red peanut skin extract: Synthesis mechanism, characterization and effect of conditions on chromium removal. J Colloid Interface Sci 2020; 558:106-114. [DOI: 10.1016/j.jcis.2019.09.106] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/22/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
|
9
|
Karimnezhad H, Navarchian AH, Tavakoli Gheinani T, Zinadini S. Amoxicillin removal by Fe-based nanoparticles immobilized on polyacrylonitrile membrane: Individual nanofiltration or Fenton reaction, vs. engineered combined process. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.10.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Evaluation of Nano Zero-Valent Iron (nZVI) Activity in Solution and Immobilized in Hydrophilic PVDF Membrane for Drimaren Red X-6BN and Bisphenol-a Removal in Water. Processes (Basel) 2019. [DOI: 10.3390/pr7120904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fenton reactions that involve nano zero-valent iron (nZVI) have shown high promise in the removal of organic pollutants. In this work, nZVI stabilized with carboxymethyl cellulose (CMC) was evaluated for drimaren red X-6BN (DRX-6BN, 10 mg/L) and bisphenol-a (BPA, 800 mg/L) removal. Oxidation reactions were conducted for removal of both compounds by varying nZVI/CMC concentration (0.01–5 g/L), hydrogen peroxide (H2O2, 0.01–0.1 g/L), and pH (3–9). DRX-6BN degradation rate was the highest (kinetic constant (kobs) = 4.622 h−1) when working at pH 3 and 3 g/L of nZVI/CMC. Increasing H2O2 concentration could not improve the reaction. For BPA, all the conditions tested showed removals of more than 96% with 0.02 g/L of H2O2. This result was compared with the activity of nZVI loaded in hydrophilic PVDF (Polyvinylidene fluoride) membranes by polyacrylic acid (PAA) to entrap nanoparticles to the membrane surface. As expected, the attachment of nZVI onto the membranes diminished nanoparticles’ activity; however, it is important to highlight the need for preparing a stable catalytic membrane, which could enhance pollutant removal of microfiltration membranes’ systems. This was confirmed by the percentage of iron leaching from functionalized membranes, where a higher concentration of iron in the bulk solution leads to enhancement on BPA removal. Issues with BPA diffusion resistance inside the pores were overcome by conducting the nZVI/PAA/PVDF membranes in the cross-flow system, reaching 40% of BPA removal after 3 h of permeation.
Collapse
|
11
|
Aher A, Thompson S, Nickerson T, Ormsbee L, Bhattacharyya D. Reduced graphene oxide-metal nanoparticle composite membranes for environmental separation and chloro-organic remediation. RSC Adv 2019; 9:38547-38557. [PMID: 32095233 PMCID: PMC7039523 DOI: 10.1039/c9ra08178j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This study explores the integration of separation performance of rGO membrane with heterogeneous oxidation reactions for remediation of organic contaminants from water. Herein, an approach was introduced based on layer-by-layer assembly for functionalizing rGO membranes with polyacrylic acid and then by in situ synthesis of Fe based reactive nanoparticles. TEM characterization of the cross-section lamella of the membranes showed a high density of nanoparticles (12% Fe) in the functionalized domain, signifying the importance of polyacrylic acid for in situ synthesis of nanoparticles. The membranes exhibited a pure water permeability of 1.9 LMH bar−1. The membranes had low to moderate salt retention, and more than 90% neutral red retention (organic probe molecule, size: 1.2 nm). The membranes also exhibited high retention of humic acids (80%), preventing these organics from entering the reactive domain, and thus potentially reducing the formation of undesired by-products. A persulfate mediated oxidative pathway was employed to demonstrate the reactive removal of organic contaminants. The membranes achieved >95% conversion by convectively passing 2 mM persulfate feed at a transmembrane pressure of 0.4 bar. Successful degradation of TCE (up to 61%) was achieved in a single pass by convective flowing of the feed solution through the membrane, generating up to 80% of the theoretical maximum chloride as one of the byproducts. Elevated temperatures significantly enhanced persulfate mediated TCE oxidation extent from 24% at 23 °C to 54% at 40 °C under batch operating conditions. This study explores the integration of separation performance was achieved in a loose nanofiltration regime with heterogeneous oxidation reactions for remediation of organic contaminants from water.![]()
Collapse
Affiliation(s)
- Ashish Aher
- Chemicals and Materials Engineering Department, University of Kentucky, 177 FPAT Bldg, Lexington, KY, 40506, USA
| | - Samuel Thompson
- Chemicals and Materials Engineering Department, University of Kentucky, 177 FPAT Bldg, Lexington, KY, 40506, USA
| | - Trisha Nickerson
- Chemicals and Materials Engineering Department, University of Kentucky, 177 FPAT Bldg, Lexington, KY, 40506, USA
| | - Lindell Ormsbee
- Civil Engineering Department, University of Kentucky, Lexington, KY, 40506, USA
| | - Dibakar Bhattacharyya
- Chemicals and Materials Engineering Department, University of Kentucky, 177 FPAT Bldg, Lexington, KY, 40506, USA
| |
Collapse
|
12
|
|
13
|
Mahanty S, Bakshi M, Ghosh S, Chatterjee S, Bhattacharyya S, Das P, Das S, Chaudhuri P. Green Synthesis of Iron Oxide Nanoparticles Mediated by Filamentous Fungi Isolated from Sundarban Mangrove Ecosystem, India. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00644-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Chen S, Bai B, Xu X, Hu N, Wang H, Suo Y. Microbial synthesis of hollow porous Prussian blue@yeast microspheres and their synergistic enhancement of organic pollutant removal performance. RSC Adv 2019; 9:16258-16270. [PMID: 35521387 PMCID: PMC9064417 DOI: 10.1039/c9ra02918d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/18/2019] [Indexed: 11/21/2022] Open
Abstract
In this work, Prussian blue nanoparticles (PB NPs) were in situ grown on S. cerevisiae cells via one-step hydrothermal synthesis and the as-prepared Prussian blue@yeast (PB@yeast) hybrids exhibited synergistic adsorption and Fenton catalytic activities. FE-SEM, XRD and BET analysis of the prepared samples confirmed the successful formation of hollow porous structured PB@yeast microspheres, while FT-IR and XPS spectra indicated the fine structures were occupied by both functional adsorptive and catalytic sites. The experimental results of adsorption coupled Fenton reaction of PB@yeast hybrid microspheres revealed that the functional groups on the cell wall and the active iron sites in PB framework were fully utilized due to the triple synergistic effects of adsorption-Fenton catalysis-adsorption sites regeneration, thus endowing synergistically enhanced performance in removal of the selected cationic methylene blue (MB), anionic Methyl Orange (MO) and fluorescent brightener 71 (CXT) in aqueous solution. The high Fenton catalytic efficiency was related to the improvement of adsorption, in which the enrichment of contaminant molecules on the outer and inner surface of the hollow porous microspheres could lower mass transfer resistance and shorten charge transport pathways, thereby introducing more efficient Fenton catalytic activity than PB NPs.
Collapse
Affiliation(s)
- Si Chen
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University No. 126 Yanta Road Xi'an 710054 Shaanxi China
- College of Environmental Science and Engineering, Chang'an University Xi'an 710054 P. R. China +86 29 82339961 +86 29 82339052
| | - Bo Bai
- College of Environmental Science and Engineering, Chang'an University Xi'an 710054 P. R. China +86 29 82339961 +86 29 82339052
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining 810008 China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research Xining 810001 P. R. China
| | - Xiaohui Xu
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University No. 126 Yanta Road Xi'an 710054 Shaanxi China
- College of Environmental Science and Engineering, Chang'an University Xi'an 710054 P. R. China +86 29 82339961 +86 29 82339052
| | - Na Hu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining 810008 China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research Xining 810001 P. R. China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining 810008 China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research Xining 810001 P. R. China
| | - Yourui Suo
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining 810008 China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research Xining 810001 P. R. China
| |
Collapse
|
15
|
High-flux efficient catalytic membranes incorporated with iron-based Fenton-like catalysts for degradation of organic pollutants. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Lakhotia SR, Mukhopadhyay M, Kumari P. Iron oxide (FeO) nanoparticles embedded thin-film nanocomposite nanofiltration (NF) membrane for water treatment. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Gokduman K, Bestepe F, Li L, Yarmush ML, Usta OB. Dose-, treatment- and time-dependent toxicity of superparamagnetic iron oxide nanoparticles on primary rat hepatocytes. Nanomedicine (Lond) 2018; 13:1267-1284. [PMID: 29949471 PMCID: PMC6219434 DOI: 10.2217/nnm-2017-0387] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
AIM As a first study in literature, to investigate concentration-dependent (0-400 μg/ml) and exposure-dependent (single dosing vs cumulative dosing) effects of superparamagnetic iron oxide nanoparticles (d = 10 nm) on primary rat hepatocytes in a time-dependent manner. MATERIALS & METHODS Sandwich-cultured hepatocyte model was used to evaluate viability, hepatocyte specific functions and reactive oxygen species level. RESULTS In terms of all parameters, generally statistically more significant effects were observed in a concentration- and time-dependent manner. In terms of hepatocyte-specific functions, cumulative dosing caused significantly (p < 0.05) more deleterious effects at 48th hour. CONCLUSION A combination of various biomarkers should be employed for the evaluation of the effect of superparamagnetic iron oxide nanoparticles on liver, and each biomarker should be analyzed in a time- and exposure-dependent manner.
Collapse
Affiliation(s)
- Kurtulus Gokduman
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA
| | - Furkan Bestepe
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA
- School of Medicine, Ankara University, Ankara 06100, Turkey
| | - Lei Li
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA
- Key Laboratory of Cryogenics, Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA
- Department of Biomedical Engineering, Rutgers State University, Piscataway, NJ 08854, USA
| | - O Berk Usta
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA
| |
Collapse
|
18
|
Islam MS, Hernández S, Wan H, Ormsbee L, Bhattacharyya D. Role of membrane pore polymerization conditions for pH responsive behavior, catalytic metal nanoparticle synthesis, and PCB degradation. J Memb Sci 2018; 555:348-361. [PMID: 30718939 PMCID: PMC6358284 DOI: 10.1016/j.memsci.2018.03.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article describes the effects of changing monomer and cross-linker concentrations on the mass gain, water permeability, Pd-Fe nanoparticle (NP) loading, and the rate of degradation of 3,3',4,4',5-pentachlorobiphenyl (PCB 126) of pore functionalized polyvinylidene fluoride (PVDF) membranes. In this study, monomer (acrylic acid (AA)) and cross-linker (N, N'- methylene-bis (acrylamide)) concentrations were varied from 10 to 20 wt% of polymer solution and 0.5-2 mol% of monomer concentration, respectively. Results showed that responsive behavior of membrane could be tuned in terms of water permeability over a range of 270-1 L m-2 h-1 bar-1, which is a function of water pH. The NP size on the membrane surface was found in the range of 16-23 nm. With increasing cross-linker density the percentage of smaller NPs (< 10 nm) increases due to smaller mesh size formation during in-situ polymerization of membrane. NP loading was found to vary from 0.21 to 0.94 mg per cm2 of membrane area depending on the variation of available carboxyl groups in membrane pore domain. The NPs functionalized membranes were then tested for use as a platform for the degradation of PCB 126. The observed batch reaction rate (Kobs) for PCB 126 degradation for per mg of catalyst loading was found 0.08-0.1 h-1. Degradation study in convective flow mode shows 98.6% PCB 126 is degraded at a residence time of 46.2 s. The corresponding surface area normalized reaction rate (K sa ) is found about two times higher than K sa of batch degradation; suggesting elimination of the effect of diffusion resistance for degradation of PCB 126 in convective flow mode operation. These Pd-Fe-PAA-PVDF membranes and nanoparticles are characterized by TGA, contact angle measurement, surface zeta potential, XRD, SEM, XPS, FIB, TEM and other techniques reveal the details about the membrane surface, pores and nanoparticles size, shape and size-distribution. Statistical analysis based on experimental results allows us to depict responsive behavior of functionalized membrane. In our best knowledge this paper first time reports detail study on responsive behavior of pore functionalized membrane in terms of permeability, NPs size, metal loading and its effect on PCB 126 degradation in a quantified approach.
Collapse
Affiliation(s)
- Md. Saiful Islam
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower Building, Lexington, KY 40506, USA
| | - Sebastián Hernández
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower Building, Lexington, KY 40506, USA
| | - Hongyi Wan
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower Building, Lexington, KY 40506, USA
| | - Lindell Ormsbee
- Department of Civil Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower Building, Lexington, KY 40506, USA
| |
Collapse
|
19
|
An iron (II) phthalocyanine/poly(vinylidene fluoride) composite membrane with antifouling property and catalytic self-cleaning function for high-efficiency oil/water separation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.02.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Matei E, Predescu A, Drăgan C, Pantilimon C, Predescu C. Characterization of Magnetic Nanoiron Oxides for the Removal of Metal Ions from Aqueous Solution. ANAL LETT 2017. [DOI: 10.1080/00032719.2016.1257016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ecaterina Matei
- Department for Metallic Materials Processing and Ecometallurgy, University Politehnica of Bucharest, Bucharest, Romania
| | - Andra Predescu
- Department for Metallic Materials Processing and Ecometallurgy, University Politehnica of Bucharest, Bucharest, Romania
| | - Claudia Drăgan
- Department for Metallic Materials Processing and Ecometallurgy, University Politehnica of Bucharest, Bucharest, Romania
| | - Cristian Pantilimon
- Department for Metallic Materials Processing and Ecometallurgy, University Politehnica of Bucharest, Bucharest, Romania
| | - Cristian Predescu
- Department for Metallic Materials Processing and Ecometallurgy, University Politehnica of Bucharest, Bucharest, Romania
| |
Collapse
|
21
|
Saif S, Tahir A, Chen Y. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E209. [PMID: 28335338 PMCID: PMC5245755 DOI: 10.3390/nano6110209] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/17/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022]
Abstract
Recent advances in nanoscience and nanotechnology have also led to the development of novel nanomaterials, which ultimately increase potential health and environmental hazards. Interest in developing environmentally benign procedures for the synthesis of metallic nanoparticles has been increased. The purpose is to minimize the negative impacts of synthetic procedures, their accompanying chemicals and derivative compounds. The exploitation of different biomaterials for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. Biological resources such as bacteria, algae fungi and plants have been used for the production of low-cost, energy-efficient, and nontoxic environmental friendly metallic nanoparticles. This review provides an overview of various reports of green synthesised zero valent metallic iron (ZVMI) and iron oxide (Fe₂O₃/Fe₃O₄) nanoparticles (NPs) and highlights their substantial applications in environmental pollution control. This review also summarizes the ecotoxicological impacts of green synthesised iron nanoparticles opposed to non-green synthesised iron nanoparticles.
Collapse
Affiliation(s)
- Sadia Saif
- Department of Environmental Science, Lahore College for Women University, Lahore 54000, Pakistan.
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Arifa Tahir
- Department of Environmental Science, Lahore College for Women University, Lahore 54000, Pakistan.
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
22
|
Hernández S, Lei S, Rong W, Ormsbee L, Bhattacharyya D. Functionalization of flat sheet and hollow fiber microfiltration membranes for water applications. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2016; 4:907-918. [PMID: 29392097 PMCID: PMC5790112 DOI: 10.1021/acssuschemeng.5b01005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Functionalized membranes containing nanoparticles provide a novel platform for organic pollutant degradation reactions and for selective removal of contaminants without the drawback of potential nanoparticle loss to the environment. These eco-friendly and sustainable technology approaches allow various water treatment applications through enhanced water transport through the membrane pores. This paper presents "green" techniques to create nanocomposite materials based on sponge-like membranes for water remediation applications involving chlorinated organic compounds. First, hydrophobic hollow fiber microfiltration membranes (HF) of polyvinylidene fluoride were hydrophilized using a water-based green chemistry process with polyvinylpyrrolidone and persulfate. HF and flat sheet membrane pores were then functionalized with poly(acrylic acid) and synthesized Fe/Pd nanoparticles. Surface modifications were determined by contact angle, surface free energy and infrared spectroscopy. The synthesized nanoparticles were characterized by electronic microscopy, X-ray spectrometry and image analysis. Nanoparticle sizes of 193 and 301 nm were obtained for each of the membranes. Depending on the concentration of the dopant (Pd) in the membrane, catalytic activity (established by trichloroethylene (TCE) reduction), was enhanced up to tenfold compared to other reported results. Chloride produced in reduction was close to the stoichiometric 3/1 (Cl-/TCE), indicating complete absence of reaction intermediates.
Collapse
Affiliation(s)
- Sebastián Hernández
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Shi Lei
- Singapore Membrane Technology Centre, Nanyang Technological University, 639798, Singapore
| | - Wang Rong
- Singapore Membrane Technology Centre, Nanyang Technological University, 639798, Singapore
| | - Lindell Ormsbee
- Department of Civil Engineering, University of Kentucky, Lexington, KY 40506
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
23
|
Lin CC, Chen SC. Enhanced reactivity of nanoscale zero-valent iron prepared by a rotating packed bed with blade packings. ADV POWDER TECHNOL 2016. [DOI: 10.1016/j.apt.2016.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Alpatova A, Meshref M, McPhedran KN, Gamal El-Din M. Composite polyvinylidene fluoride (PVDF) membrane impregnated with Fe2O3 nanoparticles and multiwalled carbon nanotubes for catalytic degradation of organic contaminants. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.05.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Gui M, Papp JK, Colburn AS, Meeks ND, Weaver B, Wilf I, Bhattacharyya D. Engineered Iron/Iron Oxide Functionalized Membranes for Selenium and Other Toxic Metal Removal from Power Plant Scrubber Water. J Memb Sci 2015; 488:79-91. [PMID: 26327740 PMCID: PMC4552196 DOI: 10.1016/j.memsci.2015.03.089] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The remediation of toxic metals from water with high concentrations of salt has been an emerging area for membrane separation. Cost-effective nanomaterials such as iron and iron oxide nanoparticles have been widely used in reductive and oxidative degradation of toxic organics. Similar procedures can be used for redox transformations of metal species (e.g. metal oxyanions to elemental metal), and/or adsorption of species on iron oxide surface. In this study, iron-functionalized membranes were developed for reduction and adsorption of selenium from coal-fired power plant scrubber water. Iron-functionalized membranes have advantages over iron suspension as the membrane prevents particle aggregation and dissolution. Both lab-scale and full-scale membranes were prepared first by coating polyvinylidene fluoride (PVDF) membranes with polyacrylic acid (PAA), followed by ion exchange of ferrous ions and subsequent reduction to zero-valent iron nanoparticles. Water permeability of membrane decreased as the percent PAA functionalization increased, and the highest ion exchange capacity (IEC) was obtained at 20% PAA with highly pH responsive pores. Although high concentrations of sulfate and chloride in scrubber water decreased the reaction rate of selenium reduction, this was shown to be overcome by integration of nanofiltration (NF) and iron-functionalized membranes, and selenium concentration below 10 μg/L was achieved.
Collapse
Affiliation(s)
- Minghui Gui
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Joseph K. Papp
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Andrew S. Colburn
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Noah D. Meeks
- Southern Company Services, Inc., Birmingham, AL 35203, USA
| | | | - Ilan Wilf
- Nanostone/Sepro Membranes, Inc., Oceanside, CA 92056, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
26
|
Gui M, Ormsbee LE, Bhattacharyya D. Reactive Functionalized Membranes for Polychlorinated Biphenyl Degradation. Ind Eng Chem Res 2013; 52:10430-10440. [PMID: 24954974 PMCID: PMC4061716 DOI: 10.1021/ie400507c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Membranes have been widely used in water remediation (e.g. desalination and heavy metal removal) because of the ability to control membrane pore size and surface charge. The incorporation of nanomaterials into the membranes provides added benefits through increased reactivity with different functionality. In this study, we report the dechlorination of 2-chlorobiphenyl in the aqueous phase by a reactive membrane system. Fe/Pd bimetallic nanoparticles (NPs) were synthesized (in-situ) within polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) membranes for degradation of polychlorinated biphenyls (PCBs). Biphenyl formed in the reduction was further oxidized into hydroxylated biphenyls and benzoic acid by an iron-catalyzed hydroxyl radical (OH•) reaction. The formation of magnetite on Fe surface was observed. This combined pathway (reductive/oxidative) could reduce the toxicity of PCBs effectively while eliminating the formation of chlorinated degradation byproducts. The successful manufacturing of full-scale functionalized membranes demonstrates the possibility of applying reactive membranes in practical water treatment.
Collapse
Affiliation(s)
- Minghui Gui
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506
| | - Lindell E. Ormsbee
- Department of Civil Engineering, University of Kentucky, Lexington, KY 40506
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506
| |
Collapse
|