1
|
Alnahhas I, Khan MM, Shi W. What single-cell RNA sequencing taught us about MGMT expression in glioblastoma. Neurooncol Adv 2025; 7:vdaf058. [PMID: 40351834 PMCID: PMC12063106 DOI: 10.1093/noajnl/vdaf058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Background The promoter methylation status of O-6-methylguanine-DNA methyltransferase (MGMTp) is an important prognostic marker in GBM. Previous studies showed that the expression of MGMT based on immunohistochemistry did not correlate with survival. This is partly because nontumor cells express MGMT. Single-cell sequencing assesses gene expression in tumor cells specifically. Methods We used publicly available data from 3 recent single-cell/nucleus sequencing GBM studies that included MGMTp methylation status data for patients to evaluate MGMT expression at the single-cell level. Results In the CPTAC study, a median of 0.82% and 5.7% of tumor cells expressed MGMT in the MGMTp methylated group and MGMTp unmethylated group, respectively (P-value .001). In the Neftel study, a median of 0.59% and 14.01% of tumor cells expressed MGMT in the MGMTp methylated group and MGMTp unmethylated group, respectively (P-value .01). Three unmethylated samples (out of 16) had MGMT expression <2%. It is unclear if this is due to technical inaccuracies as the Neftel paper did not specify the detection method for MGMTp methylation. Alternatively, the percentage of GBM cells expressing MGMT as a continuous variable may be more relevant than the dichotomous MGMTp status. The Wang study confirmed that MGMT expression can increase or decrease between paired primary and recurrent samples. The gene set enrichment analysis shows that MGMT expressing and negative cells are enriched with mesenchymal and proneural genes, respectively. Conclusion Single-cell data suggest that MGMT expression falls on a continuous spectrum. A smaller percentage of tumor cells express MGMT when MGMTp is methylated.
Collapse
Affiliation(s)
- Iyad Alnahhas
- Division of Neuro-Oncology, Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mehak Majid Khan
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Bomsztyk K, Mar D, Denisenko O, Powell S, Vishnoi M, Yin Z, Delegard J, Hadley C, Tandon N, Patel AJ, Patel AP, Ellenbogen RG, Ramakrishna R, Rostomily RC. Analysis of DNA Methylation in Gliomas: Assessment of Preanalytical Variables. J Transl Med 2024; 104:102160. [PMID: 39426568 PMCID: PMC11709230 DOI: 10.1016/j.labinv.2024.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Precision oncology is driven by biomarkers. For glioblastoma multiforme (GBM), the most common malignant adult primary brain tumor, O6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation is an important prognostic and treatment clinical biomarker. Time-consuming preanalytical steps such as biospecimen storage, fixation, sampling, and processing are sources of data irreproducibility, and all these preanalytical variables are confounded by intratumor heterogeneity of MGMT promoter methylation. To assess the effect of preanalytical variables on GBM DNA methylation, tissue storage/sampling (CryoGrid), sample preparation multisonicator (PIXUL), and 5-methylcytosine DNA immunoprecipitation (Matrix-MeDIP-qPCR/seq) platforms were used. MGMT promoter methylation status assayed by MeDIP-qPCR was validated with methylation-specific polymerase chain reaction. MGMT promoter methylation levels in frozen and formalin-fixed paraffin-embedded sample pairs were not statistically different, confirming the reliability of formalin-fixed paraffin-embedded for MGMT promoter methylation analysis. Warm ex vivo ischemia (up to 4 hours at 37 °C) and 3 cycles of repeated sample thawing and freezing did not statistically impact 5-methylcytosine at MGMT promoter, exon, and enhancer regions, indicating the resistance of DNA methylation to common variations in sample processing conditions that might be encountered in research and clinical settings. Twenty-six percent to 34% of specimens exhibited intratumor heterogeneity in the MGMT DNA promoter methylation. These data demonstrate that variations in sample fixation, ischemia duration and temperature, and DNA methylation assay technique do not have a statistically significant impact on MGMT promoter methylation assessment. However, intratumor methylation heterogeneity underscores the value of multiple biopsies at different GBM geographic tumor sites in the evaluation of MGMT promoter methylation status. Matrix-MeDIP-seq analysis revealed that MGMT promoter methylation status clustered with other differentially methylated genomic loci (eg, HOXA and lncRNAs) that are resilient to variation in the above preanalytical conditions. These observations offer new opportunities to develop more granular data-based epigenetic GBM biomarkers. In this regard, the high-throughput CryoGrid-PIXUL-Matrix toolbox could be useful.
Collapse
Affiliation(s)
- Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington; Matchstick Technologies, Inc, Kirkland, Washington.
| | - Daniel Mar
- UW Medicine South Lake Union, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Oleg Denisenko
- UW Medicine South Lake Union, University of Washington, Seattle, Washington
| | - Suzanne Powell
- Department of Neuropathology, Houston Methodist Hospital, Houston, Texas
| | - Monika Vishnoi
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, Texas
| | - Zheng Yin
- Department of Systems Medicine and Bioengineering, Houston Methodist Neil Cancer Center, Houston, Texas
| | - Jennifer Delegard
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Caroline Hadley
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico
| | - Nitin Tandon
- Department of Neurosurgery, McGovern Medical School at UT Health, Houston, Texas
| | - Akash J Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Anoop P Patel
- Department of Neurosurgery, Duke University, Durham, North Carolina
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Rohan Ramakrishna
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York
| | - Robert C Rostomily
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, Texas; Department of Neurological Surgery, University of Washington, Seattle, Washington; Department of Neurological Surgery, Weill Cornell Medicine, New York, New York
| |
Collapse
|
3
|
Richardson TE, Walker JM, Hambardzumyan D, Brem S, Hatanpaa KJ, Viapiano MS, Pai B, Umphlett M, Becher OJ, Snuderl M, McBrayer SK, Abdullah KG, Tsankova NM. Genetic and epigenetic instability as an underlying driver of progression and aggressive behavior in IDH-mutant astrocytoma. Acta Neuropathol 2024; 148:5. [PMID: 39012509 PMCID: PMC11252228 DOI: 10.1007/s00401-024-02761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
In recent years, the classification of adult-type diffuse gliomas has undergone a revolution, wherein specific molecular features now represent defining diagnostic criteria of IDH-wild-type glioblastomas, IDH-mutant astrocytomas, and IDH-mutant 1p/19q-codeleted oligodendrogliomas. With the introduction of the 2021 WHO CNS classification, additional molecular alterations are now integrated into the grading of these tumors, given equal weight to traditional histologic features. However, there remains a great deal of heterogeneity in patient outcome even within these established tumor subclassifications that is unexplained by currently codified molecular alterations, particularly in the IDH-mutant astrocytoma category. There is also significant intercellular genetic and epigenetic heterogeneity and plasticity with resulting phenotypic heterogeneity, making these tumors remarkably adaptable and robust, and presenting a significant barrier to the design of effective therapeutics. Herein, we review the mechanisms and consequences of genetic and epigenetic instability, including chromosomal instability (CIN), microsatellite instability (MSI)/mismatch repair (MMR) deficits, and epigenetic instability, in the underlying biology, tumorigenesis, and progression of IDH-mutant astrocytomas. We also discuss the contribution of recent high-resolution transcriptomics studies toward defining tumor heterogeneity with single-cell resolution. While intratumoral heterogeneity is a well-known feature of diffuse gliomas, the contribution of these various processes has only recently been considered as a potential driver of tumor aggressiveness. CIN has an independent, adverse effect on patient survival, similar to the effect of histologic grade and homozygous CDKN2A deletion, while MMR mutation is only associated with poor overall survival in univariate analysis but is highly correlated with higher histologic/molecular grade and other aggressive features. These forms of genomic instability, which may significantly affect the natural progression of these tumors, response to therapy, and ultimately clinical outcome for patients, are potentially measurable features which could aid in diagnosis, grading, prognosis, and development of personalized therapeutics.
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA.
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mariano S Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Balagopal Pai
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa Umphlett
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
| | - Oren J Becher
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Samuel K McBrayer
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
4
|
Bomsztyk K, Mar D, Denisenko O, Powell S, Vishnoi M, Delegard J, Patel A, Ellenbogen RG, Ramakrishna R, Rostomily R. Analysis of gliomas DNA methylation: Assessment of pre-analytical variables. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586350. [PMID: 38586048 PMCID: PMC10996653 DOI: 10.1101/2024.03.26.586350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Precision oncology is driven by molecular biomarkers. For glioblastoma multiforme (GBM), the most common malignant adult primary brain tumor, O6-methylguanine-DNA methyltransferase ( MGMT ) gene DNA promoter methylation is an important prognostic and treatment clinical biomarker. Time consuming pre-analytical steps such as biospecimen storage before fixing, sampling, and processing are major sources of errors and batch effects, that are further confounded by intra-tumor heterogeneity of MGMT promoter methylation. To assess the effect of pre-analytical variables on GBM DNA methylation, tissue storage/sampling (CryoGrid), sample preparation multi-sonicator (PIXUL) and 5-methylcytosine (5mC) DNA immunoprecipitation (Matrix MeDIP-qPCR/seq) platforms were used. MGMT promoter CpG methylation was examined in 173 surgical samples from 90 individuals, 50 of these were used for intra-tumor heterogeneity studies. MGMT promoter methylation levels in paired frozen and formalin fixed paraffin embedded (FFPE) samples were very close, confirming suitability of FFPE for MGMT promoter methylation analysis in clinical settings. Matrix MeDIP-qPCR yielded similar results to methylation specific PCR (MS-PCR). Warm ex-vivo ischemia (37°C up to 4hrs) and 3 cycles of repeated sample thawing and freezing did not alter 5mC levels at MGMT promoter, exon and upstream enhancer regions, demonstrating the resistance of DNA methylation to the most common variations in sample processing conditions that might be encountered in research and clinical settings. 20-30% of specimens exhibited intratumor heterogeneity in the MGMT DNA promoter methylation. Collectively these data demonstrate that variations in sample fixation, ischemia duration and temperature, and DNA methylation assay technique do not have significant impact on assessment of MGMT promoter methylation status. However, intratumor methylation heterogeneity underscores the need for histologic verification and value of multiple biopsies at different GBM geographic tumor sites in assessment of MGMT promoter methylation. Matrix-MeDIP-seq analysis revealed that MGMT promoter methylation status clustered with other differentially methylated genomic loci (e.g. HOXA and lncRNAs), that are likewise resilient to variation in above post-resection pre-analytical conditions. These MGMT -associated global DNA methylation patterns offer new opportunities to validate more granular data-based epigenetic GBM clinical biomarkers where the CryoGrid-PIXUL-Matrix toolbox could prove to be useful.
Collapse
|
5
|
Urcuyo JC, Curtin L, Langworthy JM, De Leon G, Anderies B, Singleton KW, Hawkins-Daarud A, Jackson PR, Bond KM, Ranjbar S, Lassiter-Morris Y, Clark-Swanson KR, Paulson LE, Sereduk C, Mrugala MM, Porter AB, Baxter L, Salomao M, Donev K, Hudson M, Meyer J, Zeeshan Q, Sattur M, Patra DP, Jones BA, Rahme RJ, Neal MT, Patel N, Kouloumberis P, Turkmani AH, Lyons M, Krishna C, Zimmerman RS, Bendok BR, Tran NL, Hu LS, Swanson KR. Image-localized biopsy mapping of brain tumor heterogeneity: A single-center study protocol. PLoS One 2023; 18:e0287767. [PMID: 38117803 PMCID: PMC10732423 DOI: 10.1371/journal.pone.0287767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/13/2023] [Indexed: 12/22/2023] Open
Abstract
Brain cancers pose a novel set of difficulties due to the limited accessibility of human brain tumor tissue. For this reason, clinical decision-making relies heavily on MR imaging interpretation, yet the mapping between MRI features and underlying biology remains ambiguous. Standard (clinical) tissue sampling fails to capture the full heterogeneity of the disease. Biopsies are required to obtain a pathological diagnosis and are predominantly taken from the tumor core, which often has different traits to the surrounding invasive tumor that typically leads to recurrent disease. One approach to solving this issue is to characterize the spatial heterogeneity of molecular, genetic, and cellular features of glioma through the intraoperative collection of multiple image-localized biopsy samples paired with multi-parametric MRIs. We have adopted this approach and are currently actively enrolling patients for our 'Image-Based Mapping of Brain Tumors' study. Patients are eligible for this research study (IRB #16-002424) if they are 18 years or older and undergoing surgical intervention for a brain lesion. Once identified, candidate patients receive dynamic susceptibility contrast (DSC) perfusion MRI and diffusion tensor imaging (DTI), in addition to standard sequences (T1, T1Gd, T2, T2-FLAIR) at their presurgical scan. During surgery, sample anatomical locations are tracked using neuronavigation. The collected specimens from this research study are used to capture the intra-tumoral heterogeneity across brain tumors including quantification of genetic aberrations through whole-exome and RNA sequencing as well as other tissue analysis techniques. To date, these data (made available through a public portal) have been used to generate, test, and validate predictive regional maps of the spatial distribution of tumor cell density and/or treatment-related key genetic marker status to identify biopsy and/or treatment targets based on insight from the entire tumor makeup. This type of methodology, when delivered within clinically feasible time frames, has the potential to further inform medical decision-making by improving surgical intervention, radiation, and targeted drug therapy for patients with glioma.
Collapse
Affiliation(s)
- Javier C Urcuyo
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Lee Curtin
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Jazlynn M. Langworthy
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Gustavo De Leon
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Barrett Anderies
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Kyle W. Singleton
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Andrea Hawkins-Daarud
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Pamela R. Jackson
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Kamila M. Bond
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Sara Ranjbar
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Yvette Lassiter-Morris
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Kamala R. Clark-Swanson
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Lisa E. Paulson
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Chris Sereduk
- Department of Cancer Biology, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Maciej M. Mrugala
- Department of Neurology, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Oncology, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Alyx B. Porter
- Department of Neurology, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Oncology, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Leslie Baxter
- Department of Neurophysiology, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Marcela Salomao
- Department of Pathology, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Kliment Donev
- Department of Pathology, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Miles Hudson
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Jenna Meyer
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Qazi Zeeshan
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Mithun Sattur
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Devi P. Patra
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Breck A. Jones
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Rudy J. Rahme
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Matthew T. Neal
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Naresh Patel
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Pelagia Kouloumberis
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Ali H. Turkmani
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Mark Lyons
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Chandan Krishna
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Richard S. Zimmerman
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Bernard R. Bendok
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Nhan L. Tran
- Department of Cancer Biology, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Leland S. Hu
- Department of Radiology, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Kristin R. Swanson
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Cancer Biology, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, United States of America
| |
Collapse
|
6
|
Jiménez VG, Doval MB, Bellvert CG, Goliney VG, Asencio OS, Martín AG, Domínguez JI. Quantitative analysis of MGMT promoter methylation status changes by pyrosequencing in recurrent glioblastoma. Neuropathology 2023; 43:306-312. [PMID: 36504469 DOI: 10.1111/neup.12887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 08/03/2023]
Abstract
MGMT promoter methylation status can change in response to several factors, treatment with alkylating therapy being the mechanism more commonly cited in the literature. Some authors have attempted to quantify these alterations, with inconsistent results. This study aims to determine changes in MGMT promoter methylation status by pyrosequencing, which quantitatively yields results, in a cohort of patients reoperated for recurrent glioblastoma and having previously completed the Stupp protocol. Methylation status of the MGMT promoter gene of a total of 24 pairs of glioblastoma preselected tumor samples was retrospectively analyzed using pyrosequencing and depicted as percentages or categories (hypermethylated, intermediate methylation, unmethylated). Matched samples were compared using Wilcoxon signed-rank test, and log-rank test was used to establish a correlation with survival data. The median value of MGMT promoter methylation status declined after adjuvant treatment from 20.35% to 14.25% (p = 0.346). A significant correlation between methylation in primary samples and overall survival (p = 0.05) and progression-free survival (p = 0.024) was found. Intermediate methylation status at recurrence was linked to greater survival after progression, without reaching statistical significance (post-progression survival [PPS]) (p = 0.217). Although treatment with alkylating chemotherapy was a common feature in all patients of our cohort, switching in both directions was observed when MGMT promoter methylation status was analyzed as a continuous variable. These data suggest that the dynamics of epigenetics may be very complex and not entirely explained by clonal selection influenced by temozolomide.
Collapse
Affiliation(s)
| | - Marta Brell Doval
- Neurosurgical Department, Hospital Son Espases, Illes Balears, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Beyond Imaging and Genetic Signature in Glioblastoma: Radiogenomic Holistic Approach in Neuro-Oncology. Biomedicines 2022; 10:biomedicines10123205. [PMID: 36551961 PMCID: PMC9775324 DOI: 10.3390/biomedicines10123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumor exhibiting rapid and infiltrative growth, with less than 10% of patients surviving over 5 years, despite aggressive and multimodal treatments. The poor prognosis and the lack of effective pharmacological treatments are imputable to a remarkable histological and molecular heterogeneity of GBM, which has led, to date, to the failure of precision oncology and targeted therapies. Identification of molecular biomarkers is a paradigm for comprehensive and tailored treatments; nevertheless, biopsy sampling has proved to be invasive and limited. Radiogenomics is an emerging translational field of research aiming to study the correlation between radiographic signature and underlying gene expression. Although a research field still under development, not yet incorporated into routine clinical practice, it promises to be a useful non-invasive tool for future personalized/adaptive neuro-oncology. This review provides an up-to-date summary of the recent advancements in the use of magnetic resonance imaging (MRI) radiogenomics for the assessment of molecular markers of interest in GBM regarding prognosis and response to treatments, for monitoring recurrence, also providing insights into the potential efficacy of such an approach for survival prognostication. Despite a high sensitivity and specificity in almost all studies, accuracy, reproducibility and clinical value of radiomic features are the Achilles heel of this newborn tool. Looking into the future, investigators' efforts should be directed towards standardization and a disciplined approach to data collection, algorithms, and statistical analysis.
Collapse
|
8
|
Wenger A, Carén H. Methylation Profiling in Diffuse Gliomas: Diagnostic Value and Considerations. Cancers (Basel) 2022; 14:cancers14225679. [PMID: 36428772 PMCID: PMC9688075 DOI: 10.3390/cancers14225679] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Diffuse gliomas cause significant morbidity across all age groups, despite decades of intensive research efforts. Here, we review the differences in diffuse gliomas in adults and children, as well as the World Health Organisation (WHO) 2021 classification of these tumours. We explain how DNA methylation-based classification works and list the methylation-based tumour types and subclasses for adult and paediatric diffuse gliomas. The benefits and utility of methylation-based classification in diffuse gliomas demonstrated to date are described. This entails the identification of novel tumour types/subclasses, patient stratification and targeted treatment/clinical management, and alterations in the clinical diagnosis in favour of the methylation-based over the histopathological diagnosis. Finally, we address several considerations regarding the use of DNA methylation profiling as a diagnostic tool, e.g., the threshold of the classifier, the calibrated score, tumour cell content and intratumour heterogeneity.
Collapse
Affiliation(s)
- Anna Wenger
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
9
|
Montemurro N, Fanelli GN, Scatena C, Ortenzi V, Pasqualetti F, Mazzanti CM, Morganti R, Paiar F, Naccarato AG, Perrini P. Surgical outcome and molecular pattern characterization of recurrent glioblastoma multiforme: A single-center retrospective series. Clin Neurol Neurosurg 2021; 207:106735. [PMID: 34119900 DOI: 10.1016/j.clineuro.2021.106735] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/21/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Despite recent advances in diagnosis and treatment of the disease, the prognosis of patients with glioblastoma multiforme (GBM) remains poor. While the value of molecular pattern profiles at first diagnosis has been demonstrated, only few studies have examined these biomarkers at the time of recurrence. The aim of this study was to explore the impact of extent of resection at repeated craniotomy on overall survival (OS) of patients with recurrent GBM. In addition, we investigated the molecular pattern profiles at first and second surgery to evaluate possible temporal evolution of these patterns and to assess the effect of these modifications on OS. METHODS We conducted a retrospective cohort study of 63 patients (mean age 59.2 years) surgically treated at least two times for recurrent GBM between 2006 and 2020. RESULTS Median OS and progression-free survival (PFS) were 22 months (range 2-168 months) and 10 months (range 1-96 months), respectively. The OS following gross-total resection (GTR) at recurrence for patients with initial GTR (GTR/GTR) was significantly increased (42.6 months) compared with sub-total resection (STR) at reoperation after initial GTR (GTR/STR) (19 months) and with GTR at reoperation after initial STR (STR/GTR) (17 months) (p = 0.0004). Overall surgical morbidity resulted 12.7% and 11.1% at first and at second surgery, respectively. Changes in genetic profiles between first and second surgery of 1p/19q co-deletion, MGMT promoter methylation and p53 mutations occurred in 5.6%, 1.9% and 9.3% of cases, respectively. MGMT promoter methylation appeared to affect OS in univariate analysis at first (p = 0.038) and second surgery (p = 0.107), whereas p53 mutation appeared to affect OS only at second surgery (p = 0.01). In a multivariate analysis female sex (HR = 0.322, 95% CI 0.147-0.705; p = 0.005), PFS (HR = 0.959, 95% CI 0.934-0.986; p = 0.003), GTR at first and second surgery (HR = 0.195, 95% CI 0.091-0.419; p < 0.0001) and adjuvant chemotherapy at recurrence (HR = 0.407, 95% CI 0.206-0.809; p = 0.01) were associated with longer OS. CONCLUSIONS This study confirmed the role of extent of resection (EOR) at first and at recurrence as a significant predictor of outcome in patients with recurrent GBM. In addition, this study highlighted the concept of a dynamic evolution of GBM genome after initial surgical resection, supporting the need of further studies to investigate the clinical and therapeutic implications of the changes in genetic profiles after initial surgery.
Collapse
Affiliation(s)
- Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), Pisa, Italy; Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.
| | - Giuseppe Nicolò Fanelli
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy; Division of Surgical Pathology, Pisa University Hospital, Pisa, Italy
| | - Cristian Scatena
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy; Division of Surgical Pathology, Pisa University Hospital, Pisa, Italy
| | - Valerio Ortenzi
- Division of Surgical Pathology, Pisa University Hospital, Pisa, Italy
| | - Francesco Pasqualetti
- Department of Radiation Oncology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | | | - Riccardo Morganti
- Clinical Trial Statistical Support, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Fabiola Paiar
- Department of Radiation Oncology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Antonio Giuseppe Naccarato
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy; Division of Surgical Pathology, Pisa University Hospital, Pisa, Italy
| | - Paolo Perrini
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), Pisa, Italy; Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
MGMT Promoter Methylation and IDH1 Mutations Do Not Affect [ 18F]FDOPA Uptake in Primary Brain Tumors. Int J Mol Sci 2020; 21:ijms21207598. [PMID: 33066633 PMCID: PMC7589068 DOI: 10.3390/ijms21207598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/10/2023] Open
Abstract
The aim of our study was to investigate the effects of methylation of O⁶-methylguanine-DNA methyltransferase promoter (MGMTp) and isocitrate dehydrogenase 1 (IDH 1) mutations on amino acid metabolism evaluated with 3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine ([18F] FDOPA) positron emission tomography/computed tomography (PET/CT). Seventy-two patients with primary brain tumors were enrolled in the study (33 women and 39 men; mean age 44 ± 12 years old). All of them were subjected to PET/CT examination after surgical treatment. Of them, 29 (40.3%) were affected by grade II glioma and 43 (59.7%) by grade III. PET/CT was scored as positive or negative and standardized uptake value ratio (SUVr) was calculated as the ratio between SUVmax of the lesion vs. that of the background. Statistical analysis was performed with the Mann–Whitney U test. Methylation of MGMTp was detectable in 61 out of the 72 patients examinated. Mean SUVr in patients without methylation of MGMTp was 1.44 ± 0.38 vs. 1.35 ± 0.48 of patients with methylation (p = 0.15). Data on IDH1 mutations were available for 43 subjects; of them, 31 are IDH-mutant. Mean SUVr was 1.38 ± 0.51 in patients IDH mutant and 1.46 ± 0.56 in patients IDH wild type. MGMTp methylation and IDH1 mutations do not affect [18F] FDOPA uptake in primary brain tumors and therefore cannot be assessed or predicted by radiopharmaceutical uptake parameters.
Collapse
|
11
|
Wenger A, Ferreyra Vega S, Kling T, Bontell TO, Jakola AS, Carén H. Intratumor DNA methylation heterogeneity in glioblastoma: implications for DNA methylation-based classification. Neuro Oncol 2020; 21:616-627. [PMID: 30668814 PMCID: PMC6502500 DOI: 10.1093/neuonc/noz011] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND A feature of glioblastoma (GBM) is cellular and molecular heterogeneity, both within and between tumors. This variability causes a risk for sampling bias and potential tumor escape from future targeted therapy. Heterogeneous intratumor gene expression in GBM is well documented, but little is known regarding the epigenetic heterogeneity. Variability in DNA methylation within tumors would have implications for diagnostics, as methylation can be used for tumor classification, subtyping, and determination of the clinically used biomarker O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. We therefore aimed to profile the intratumor DNA methylation heterogeneity in GBM and its effect on diagnostic properties. METHODS Three to 4 spatially separated biopsies per tumor were collected from 12 GBM patients. We performed genome-wide DNA methylation analysis and investigated intratumor variation. RESULTS All samples were classified as GBM isocitrate dehydrogenase (IDH) wild type (wt)/mutated by methylation profiling, but the subclass differed within 5 tumors. Some GBM samples exhibited higher DNA methylation differences within tumors than between, and many cytosine-phosphate-guanine (CpG) sites (mean: 17 000) had different methylation levels within the tumors. MGMT methylation status differed in IDH mutated patients (1/1). CONCLUSIONS We demonstrated that intratumor DNA methylation heterogeneity is a feature of GBM. Although all biopsies were classified as GBM IDH wt/mutated by methylation analysis, the assigned subclass differed in samples from the same patient. The observed heterogeneity within tumors is important to consider for methylation-based biomarkers and future improvements in stratification of GBM patients.
Collapse
Affiliation(s)
- Anna Wenger
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sandra Ferreyra Vega
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Teresia Kling
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Olsson Bontell
- Department of Clinical Pathology and Cytology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Neurosurgery, St Olavs University Hospital, Trondheim, Norway
| | - Helena Carén
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Feldheim J, Kessler AF, Monoranu CM, Ernestus RI, Löhr M, Hagemann C. Changes of O 6-Methylguanine DNA Methyltransferase (MGMT) Promoter Methylation in Glioblastoma Relapse-A Meta-Analysis Type Literature Review. Cancers (Basel) 2019; 11:cancers11121837. [PMID: 31766430 PMCID: PMC6966671 DOI: 10.3390/cancers11121837] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
Methylation of the O6-methylguanine DNA methyltransferase (MGMT) promoter has emerged as strong prognostic factor in the therapy of glioblastoma multiforme. It is associated with an improved response to chemotherapy with temozolomide and longer overall survival. MGMT promoter methylation has implications for the clinical course of patients. In recent years, there have been observations of patients changing their MGMT promoter methylation from primary tumor to relapse. Still, data on this topic are scarce. Studies often consist of only few patients and provide rather contrasting results, making it hard to draw a clear conclusion on clinical implications. Here, we summarize the previous publications on this topic, add new cases of changing MGMT status in relapse and finally combine all reports of more than ten patients in a statistical analysis based on the Wilson score interval. MGMT promoter methylation changes are seen in 115 of 476 analyzed patients (24%; CI: 0.21–0.28). We discuss potential reasons like technical issues, intratumoral heterogeneity and selective pressure of therapy. The clinical implications are still ambiguous and do not yet support a change in clinical practice. However, retesting MGMT methylation might be useful for future treatment decisions and we encourage clinical studies to address this topic.
Collapse
Affiliation(s)
- Jonas Feldheim
- Tumorbiology Laboratory, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany; (J.F.); (A.F.K.); (R.-I.E.); (M.L.)
| | - Almuth F. Kessler
- Tumorbiology Laboratory, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany; (J.F.); (A.F.K.); (R.-I.E.); (M.L.)
| | - Camelia M. Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany;
| | - Ralf-Ingo Ernestus
- Tumorbiology Laboratory, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany; (J.F.); (A.F.K.); (R.-I.E.); (M.L.)
| | - Mario Löhr
- Tumorbiology Laboratory, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany; (J.F.); (A.F.K.); (R.-I.E.); (M.L.)
| | - Carsten Hagemann
- Tumorbiology Laboratory, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany; (J.F.); (A.F.K.); (R.-I.E.); (M.L.)
- Correspondence: ; Tel.: +49-931-20124644
| |
Collapse
|
13
|
Harat M, Blok M, Harat A, Soszyńska K. The impact of adjuvant radiotherapy on molecular prognostic markers in gliomas. Onco Targets Ther 2019; 12:2215-2224. [PMID: 30988626 PMCID: PMC6441459 DOI: 10.2147/ott.s200818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Changes in MGMT promoter methylation, IDH1 and IDH2 mutation, and 1p/19q co-deletion status in gliomas between first and subsequent resections and their associated clinical factors are poorly described. In this study, we assayed these biomarkers in the clinical setting. Patients and methods We used multiplex ligation-dependent probe amplification to measure MGMT promoter methylation, IDH mutation status, and 1p/19q co-deletion in 45 paired tumor samples from patients undergoing resection and subsequent re-resections for gliomas. Results Molecular changes were present in 20 patients (44%). At least one molecular characteristic changed over time in 89% of patients with primary grade III tumors. Gliomas with IDH wild-type and/or non-co-deleted were stable, but IDH1/2 mutation and/or co-deletion were sometimes lost at the time of recurrence. In a multivariate analysis, adjuvant radiotherapy alone was independently associated (P=0.02) with changes in molecular profile. Conclusion Molecular biomarkers change in gliomas during the course of the disease, most often MGMT methylation status. These changes in genetic profiles are related to adjuvant treatment with radiotherapy alone, which might be important for individualized treatment planning over the disease course.
Collapse
Affiliation(s)
- Maciej Harat
- Department of Oncology and Brachytherapy, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland, .,Unit of Radiosurgery and Radiotherapy of CNS, Department of Radiotherapy, Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland,
| | - Maciej Blok
- Unit of Radiosurgery and Radiotherapy of CNS, Department of Radiotherapy, Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland,
| | - Aleksandra Harat
- Department of Public Health, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Krystyna Soszyńska
- Department of Pathology, Laboratory of Clinical Genetics and Molecular Pathology, 10th Military Hospital, Bydgoszcz, Poland
| |
Collapse
|
14
|
Harat M, Małkowski B, Roszkowski K. Prognostic value of subventricular zone involvement in relation to tumor volumes defined by fused MRI and O-(2-[ 18F]fluoroethyl)-L-tyrosine (FET) PET imaging in glioblastoma multiforme. Radiat Oncol 2019; 14:37. [PMID: 30832691 PMCID: PMC6398237 DOI: 10.1186/s13014-019-1241-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/21/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Subventricular zone (SVZ) involvement is associated with a dismal prognosis in patients with glioblastoma multiforme (GBM). Dual-time point (dtp) O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET/CT (PET) may be a time- and cost-effective alternative to dynamic FET PET, but its prognostic value, particularly with respect to SVZ involvement, is unknown. METHODS Thirty-five patients had two scans 5-15 and 50-60 min after i.v. FET injection to define tumor volumes and SVZ involvement before starting radiotherapy. Associations between clinical progression markers, MRI- and dtp FET PET-based tumor volumes, or SVZ involvement and progression-free (PFS) and overall survival (OS) were assessed in univariable and multivariable analyses. RESULTS The extent of resection was not related to outcomes. Albeit non-significant, dtp FET PET detected more SVZ infiltration than MRI (60% vs. 51%, p = 0.25) and was significantly associated with poor survival (p < 0.03), but PET-T1-Gad volumes were larger in this group (p < 0.002). Survival was shorter in patients with larger MRI tumor volumes, larger PET tumor volumes, and worse Karnofsky performance status (KPS), with fused PET-T1-Gad and KPS significant in multivariable analysis (p < 0.03). Uptake kinetics was not associated with treatment outcomes. CONCLUSIONS FET PET-based tumor volumes may be useful for predicting worse prognosis glioblastoma. Although the presence of SVZ infiltration is linked to higher PET/MRI-based tumor volumes, the independent value of dtp FET PET parameters and SVZ infiltration as prognostic markers pre-irradiation has not been confirmed.
Collapse
Affiliation(s)
- Maciej Harat
- Department of Oncology and Brachytherapy, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Romanowskiej 2 St, ,85-796, Bydgoszcz, Poland. .,Department of Radiotherapy, Unit of Radiosurgery and Radiotherapy of CNS, Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland.
| | - Bogdan Małkowski
- Department of Positron Emission Tomography and Molecular Imaging, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Krzysztof Roszkowski
- Department of Oncology, Radiotherapy and Gynecologic Oncology, Faculty of Health Sciences, Nicolaus Copernicus University Toruń, Bydgoszcz, Poland
| |
Collapse
|
15
|
Noch EK, Ramakrishna R, Magge R. Challenges in the Treatment of Glioblastoma: Multisystem Mechanisms of Therapeutic Resistance. World Neurosurg 2018; 116:505-517. [PMID: 30049045 DOI: 10.1016/j.wneu.2018.04.022] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/13/2018] [Indexed: 01/14/2023]
Abstract
Glioblastoma is one of the most lethal human cancers, with poor survival despite surgery, radiation treatment, and chemotherapy. Advances in the treatment of this type of brain tumor are limited because of several resistance mechanisms. Such mechanisms involve limited drug entry into the central nervous system compartment by the blood-brain barrier and by actions of the normal brain to counteract tumor-targeting medications. In addition, the vast heterogeneity in glioblastoma contributes to significant therapeutic resistance by preventing adequate control of the entire tumor mass by a single drug and by facilitating escape mechanisms from targeted agents. The stem cell-like characteristics of glioblastoma promote resistance to chemotherapy, radiation, and immunotherapy through upregulation of efflux transporters, promotion of glioblastoma stem cell proliferation in neurogenic zones, and immune suppression, respectively. Metabolic cascades in glioblastoma prevent effective treatments through the optimization of glucose use, the use of alternative nutrient precursors for energy production, and the induction of hypoxia to enhance tumor growth. In the era of precision medicine, an assortment of molecular techniques is being developed to target an individual's unique tumor, with the hope that this personalized strategy will bypass therapeutic resistance. Although each resistance mechanism presents an array of challenges to effective treatment of glioblastoma, as the field recognizes and addresses these difficulties, future treatments may have more efficacy and promise for patients with glioblastoma.
Collapse
Affiliation(s)
- Evan K Noch
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Rohan Ramakrishna
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York, USA.
| | - Rajiv Magge
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
16
|
De Carlo E, Gerratana L, De Maglio G, Buoro V, Cortiula F, Gurrieri L, Isola M, Fasola G, Puglisi F, Pizzolitto S, Rizzato S. Defining a prognostic score based on O6-methylguanine-DNA methyltransferase cut-off methylation level determined by pyrosequencing in patients with glioblastoma multiforme. J Neurooncol 2018; 140:559-568. [PMID: 30132165 DOI: 10.1007/s11060-018-2981-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Epigenetic variations in the O6-methylguanine-methyltransferase gene had been widely associated with a favorable impact on survival in patients affected by glioblastoma multiforme (GBM). Aim of this study is to explore a scoring system based on the gene promoter methylation in order to predict patients' prognosis. METHODS A series of 128 patients with GBM was retrospectively analyzed. A training set and a validations set were then generated. The methylation level of CpGi from 74 to 83 was determined by pyrosequencing. In accordance to previous literature, each island was assigned with 1 point if the corresponding methylation level was higher than 9%. The sum consisted in a score that went from 0 (all CpGi < 9%) to 10 (all CpGi ≥ 9%). A threshold capable to detect a favorable outcome (overall survival, OS > 24 months) was identified by ROC analysis. RESULTS Median OS and follow-up were 14 and 32.6 months respectively. Among the total population, 35% of the pts had a score of 0, while 29% had a score of 10. A score ≥ 6 was associated with a favorable prognosis also when corrected for age (> 70 vs. ≤ 70 years) and ECOG performance status (0-1 vs. 2-3). Similar results were observed also in terms of PFS. Results were consistent in the training and in the validation set. CONCLUSIONS The present manuscript explored a novel scoring system capable to take into consideration the methylation status of each single CpGi, capable to better predict prognosis in GBM patients.
Collapse
Affiliation(s)
- Elisa De Carlo
- Department of Oncology, University Hospital of Udine, P.le S.M. Misericordia, 15, 33100, Udine, Italy.,Department of Clinical Oncology, IRCCS CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | - Lorenzo Gerratana
- Department of Oncology, University Hospital of Udine, P.le S.M. Misericordia, 15, 33100, Udine, Italy. .,Department of Medicine (DAME), The University of Udine, Udine, Italy.
| | | | - Vanessa Buoro
- Department of Oncology, University Hospital of Udine, P.le S.M. Misericordia, 15, 33100, Udine, Italy.,Department of Medicine (DAME), The University of Udine, Udine, Italy
| | - Francesco Cortiula
- Department of Oncology, University Hospital of Udine, P.le S.M. Misericordia, 15, 33100, Udine, Italy.,Department of Medicine (DAME), The University of Udine, Udine, Italy
| | - Lorena Gurrieri
- Department of Oncology, ASUITS University Hospital, Trieste, Italy
| | - Miriam Isola
- Department of Medicine (DAME), The University of Udine, Udine, Italy
| | - Gianpiero Fasola
- Department of Oncology, University Hospital of Udine, P.le S.M. Misericordia, 15, 33100, Udine, Italy
| | - Fabio Puglisi
- Department of Clinical Oncology, IRCCS CRO Aviano National Cancer Institute, Aviano, PN, Italy.,Department of Medicine (DAME), The University of Udine, Udine, Italy
| | | | - Simona Rizzato
- Department of Oncology, University Hospital of Udine, P.le S.M. Misericordia, 15, 33100, Udine, Italy
| |
Collapse
|
17
|
Hudson AL, Parker NR, Khong P, Parkinson JF, Dwight T, Ikin RJ, Zhu Y, Chen J, Wheeler HR, Howell VM. Glioblastoma Recurrence Correlates With Increased APE1 and Polarization Toward an Immuno-Suppressive Microenvironment. Front Oncol 2018; 8:314. [PMID: 30151353 PMCID: PMC6099184 DOI: 10.3389/fonc.2018.00314] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/24/2018] [Indexed: 12/04/2022] Open
Abstract
While treatment with surgery, radiotherapy and/or chemotherapy may prolong life for patients with glioblastoma, recurrence is inevitable. What is still being discovered is how much these treatments and recurrence of disease affect the molecular profiles of these tumors and how these tumors adapt to withstand these treatment pressures. Understanding such changes will uncover pathways used by the tumor to evade destruction and will elucidate new targets for treatment development. Nineteen matched pre-treatment and post-treatment glioblastoma tumors were subjected to gene expression profiling (Fluidigm, TaqMan assays), MGMT promoter methylation analysis (pyrosequencing) and protein expression analysis of the DNA repair pathways, known to be involved in temozolomide resistance (immunohistochemistry). Gene expression profiling to molecularly subtype tumors revealed that 26% of recurrent post-treatment specimens did not match their primary diagnostic specimen subtype. Post-treatment specimens had molecular changes which correlated with known resistance mechanisms including increased expression of APEX1 (p < 0.05) and altered MGMT methylation status. In addition, genes associated with immune suppression, invasion and aggression (GPNMB, CCL5, and KLRC1) and polarization toward an M2 phenotype (CD163 and MSR1) were up-regulated in post-treatment tumors, demonstrating an overall change in the tumor microenvironment favoring aggressive tumor growth and disease recurrence. This was confirmed by in vitro studies that determined that glioma cell migration was enhanced in the presence of M2 polarized macrophage conditioned media. Further, M2 macrophage-modulated migration was markedly enhanced in post-treatment (temozolomide resistant) glioma cells. These findings highlight the ability of glioblastomas to evade not only the toxic onslaught of therapy but also to evade the immune system suggesting that immune-altering therapies may be of value in treating this terrible disease.
Collapse
Affiliation(s)
- Amanda L. Hudson
- The Brain Cancer Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia
- Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
| | - Nicole R. Parker
- The Brain Cancer Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia
- Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
| | - Peter Khong
- The Brain Cancer Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia
- Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
| | - Jonathon F. Parkinson
- The Brain Cancer Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia
- Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
| | - Trisha Dwight
- Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
- Cancer Genetics, Hormones and Cancer Group, Kolling Institute, St Leonards, NSW, Australia
| | - Rowan J. Ikin
- The Brain Cancer Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia
- Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
| | - Ying Zhu
- Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
- Hunter New England Health, New Lambton, NSW, Australia
| | - Jason Chen
- Department of Anatomical Pathology, Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Helen R. Wheeler
- The Brain Cancer Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia
- Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
| | - Viive M. Howell
- The Brain Cancer Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia
- Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Okita Y, Shofuda T, Kanematsu D, Yoshioka E, Kodama Y, Mano M, Kinoshita M, Nonaka M, Nakajima S, Fujinaka T, Kanemura Y. Stereotactic image-based histological analysis reveals a correlation between 11C-methionine uptake and MGMT promoter methylation in non-enhancing gliomas. Oncol Lett 2018; 16:1924-1930. [PMID: 30008885 DOI: 10.3892/ol.2018.8866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/24/2018] [Indexed: 12/28/2022] Open
Abstract
Gliomas are genetically and histopathologically heterogeneous. Intratumoral heterogeneity in the MGMT promoter methylation status is an important clinical biomarker of glioblastoma. A higher uptake of 11C-methionine in positron-emission tomography (PET) reportedly reflects increased MGMT promoter methylation; however, non-stereotactic comparison of MGMT methylation and 11C-methionine PET images may not be accurate. The present study examined the correlation between 11C-methionine uptake and MGMT promoter methylation in non-enhancing gliomas using stereotactic image-based histological analysis. Data were collected from 9 patients with newly diagnosed non-enhancing glioma who underwent magnetic resonance imaging and 11C-methionine PET during pre-surgical examination. Clinical data were also collected from 3 patients during repeat surgery. The correlation between 11C-methionine uptake and MGMT methylation or cell density was analyzed using histological specimens obtained by multiple stereotactic sampling and an exact local comparison of 11C-methionine PET images and histological specimens was made. A total of 31 stereotactic sample sites were identified. In newly diagnosed cases, the tumor to normal uptake (T/N) ratio revealed a significant positive correlation with MGMT methylation (R=0.54, P=0.009) and a marginal correlation with cell density (R=0.42, P=0.05). In recurrent cases, the T/N ratio demonstrated no correlation with MGMT methylation (R=0.01, P=0.97) or cell density (R=0.15, P=0.70). An increased uptake of 11C-methionine in PET may reflect increased MGMT promoter methylation according to stereotactic image-based histological analysis. 11C-methionine PET could therefore be a useful tool for detecting regional MGMT promoter methylation in non-enhancing primary glioma.
Collapse
Affiliation(s)
- Yoshiko Okita
- Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka 540-0006, Japan
| | - Tomoko Shofuda
- Division of Stem Cell Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka 540-0006, Japan
| | - Daisuke Kanematsu
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka 540-0006, Japan
| | - Ema Yoshioka
- Division of Stem Cell Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka 540-0006, Japan
| | - Yoshinori Kodama
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masayuki Mano
- Department of Central Laboratory and Surgical Pathology, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka 540-0006, Japan
| | - Manabu Kinoshita
- Department of Neurosurgery, Osaka International Cancer Institute, Chuo-ku, Osaka 541-8567, Japan
| | - Masahiro Nonaka
- Department of Neurosurgery, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Shin Nakajima
- Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka 540-0006, Japan
| | - Toshiyuki Fujinaka
- Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka 540-0006, Japan
| | - Yonehiro Kanemura
- Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka 540-0006, Japan.,Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka 540-0006, Japan
| |
Collapse
|
19
|
Prediction of survival in patients affected by glioblastoma: histogram analysis of perfusion MRI. J Neurooncol 2018; 139:455-460. [DOI: 10.1007/s11060-018-2887-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/08/2018] [Indexed: 01/20/2023]
|
20
|
Abstract
The most aggressive brain malignancy, glioblastoma, accounts for 60-70% of all gliomas and is uniformly fatal. According to the molecular signature, glioblastoma is divided into four subtypes (proneural, neural, classical, and mesenchymal), each with its own genetic background. The Cancer Genome Atlas project provides information about the most common genetic changes in glioblastoma. They involve mutations in TP53, TERT, and PTEN, and amplifications in EFGR, PDGFRA, CDK4, CDK6, MDM2, and MDM4. Recently, epigenetics was used to demonstrate the oncogenic roles of miR-124, miR-137, and miR-128. The most important findings so far are mutations in IDH1/2 and MGMT promoter methylation, which are routinely used as predictive biomarkers in patient care. Current clinical treatment leaves patients with only a 10% chance for 5-year survival. Attempts to define the mutational profile of glioblastoma to identify clinically relevant changes have not yet yielded significant results. This can be attributed to inter- and intra-tumor heterogeneity that is present in most glioblastomas, as well as hypermutation that appears as a consequence of chemotherapy. The evolving field of radiogenomics aims to classify glioblastoma using a combination of magnetic resonance imaging and genomic information. In the era of genomic medicine, next-generation sequencing is extensively used in glioblastoma research because it can detect multiple changes in a single biological sample; its potential in detecting circulating cell-free DNA has been tested in cerebrospinal fluid and plasma, and it shows promise in the examination of the cellular content of extracellular vesicles as a potential source of biomarkers. Next-generation sequencing is making its way into glioblastoma diagnostics. Gene panels like GlioSeq, which includes the most commonly mutated genes, are currently being tested on snap frozen and formalin fixed paraffin embedded tissues. This new methodology is helping to define the "next generation of glioblastomas" - clinically defined and better understood, with greater potential to improve patient care. However, limitations of the necessary infrastructure, space for data storage, technical expertise, and data ownership need to be considered carefully.
Collapse
Affiliation(s)
- Ivana Jovčevska
- a Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
21
|
Gessler F, Baumgarten P, Bernstock JD, Harter P, Lescher S, Senft C, Seifert V, Marquardt G, Weise L. Assessment of molecular markers demonstrates concordance between samples acquired via stereotactic biopsy and open craniotomy in both anaplastic astrocytomas and glioblastomas. J Neurooncol 2017; 133:399-407. [PMID: 28508327 DOI: 10.1007/s11060-017-2448-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
Abstract
The classification, treatment and prognosis of high-grade gliomas has been shown to correlate with the expression of molecular markers (e.g. MGMT promotor methylation and IDH1 mutations). Acquisition of tumor samples may be obtained via stereotactic biopsy or open craniotomy. Between the years 2009 and 2013, 22 patients initially diagnosed with HGGs via stereotactic biopsy, that ultimately underwent open craniotomy for resection of their tumor were prospectively included in an institutional glioma database. MGMT promotor analysis was performed using methylation-specific (MS)-PCR and IDH1R132H mutation analysis was performed using immunohistochemistry. Three patients (13.7%) exhibited IDH1R132H mutations in samples obtained via stereotactic biopsy. Tissue derived from stereotaxic biopsy was demonstrated to have MGMT promotor methylation in ten patients (45.5%), while a non-methylated MGMT promotor was demonstrated in ten patients (45.5%); inconclusive results were obtained for the remaining two patients (9%) within our cohort. The initial histologic grading, IDH1R132H mutation and MGMT promotor methylation results were confirmed using samples obtained during open craniotomy in all but one patient; here inconclusive MGMT promotor analysis was obtained in contrast to that which was obtained via stereotactic biopsy. Tumor samples acquired via stereotactic biopsy provide accurate information with regard to clinically relevant molecular markers that have been shown to impact patient care decisions. The profile of markers analyzed in our cohort was nearly concordant between those samples obtained via stereotactic biopsy or open craniotomy thereby suggesting that clinical decisions may be based on the molecular profile of the tumor samples obtained via stereotactic biopsy.
Collapse
Affiliation(s)
- Florian Gessler
- Department of Neurosurgery, University Hospital Frankfurt, Goethe-University, Schleusenweg 2-16, 60528, Frankfurt, Germany.
| | - Peter Baumgarten
- Department of Neurosurgery, University Hospital Frankfurt, Goethe-University, Schleusenweg 2-16, 60528, Frankfurt, Germany.,Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe-University, Heinrich-Hoffmann-Straße 7, 60528, Frankfurt, Germany
| | - Joshua D Bernstock
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Harter
- Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe-University, Heinrich-Hoffmann-Straße 7, 60528, Frankfurt, Germany
| | - Stephanie Lescher
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe-University, Schleusenweg 2-16, 60528, Frankfurt, Germany
| | - Christian Senft
- Department of Neurosurgery, University Hospital Frankfurt, Goethe-University, Schleusenweg 2-16, 60528, Frankfurt, Germany
| | - Volker Seifert
- Department of Neurosurgery, University Hospital Frankfurt, Goethe-University, Schleusenweg 2-16, 60528, Frankfurt, Germany
| | - Gerhard Marquardt
- Department of Neurosurgery, University Hospital Frankfurt, Goethe-University, Schleusenweg 2-16, 60528, Frankfurt, Germany
| | - Lutz Weise
- Department of Neurosurgery, University Hospital Frankfurt, Goethe-University, Schleusenweg 2-16, 60528, Frankfurt, Germany
| |
Collapse
|
22
|
Brandes AA, Franceschi E, Paccapelo A, Tallini G, De Biase D, Ghimenton C, Danieli D, Zunarelli E, Lanza G, Silini EM, Sturiale C, Volpin L, Servadei F, Talacchi A, Fioravanti A, Pia Foschini M, Bartolini S, Pession A, Ermani M. Role of MGMT Methylation Status at Time of Diagnosis and Recurrence for Patients with Glioblastoma: Clinical Implications. Oncologist 2017; 22:432-437. [PMID: 28275120 PMCID: PMC5388380 DOI: 10.1634/theoncologist.2016-0254] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/11/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND MGMT methylation status represents a powerful prognostic factor in newly diagnosed glioblastoma (GBM). Recently, its role in recurrent tumors has also been suggested; however, few data investigating the stability of this biomarker during the clinical course of the disease are available. In this study, we evaluated the rate of change of MGMT methylation status between diagnosis and first recurrence in patients who received tumor resection for recurrent GBM. METHODS We included patients who received temozolomide concurrent with and adjuvant to radiotherapy after diagnosis of GBM and had a second surgery performed at least 3 months after radiotherapy completion. Other eligibility criteria were age ≥18 years and Eastern Cooperative Oncology Group performance status 0-2. We evaluated the MGMT methylation status by methylation-specific polymerase chain reaction. RESULTS From our institutional data warehouse, 295 patients with recurrent GBM who underwent second surgery were evaluated. MGMT methylation status at both first and second surgery was available for 108 patients. MGMT was methylated in both surgeries in 38 patients (35.2%), while it was unmethylated in 43 patients (39.8%). We found a significant concordance between the first and the second MGMT methylation assessments (K = 0.500, p < .001), MGMT methylation being stable in 75% of the cases. CONCLUSION MGMT methylation presents relative stability during the clinical course of GBM. The Oncologist 2017;22:432-437 IMPLICATIONS FOR PRACTICE: MGMT methylation is a prognostic factor in newly diagnosed glioblastoma. In this study, we evaluated the rate of change of MGMT methylation during the clinical course of the disease, and we found a significant concordance between the first and the second MGMT methylation assessments, with MGMT methylation being stable in 75% of the cases. Thus, re-testing this biomarker at recurrence does not provide further information for clinicians. MGMT methylation at first surgery, extent of resection at second surgery, and time between first and second surgery are significantly correlated with overall survival. Age and extent of resection are correlated with post-progression survival.
Collapse
Affiliation(s)
| | | | | | - Giovanni Tallini
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Section of Pathology, M. Malpighi, Bellaria Hospital, Bologna, Italy
| | - Dario De Biase
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Section of Pathology, M. Malpighi, Bellaria Hospital, Bologna, Italy
| | | | | | | | - Giovanni Lanza
- Department of Pathology, S. Anna University Hospital and University of Ferrara, Ferrara, Italy
| | | | - Carmelo Sturiale
- Neurosurgery Bellaria Hospital, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Lorenzo Volpin
- Neuroscience and Neurosurgery, San Bortolo Hospital, Vicenza, Italy
| | | | - Andrea Talacchi
- Section of Neurosurgery, Department of Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, University Hospital, Verona, Italy
| | - Antonio Fioravanti
- Neurosurgery Bellaria Hospital, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Maria Pia Foschini
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Section of Pathology, M. Malpighi, Bellaria Hospital, Bologna, Italy
| | | | - Annalisa Pession
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Section of Pathology, M. Malpighi, Bellaria Hospital, Bologna, Italy
| | - Mario Ermani
- Department of Neurosciences, Statistic and Informatic Unit, Azienda Ospedale-Università, Padova, Italy
| |
Collapse
|
23
|
Xu G, Liu Y, Zhang YI, Yang Q, Diao BO. Study on the therapeutic effect of neural progenitor cells in mice of a glioma murine model. Oncol Lett 2016; 11:2067-2070. [PMID: 26998123 PMCID: PMC4777880 DOI: 10.3892/ol.2016.4158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/28/2016] [Indexed: 11/05/2022] Open
Abstract
Glioma is a common malignacy of the brain that affects elderly patients in particular. Despite treatment, however, the survival rate is 12 months. The aim of the present study was to examine the therapeutic effect of neural progenitor cells (NPCs) on a glioma murine model, and to determine the possible mechanism of action. A glioma murine model was constructed and the tumor volume and tumor growth rate were measured. The therapeutic effect of cell injection on the glioma mouse model mice was confirmed. The quantitative polymerase chain reaction method was used to detect the expression of proto-oncogene and tumor suppressor gene. Intracranial injection of NPCs was performed to determine cell apoptosis. Preliminary results showed the mechanism of cell therapy effect at the transcription and cellular level. Compared with the model group, the tumor volume of the mice of the cell therapy group was significantly reduced from the 6th to 8th week, and the tumor growth rate was downregulated. The mechanism of action identified that NPCs regulate gene expression in tumor tissues, increase the expression of tumor suppressor gene, downregulate the gene expression of tumor cells, and reverse the proto-oncogene and imbalance of gene expression in gliomas. In conclusion, the new type of cell injection method can regulate the proto-oncogene of tumor tissue and tumor suppressor gene, improve the function phenotype of the cell, and effectively improve the clinical symptoms of mice with gliomas.
Collapse
Affiliation(s)
- Guozheng Xu
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei 430070, P.R. China; Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, Hubei 430070, P.R. China
| | - Ying Liu
- Department of Clinical Laboratory, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei 430070, P.R. China
| | - Y I Zhang
- Department of Clinical Experiment, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei 430070, P.R. China
| | - Qian Yang
- Department of Clinical Experiment, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei 430070, P.R. China
| | - B O Diao
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei 430070, P.R. China; Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
24
|
Parker NR, Hudson AL, Khong P, Parkinson JF, Dwight T, Ikin RJ, Zhu Y, Cheng ZJ, Vafaee F, Chen J, Wheeler HR, Howell VM. Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma. Sci Rep 2016; 6:22477. [PMID: 26940435 PMCID: PMC4778014 DOI: 10.1038/srep22477] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Heterogeneity is a hallmark of glioblastoma with intratumoral heterogeneity contributing to variability in responses and resistance to standard treatments. Promoter methylation status of the DNA repair enzyme O6-methylguanine DNA methyltransferase (MGMT) is the most important clinical biomarker in glioblastoma, predicting for therapeutic response. However, it does not always correlate with response. This may be due to intratumoral heterogeneity, with a single biopsy unlikely to represent the entire lesion. Aberrations in other DNA repair mechanisms may also contribute. This study investigated intratumoral heterogeneity in multiple glioblastoma tumors with a particular focus on the DNA repair pathways. Transcriptional intratumoral heterogeneity was identified in 40% of cases with variability in MGMT methylation status found in 14% of cases. As well as identifying intratumoral heterogeneity at the transcriptional and epigenetic levels, targeted next generation sequencing identified between 1 and 37 unique sequence variants per specimen. In-silico tools were then able to identify deleterious variants in both the base excision repair and the mismatch repair pathways that may contribute to therapeutic response. As these pathways have roles in temozolomide response, these findings may confound patient management and highlight the importance of assessing multiple tumor biopsies.
Collapse
Affiliation(s)
- Nicole R Parker
- Sydney Neuro-Oncology Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia, 2065.,Northern Sydney Local Health District, St Leonards, NSW, Australia, 2065.,Sydney Medical School Northern, University of Sydney, NSW, Australia, 2065
| | - Amanda L Hudson
- Sydney Neuro-Oncology Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia, 2065.,Northern Sydney Local Health District, St Leonards, NSW, Australia, 2065.,Sydney Medical School Northern, University of Sydney, NSW, Australia, 2065
| | - Peter Khong
- Sydney Neuro-Oncology Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia, 2065.,Northern Sydney Local Health District, St Leonards, NSW, Australia, 2065.,Sydney Medical School Northern, University of Sydney, NSW, Australia, 2065
| | - Jonathon F Parkinson
- Sydney Neuro-Oncology Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia, 2065.,Northern Sydney Local Health District, St Leonards, NSW, Australia, 2065.,Sydney Medical School Northern, University of Sydney, NSW, Australia, 2065
| | - Trisha Dwight
- Cancer Genetics, Hormones and Cancer Group, Kolling Institute, St Leonards, Australia, 2065.,Northern Sydney Local Health District, St Leonards, NSW, Australia, 2065.,Sydney Medical School Northern, University of Sydney, NSW, Australia, 2065
| | - Rowan J Ikin
- Sydney Neuro-Oncology Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia, 2065.,Northern Sydney Local Health District, St Leonards, NSW, Australia, 2065.,Sydney Medical School Northern, University of Sydney, NSW, Australia, 2065
| | - Ying Zhu
- Northern Sydney Local Health District, St Leonards, NSW, Australia, 2065.,Sydney Medical School Northern, University of Sydney, NSW, Australia, 2065.,Hunter New England Health, NSW, Australia, 2305
| | - Zhangkai Jason Cheng
- Department of Physics, University of Sydney, NSW, Australia, 2006.,Charles Perkins Centre, University of Sydney, NSW, Australia, 2006
| | - Fatemeh Vafaee
- Charles Perkins Centre, University of Sydney, NSW, Australia, 2006.,School of Mathematics and Statistics, University of Sydney, NSW, Australia, 2006
| | - Jason Chen
- Department of Anatomical Pathology, Northern Sydney Local Health District, St Leonards, NSW, Australia, 2065
| | - Helen R Wheeler
- Sydney Neuro-Oncology Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia, 2065.,Northern Sydney Local Health District, St Leonards, NSW, Australia, 2065.,Sydney Medical School Northern, University of Sydney, NSW, Australia, 2065
| | - Viive M Howell
- Sydney Neuro-Oncology Group, Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, St Leonards, NSW, Australia, 2065.,Northern Sydney Local Health District, St Leonards, NSW, Australia, 2065.,Sydney Medical School Northern, University of Sydney, NSW, Australia, 2065
| |
Collapse
|
25
|
Hoffman LM, DeWire M, Ryall S, Buczkowicz P, Leach J, Miles L, Ramani A, Brudno M, Kumar SS, Drissi R, Dexheimer P, Salloum R, Chow L, Hummel T, Stevenson C, Lu QR, Jones B, Witte D, Aronow B, Hawkins CE, Fouladi M. Spatial genomic heterogeneity in diffuse intrinsic pontine and midline high-grade glioma: implications for diagnostic biopsy and targeted therapeutics. Acta Neuropathol Commun 2016; 4:1. [PMID: 26727948 PMCID: PMC4700584 DOI: 10.1186/s40478-015-0269-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/20/2015] [Indexed: 11/20/2022] Open
Abstract
Introduction Diffuse intrinsic pontine glioma (DIPG) and midline high-grade glioma (mHGG) are lethal childhood brain tumors. Spatial genomic heterogeneity has been well-described in adult HGG but has not been comprehensively characterized in pediatric HGG. We performed whole exome sequencing on 38-matched primary, contiguous, and metastatic tumor sites from eight children with DIPG (n = 7) or mHGG (n = 1) collected using a unique MRI-guided autopsy protocol. Validation was performed using Sanger sequencing, Droplet Digital polymerase-chain reaction, immunohistochemistry, and fluorescent in-situ hybridization. Results Median age at diagnosis was 6.1 years (range: 2.9–23.3 years). Median overall survival was 13.2 months (range: 11.2–32.2 months). Contiguous tumor infiltration and distant metastases were observed in seven and six patients, respectively, including leptomeningeal dissemination in three DIPGs. Histopathological heterogeneity was evident in seven patients, including intra-pontine heterogeneity in two DIPGs, ranging from World Health Organization grade II to IV astrocytoma. We found conservation of heterozygous K27M mutations in H3F3A (n = 4) or HIST1H3B (n = 3) across all primary, contiguous, and metastatic tumor sites in all DIPGs. ACVR1 (n = 2), PIK3CA (n = 2), FGFR1 (n = 2), and MET (n = 1) were also intra-tumorally conserved. ACVR1 was co-mutated with HIST1H3B (n = 2). In contrast, PDGFRA amplification and mutation were spatially heterogeneous, as were mutations in BCOR (n = 1), ATRX (n = 2), and MYC (n = 1). TP53 aberrations (n = 3 patients) varied by type and location between primary and metastatic tumors sites but were intra-tumorally conserved. Conclusion Spatial conservation of prognostically-relevant and therapeutically-targetable somatic mutations in DIPG and mHGG contrasts the significant heterogeneity of driver mutations seen in adult HGG and supports uniform implementation of diagnostic biopsy in DIPG and mHGG to classify molecular risk groups and guide therapeutic strategy. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0269-0) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Abstract
Epigenetic mechanisms including DNA methylation are fundamental for the regulation of gene expression. Epigenetic alterations can lead to the development and the evolution of malignant tumors as well as the emergence of phenotypically different cancer cells or metastasis from one single tumor cell. Here we describe bisulfite pyrosequencing, a technology to perform quantitative DNA methylation analyses, to detect aberrant DNA methylation in malignant tumors.
Collapse
|
27
|
MGMT testing allows for personalised therapy in the temozolomide era. Tumour Biol 2015; 37:87-96. [PMID: 26518768 DOI: 10.1007/s13277-015-4240-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022] Open
Abstract
Adjuvant temozolomide (TMZ)-based chemoradiation is the standard of care for most glioblastoma patients (GBMs); however, a large proportion of these patients do not respond to TMZ. Silencing of the O(6)-methylguanine-DNA methyltransferase (MGMT) promoter is thought to induce chemosensitivity, and testing for methylation may allow for patient stratification; however, this has yet to become routine clinical practice despite an abundance of literature on the subject. The databases PubMed, Embase, The Cochrane Library, Science Direct and Medline were searched for relevant articles published between 1999 and 2015. Articles utilising MGMT testing in glioblastomas, and treatment of glioblastomas with temozolomide were assessed. Immunohistochemistry, methylation-specific PCR (MSP), reverse transcriptase PCR, pyrosequencing and bisulphite sequencing were the main testing methods identified. Nested-MSP techniques produced poor correlation with survival, whilst bisulphite sequencing showed no evident benefit over MSP. Testing is limited by sample quality and contamination; however, efforts are made to minimise this. Strong evidence for MGMT-based personalised therapy was presented in the elderly but remains controversial in the entire GBM population. MGMT testing presents many obstacles yet to be overcome, and these warrant attention prior to the routine implementation of MGMT testing to aid decision making in GBMs. However, there is evidence to support its use, particularly in the elderly.
Collapse
|
28
|
Heterogeneous DNA Methylation Patterns in the GSTP1 Promoter Lead to Discordant Results between Assay Technologies and Impede Its Implementation as Epigenetic Biomarkers in Breast Cancer. Genes (Basel) 2015; 6:878-900. [PMID: 26393654 PMCID: PMC4584334 DOI: 10.3390/genes6030878] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/04/2015] [Accepted: 09/10/2015] [Indexed: 12/20/2022] Open
Abstract
Altered DNA methylation patterns are found in many diseases, particularly in cancer, where the analysis of DNA methylation holds the promise to provide diagnostic, prognostic and predictive information of great clinical value. Methylation of the promoter-associated CpG island of GSTP1 occurs in many hormone-sensitive cancers, has been shown to be a biomarker for the early detection of cancerous lesions and has been associated with important clinical parameters, such as survival and response to treatment. In the current manuscript, we assessed the performance of several widely-used sodium bisulfite conversion-dependent methods (methylation-specific PCR, MethyLight, pyrosequencing and MALDI mass-spectrometry) for the analysis of DNA methylation patterns in the GSTP1 promoter. We observed large discordances between the results obtained by the different technologies. Cloning and sequencing of the investigated region resolved single-molecule DNA methylation patterns and identified heterogeneous DNA methylation patterns as the underlying cause of the differences. Heterogeneous DNA methylation patterns in the GSTP1 promoter constitute a major obstacle to the implementation of DNA methylation-based analysis of GSTP1 and might explain some of the contradictory findings in the analysis of the significance of GSTP1 promoter methylation in breast cancer.
Collapse
|
29
|
Piccirillo SGM, Spiteri I. Intratumor heterogeneity and transcriptional profiling in glioblastoma: translational opportunities. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of phenotypic and genetic intratumor heterogeneity in glioblastoma is attracting a lot of attention. Recent studies have demonstrated that transcriptional profiling analysis can help interpret the complexity of this disease. Previously proposed molecular classifiers have been recently challenged due to the unexpected degree of intratumor heterogeneity that has been described spatially and at single-cell level. Different computational methods have been employed to analyze this huge amount of data, but new experimental designs including multisampling from individual patients and single-cell experiments require new specific approaches. In light of these results, there is hope that integration of genetic, phenotypic and transcriptional data coupled with functional experiments might help define new therapeutic strategies and classify patients according to key pathways and molecular targets that can be further investigated to develop personalized and combinatorial treatment strategies.
Collapse
Affiliation(s)
- Sara GM Piccirillo
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Inmaculada Spiteri
- The Institute of Cancer Research, Centre for Evolution and Cancer, 15 Cotswold Road, Sutton SM2 5NG, UK
| |
Collapse
|
30
|
Ogura R, Tsukamoto Y, Natsumeda M, Isogawa M, Aoki H, Kobayashi T, Yoshida S, Okamoto K, Takahashi H, Fujii Y, Kakita A. Immunohistochemical profiles of IDH1, MGMT and P53: Practical significance for prognostication of patients with diffuse gliomas. Neuropathology 2015; 35:324-35. [DOI: 10.1111/neup.12196] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/21/2014] [Accepted: 12/22/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Ryosuke Ogura
- Department of Pathology; Brain Research Institute; University of Niigata; Niigata Japan
| | - Yoshihiro Tsukamoto
- Department of Pathology; Brain Research Institute; University of Niigata; Niigata Japan
| | - Manabu Natsumeda
- Department of Neurosurgery; Brain Research Institute; University of Niigata; Niigata Japan
| | - Mizuho Isogawa
- Department of Neurosurgery; Brain Research Institute; University of Niigata; Niigata Japan
| | - Hiroshi Aoki
- Department of Neurosurgery; Brain Research Institute; University of Niigata; Niigata Japan
| | - Tsutomu Kobayashi
- Department of Neurosurgery; Brain Research Institute; University of Niigata; Niigata Japan
| | - Seiichi Yoshida
- Department of Neurosurgery; Brain Research Institute; University of Niigata; Niigata Japan
| | - Kouichiro Okamoto
- Department of Neurosurgery; Brain Research Institute; University of Niigata; Niigata Japan
| | - Hitoshi Takahashi
- Department of Pathology; Brain Research Institute; University of Niigata; Niigata Japan
| | - Yukihiko Fujii
- Department of Neurosurgery; Brain Research Institute; University of Niigata; Niigata Japan
| | - Akiyoshi Kakita
- Department of Pathology; Brain Research Institute; University of Niigata; Niigata Japan
| |
Collapse
|
31
|
van Thuijl HF, Mazor T, Johnson BE, Fouse SD, Aihara K, Hong C, Malmström A, Hallbeck M, Heimans JJ, Kloezeman JJ, Stenmark-Askmalm M, Lamfers MLM, Saito N, Aburatani H, Mukasa A, Berger MS, Söderkvist P, Taylor BS, Molinaro AM, Wesseling P, Reijneveld JC, Chang SM, Ylstra B, Costello JF. Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment. Acta Neuropathol 2015; 129:597-607. [PMID: 25724300 DOI: 10.1007/s00401-015-1403-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/21/2015] [Accepted: 02/21/2015] [Indexed: 01/25/2023]
Abstract
Temozolomide (TMZ) increases the overall survival of patients with glioblastoma (GBM), but its role in the clinical management of diffuse low-grade gliomas (LGG) is still being defined. DNA hypermethylation of the O (6) -methylguanine-DNA methyltransferase (MGMT) promoter is associated with an improved response to TMZ treatment, while inactivation of the DNA mismatch repair (MMR) pathway is associated with therapeutic resistance and TMZ-induced mutagenesis. We previously demonstrated that TMZ treatment of LGG induces driver mutations in the RB and AKT-mTOR pathways, which may drive malignant progression to secondary GBM. To better understand the mechanisms underlying TMZ-induced mutagenesis and malignant progression, we explored the evolution of MGMT methylation and genetic alterations affecting MMR genes in a cohort of 34 treatment-naïve LGGs and their recurrences. Recurrences with TMZ-associated hypermutation had increased MGMT methylation compared to their untreated initial tumors and higher overall MGMT methylation compared to TMZ-treated non-hypermutated recurrences. A TMZ-associated mutation in one or more MMR genes was observed in five out of six TMZ-treated hypermutated recurrences. In two cases, pre-existing heterozygous deletions encompassing MGMT, or an MMR gene, were followed by TMZ-associated mutations in one of the genes of interest. These results suggest that tumor cells with methylated MGMT may undergo positive selection during TMZ treatment in the context of MMR deficiency.
Collapse
|
32
|
Parker NR, Khong P, Parkinson JF, Howell VM, Wheeler HR. Molecular heterogeneity in glioblastoma: potential clinical implications. Front Oncol 2015; 5:55. [PMID: 25785247 PMCID: PMC4347445 DOI: 10.3389/fonc.2015.00055] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/18/2015] [Indexed: 01/08/2023] Open
Abstract
Glioblastomas, (grade 4 astrocytomas), are aggressive primary brain tumors characterized by histopathological heterogeneity. High-resolution sequencing technologies have shown that these tumors also feature significant inter-tumoral molecular heterogeneity. Molecular subtyping of these tumors has revealed several predictive and prognostic biomarkers. However, intra-tumoral heterogeneity may undermine the use of single biopsy analysis for determining tumor genotype and has implications for potential targeted therapies. The clinical relevance and theories of tumoral molecular heterogeneity in glioblastoma are discussed.
Collapse
Affiliation(s)
- Nicole Renee Parker
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St Leonards, NSW , Australia
| | - Peter Khong
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St Leonards, NSW , Australia
| | - Jonathon Fergus Parkinson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St Leonards, NSW , Australia ; Department of Neurosurgery, Royal North Shore Hospital , St Leonards, NSW , Australia
| | - Viive Maarika Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St Leonards, NSW , Australia
| | - Helen Ruth Wheeler
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St Leonards, NSW , Australia ; Department of Medical Oncology, Royal North Shore Hospital , St Leonards, NSW , Australia
| |
Collapse
|
33
|
Brown R, Curry E, Magnani L, Wilhelm-Benartzi CS, Borley J. Poised epigenetic states and acquired drug resistance in cancer. Nat Rev Cancer 2014; 14:747-53. [PMID: 25253389 DOI: 10.1038/nrc3819] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epigenetic events, which are somatically inherited through cell division, are potential drivers of acquired drug resistance in cancer. The high rate of epigenetic change in tumours generates diversity in gene expression patterns that can rapidly evolve through drug selection during treatment, leading to the development of acquired resistance. This will potentially confound stratified chemotherapy decisions that are solely based on mutation biomarkers. Poised epigenetic states in tumour cells may drive multistep epigenetic fixation of gene expression during the acquisition of drug resistance, which has implications for clinical strategies to prevent the emergence of drug resistance.
Collapse
Affiliation(s)
- Robert Brown
- Department of Surgery &Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Edward Curry
- Department of Surgery &Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Luca Magnani
- Department of Surgery &Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | | | - Jane Borley
- Department of Surgery &Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| |
Collapse
|
34
|
Kanemoto M, Shirahata M, Nakauma A, Nakanishi K, Taniguchi K, Kukita Y, Arakawa Y, Miyamoto S, Kato K. Prognostic prediction of glioblastoma by quantitative assessment of the methylation status of the entire MGMT promoter region. BMC Cancer 2014; 14:641. [PMID: 25175833 PMCID: PMC4161852 DOI: 10.1186/1471-2407-14-641] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/27/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation is reported to be a prognostic and predictive factor of alkylating chemotherapy for glioblastoma patients. Methylation specific PCR (MSP) has been most commonly used when the methylation status of MGMT is assessed. However, technical obstacles have hampered the implementation of MSP-based diagnostic tests. We quantitatively analyzed the methylation status of the entire MGMT promoter region and applied this information for prognostic prediction using sequencing technology. METHODS Between 1998 and 2012, the genomic DNA of 85 tumor samples from newly diagnosed glioblastoma patients was subjected to bisulfite treatment and subdivided into a training set, consisting of fifty-three samples, and a test set, consisting of thirty-two samples. The training set was analyzed by deep Sanger sequencing with a sequencing coverage of up to 96 clones per sample. This analysis quantitatively revealed the degree of methylation of each cytidine phosphate guanosine (CpG) site. Based on these data, we constructed a prognostic prediction system for glioblastoma patients using a supervised learning method. We then validated this prediction system by deep sequencing with a next-generation sequencer using a test set of 32 samples. RESULTS The methylation status of the MGMT promoter was correlated with progression-free survival (PFS) in our patient population in the training set. The degree of correlation differed among the CpG sites. Using the data from the top twenty CpG sites, we constructed a prediction system for overall survival (OS) and PFS. The system successfully classified patients into good and poor prognosis groups in both the training set (OS, p = 0.0381; PFS, p = 0.00122) and the test set (OS, p = 0.0476; PFS, p = 0.0376). Conventional MSP could not predict the prognosis in either of our sets. (training set: OS; p = 0.993 PFS; p = 0.113, test set: OS; p = 0.326 PFS; p = 0.342). CONCLUSIONS The prognostic ability of our prediction system using sequencing data was better than that of methylation-specific PCR (MSP). Advances in sequencing technologies will make this approach a plausible option for diagnoses based on MGMT promotor methylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kikuya Kato
- Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka, Japan.
| |
Collapse
|
35
|
Toffolatti L, Scquizzato E, Cavallin S, Canal F, Scarpa M, Stefani PM, Gherlinzoni F, Dei Tos AP. MGMT promoter methylation and correlation with protein expression in primary central nervous system lymphoma. Virchows Arch 2014; 465:579-86. [PMID: 25031012 DOI: 10.1007/s00428-014-1622-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 06/04/2014] [Accepted: 06/30/2014] [Indexed: 12/26/2022]
Abstract
The O (6)-methylguanine-DNA-methyltransferase (MGMT) gene encodes for a DNA repairing enzyme of which silencing by promoter methylation is involved in brain tumorigenesis. MGMT promoter methylation represents a favorable prognostic factor and has been associated with a better response to alkylating agents in glioma and systemic lymphoma. Primary central nervous system lymphoma (PCNSL) is a rare and aggressive extranodal malignant lymphoma. The current standard of care, based on high-dose methotrexate chemotherapy, has improved prognosis but outcome remains poor for a majority of patients. Therapeutic progress in this field is conditioned by limited biological and molecular knowledge about the disease. Temozolomide has recently emerged as an alternative option for PCNSL treatment. We aimed to analyze the MGMT gene methylation status in a series of 24 PCNSLs, to investigate the relationship between methylation status of the gene and immunohistochemical expression of MGMT protein and to evaluate the possible prognostic significance of these biomarkers. Our results confirm that methylation of the MGMT gene and loss of MGMT protein are frequent events in these lymphomas (54 % of our cases) and suggest that they are gender and age related. MGMT methylation showed high correlation with loss of protein expression (concordance correlation coefficient = -0.49; Fisher exact test: p < 0.01), different from what has been observed in other brain tumors. In the subgroup of ten patients who received high dose chemotherapy, the presence of methylated MGMT promoter (n = 4), seems to be associated with a prolonged overall survival (>60 months in three of four patients). The prognostic significance of these molecular markers in PCNSL needs to be further studied in groups of patients treated in a homogeneous way.
Collapse
Affiliation(s)
- L Toffolatti
- Department of Pathology, Treviso General Hospital, Piazzale Ospedale 1, 31100, Treviso, TV, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
36
|
MGMT promoter methylation in plasma of glioma patients receiving temozolomide. J Neurooncol 2014; 117:347-57. [DOI: 10.1007/s11060-014-1395-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/28/2014] [Indexed: 11/27/2022]
|
37
|
Schmitt AM, Pavel M, Rudolph T, Dawson H, Blank A, Komminoth P, Vassella E, Perren A. Prognostic and predictive roles of MGMT protein expression and promoter methylation in sporadic pancreatic neuroendocrine neoplasms. Neuroendocrinology 2014; 100:35-44. [PMID: 25012122 DOI: 10.1159/000365514] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 06/24/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS O(6)-methylguanine-methyltransferase (MGMT) is an important enzyme of DNA repair. MGMT promoter methylation is detectable in a subset of pancreatic neuroendocrine neoplasms (pNEN). A subset of pNEN responds to the alkylating agent temozolomide (TMZ). We wanted to correlate MGMT promoter methylation with MGMT protein loss in pNEN, correlate the findings with clinico-pathological data and determine the role of MGMT to predict response to TMZ chemotherapy. METHODS We analysed a well-characterized collective of 141 resected pNEN with median follow-up of 83 months for MGMT protein expression and promoter methylation using methylation-specific PCR (MSP). A second collective of 10 metastasized, pretreated and progressive patients receiving TMZ was used to examine the predictive role of MGMT by determining protein expression and promoter methylation using primer extension-based quantitative PCR. RESULTS In both collectives there was no correlation between MGMT protein expression and promoter methylation. Loss of MGMT protein was associated with an adverse outcome, this prognostic value, however, was not independent from grade and stage in multivariate analysis. Promoter hypermethylation was significantly associated with response to TMZ. CONCLUSION Loss of MGMT protein expression is associated with adverse outcome in a surgical series of pNET. MGMT promoter methylation could be a predictive marker for TMZ chemotherapy in pNEN, but further, favourably prospective studies will be needed to confirm this result and before this observation can influence clinical routine.
Collapse
Affiliation(s)
- Anja Maria Schmitt
- Department of Pathology, Institute of Clinical Pathology, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Pontes LDB, Karnakis T, Malheiros SMF, Weltman E, Brandt RA, Guendelmann RAK. Glioblastoma: approach to treat elderly patients. EINSTEIN-SAO PAULO 2013; 10:512-8. [PMID: 23386096 DOI: 10.1590/s1679-45082012000400021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 07/30/2012] [Indexed: 11/21/2022] Open
Abstract
Treating elderly cancer patients is a challenge for oncologists, especially considering the several therapeutic modalities in glioblastoma. Extensive tumor resection offers the best chance of local control. Adequate radiotherapy should always be given to elderly patients if they have undergone gross total resection and have maintained a good performance status. Rather than being ruled out, chemotherapy should be considered, and temozolomide is the chosen drug. A comprehensive geriatric assessment is a valuable tool to help guiding treatment decisions in elderly patients with glioblastoma.
Collapse
|
39
|
Current progress for the use of miRNAs in glioblastoma treatment. Mol Neurobiol 2013; 48:757-68. [PMID: 23625340 DOI: 10.1007/s12035-013-8464-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/16/2013] [Indexed: 12/24/2022]
Abstract
Glioblastoma (GBM) is a highly aggressive brain cancer with the worst prognosis of any central nervous system disease despite intensive multimodal therapy. Inevitably, glioblastoma is fatal, with recurrence of treatment-resistant tumour growth at distal sites leading to an extremely low median survival rate of 12-15 months from the time of initial diagnosis. With the advent of microarray and gene profiling technology, researchers have investigated trends in genetic alterations and, in this regard, the role of dysregulated microRNAs (highly conserved endogenous small RNA molecules) in glioblastoma has been studied with a view to identifying novel mechanisms of acquired drug resistance and allow for development of microRNA (miRNA)-based therapeutics for GBM patients. Considering the development of miRNA research from initial association to GBM to commercial development of miR-based therapeutics in less than a decade, it is not beyond reasonable doubt to anticipate significant advancements in this field of study, hopefully with the ultimate conclusion of improved patient outcome. This review discusses the recent advancements in miRNA-based therapeutic development for use in glioblastoma treatment and the challenges faced with respect to in vivo and clinical application.
Collapse
|
40
|
Mason S, McDonald K. MGMT testing for glioma in clinical laboratories: discordance with methylation analyses prevents the implementation of routine immunohistochemistry. J Cancer Res Clin Oncol 2012; 138:1789-97. [PMID: 22986811 DOI: 10.1007/s00432-012-1312-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/05/2012] [Indexed: 12/15/2022]
Abstract
PURPOSE Glioblastoma is a universally fatal cancer of the central nervous system which responds poorly to treatment. MGMT has potential as a predictive biomarker in glioblastoma patients to determine treatment response. However, methods of measuring MGMT are currently unsatisfactory, and as such, use of this marker has not translated well into the clinic. This paper aims to review current methodology of MGMT measurement, with a focus on immunohistochemistry as a potential way forward. TOPICS AND METHODS: Studies of glioma patients where MGMT immunohistochemistry was undertaken, as well as the literature surrounding methylation analyses and the regulation of MGMT, were reviewed. RESULTS All methods of measuring MGMT were disputed in some way in the literature. A trend of discordance between methylation analyses and protein analyses was present. There is a lack of standardisation in the measurement of MGMT, and as a result, it seems that there are highly variable results. CONCLUSIONS No single method of MGMT analysis has emerged as a clear choice for routine clinical testing of MGMT in glioma patients. Although methylation analyses are favoured, their expense and inaccessibility are barriers to their use in routine clinical practice. More research into immunohistochemistry is needed to determine whether it can serve as a reliable and cost-effective alternative to methylation analyses.
Collapse
Affiliation(s)
- Sofia Mason
- Cure for Life Foundation for Neuro-Oncology, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Kensington, Australia.
| | | |
Collapse
|
41
|
Castro GN, Cayado-Gutiérrez N, Moncalero VL, Lima P, De Angelis RL, Chávez V, Cuello-Carrión FD, Ciocca DR. Hsp27 (HSPB1): a possible surrogate molecular marker for loss of heterozygosity (LOH) of chromosome 1p in oligodendrogliomas but not in astrocytomas. Cell Stress Chaperones 2012; 17:779-90. [PMID: 22806482 PMCID: PMC3468673 DOI: 10.1007/s12192-012-0350-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 11/29/2022] Open
Abstract
In oligodendrogliomas, 1p loss of heterozygosity (LOH) is a predictor of good prognosis and treatment response. In contrast, in uveal melanomas, LOH of chromosome 3 has been linked to poor prognosis and downregulation of Hsp27. In the present study, we have analyzed the expression of heat-shock proteins (Hsps) to characterize subtypes of gliomas and their histopathologic features and to correlate with other molecular markers including LOH of 1p. Biopsies from patients with primary gliomas (n = 65) were analyzed by immunohistochemistry, chromogenic in situ hybridization and fluorescent in situ hybridization and methylation-specific PCR (MSP). Elevated Hsp27 and total Hsp70 expression levels were associated with high-grade astrocytomas (p = 0.0001 and p = 0.01, respectively). In grade III oligodendrogliomas, the Hsp27 levels were significantly higher (p = 0.03). Low O6-methylguanine-DNA methyltransferase (MGMT) expression was associated with grade II astrocytomas. Elevated β-catenin expression was associated with grade III/IV astrocytomas (p = 0.003); p53 (+) tumors were more frequently found in grade III/IV astrocytomas (p = 0,001). LOH on 1p was associated with oligodendroglial tumours. In addition, a higher Hsp27 expression correlated with LOH of 1p (p = 0.017); this was also tested in two glioma cell lines. MSP was successful in only six samples. No significant correlations were found for the other markers. In conclusion, in oligodendroglial tumors, Hsp27 appeared as a surrogate marker of LOH of 1p which could also help to predict the disease prognosis. In gliomas, p53, Hsp27, Hsp70, MGMT, and β-catenin correlated with histopathological characteristics, suggesting that these markers could predict the disease outcome and the response to treatments.
Collapse
Affiliation(s)
- Gisela N. Castro
- Laboratory of Oncology, IMBECU, National Research Council, Mendoza, Argentina
| | | | - Vera L. Moncalero
- Laboratorio de Neuro y Citogenética Molecular, UN San Martín, CONICET, Buenos Aires, Argentina
| | | | | | | | | | - Daniel R. Ciocca
- Laboratory of Oncology, IMBECU, National Research Council, Mendoza, Argentina
- Laboratory of Oncology, IMBECU-CCT, CONICET, Dr. A. Ruiz Leal s/n, Parque General San Martín, 5500 Mendoza, Argentina
| |
Collapse
|
42
|
The Changes in MGMT Promoter Methylation Status in Initial and Recurrent Glioblastomas. Transl Oncol 2012; 5:393-7. [PMID: 23066447 DOI: 10.1593/tlo.12253] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/07/2012] [Accepted: 08/07/2012] [Indexed: 01/26/2023] Open
Abstract
To evaluate the mechanism of the development of therapeutic resistance after temozolomide treatment, we focused on changes in O(6)-methylguanine DNA methyltransferase (MGMT) and mismatch repair (MMR) between initial and recurrent glioblastomas. Tissue samples obtained from 24 paired histologically confirmed initial and recurrent adult glioblastoma patients who were initially treated with temozolomide were used for MGMT and MMR gene promoter methylation status and protein expression analysis using methylation-specific multiplex ligation probe amplification (MS-MLPA), methylation-specific polymerase chain reaction (MSP), and immunohistochemical staining. There was a significant decrease in the methylation ratio of the MGMT promoter determined by MS-MLPA, which was not detectable with MSP, and MGMT protein expression changes were not remarkable. However, there was no epigenetic variability in MMR genes, and a relatively homogeneous expression of MMR proteins was observed in initial and recurrent tumors. We conclude that the development of reduced methylation in the MGMT promoter is one of the mechanisms for acquiring therapeutic resistance after temozolomide treatment in glioblastomas.
Collapse
|
43
|
Salvati M, Pichierri A, Piccirilli M, Floriana Brunetto GM, D'Elia A, Artizzu S, Santoro F, Arcella A, Giangaspero F, Frati A, Simione L, Santoro A. Extent of tumor removal and molecular markers in cerebral glioblastoma: a combined prognostic factors study in a surgical series of 105 patients. J Neurosurg 2012; 117:204-11. [PMID: 22655594 DOI: 10.3171/2012.4.jns101702] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT In this paper, the authors' goal was to evaluate the prognostic value of YKL-40 expression as a prognostic factor for glioblastomas and to compare its validity to the already known MGMT. METHODS Between January 2002 and January 2007, 105 patients were treated for cerebral glioblastoma. The extent of removal was classified in 4 groups. YKL-40 expression was evaluated by a semiquantitative immunohistochemical staining scale (0, no staining; 1, mild expression; and 2, strong expression). MGMT promoter methylation status was analyzed with methylation-specific polymerase chain reaction. All patients received adjuvant radiotherapy and chemotherapy. Kaplan-Meier curves were used to analyze progression-free survival (PFS) and overall survival (OS), and to compare these parameters between the subgroups stratified by extent of surgical removal, MGMT methylation, and YKL-40 expression. The log-rank test was used to determine statistical significance. A multivariate regression analysis was applied to extent of removal, YKL-40 expression, and MGMT status to check their specific statistical power and to test the independence of the variables. RESULTS There were 55 men and 50 women with a mean age of 58 years. Extent of surgical removal is reported. The MGMT promoter was methylated in 48 patients and nonmethylated in 57. Analysis of YKL-40 expression is reported. The median PFS was 10.7 months (14.9 months in the gross-total removal subgroup) (p < 0.0001), and the median OS was 12.5 months (17.4 months in the gross-total removal group) (p < 0.0001). In the univariate analysis, OS was significantly correlated to the extent of resection (p < 0.0001), MGMT status (p < 0.0001), and YKL-40 (p < 0.0001). Multivariate analysis showed that all 3 factors reached statistical significance with respect to patient survival. In particular, surgical removal contributed more than the 2 other factors to the survival prediction (β = -0.6254). Interestingly, YKL-40 (β = -0.3867) contributed more than MGMT (β = -0.1705) to the predicted survival. CONCLUSIONS The extent of removal is the most important factor influencing the OS of patients harboring glioblastomas. When biological aggressiveness is taken into account, YKL-40 expression was found to be an independent prognostic factor that predicts OS better than MGMT status.
Collapse
Affiliation(s)
- Maurizio Salvati
- Department of Neurosurgery INM-IRCCS Neuromed, Pozzilli (Isernia), University of Rome "Sapienza;" Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Desjardins A, Reardon DA, Coan A, Marcello J, Herndon JE, Bailey L, Peters KB, Friedman HS, Vredenburgh JJ. Bevacizumab and daily temozolomide for recurrent glioblastoma. Cancer 2012; 118:1302-12. [PMID: 21792866 DOI: 10.1002/cncr.26381] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 11/06/2022]
Abstract
BACKGROUND The authors performed a phase 2 trial of combined protracted daily temozolomide and biweekly bevacizumab for patients with recurrent glioblastoma who had previously received radiation therapy and temozolomide. METHODS There was no limit on the number of previous disease progressions or previous regimens allowed. Thirty-two adult patients were enrolled. Patients received temozolomide 50 mg/m(2) daily and bevacizumab 10 mg/kg intravenously every 14 days. Patients underwent physical examination and brain magnetic resonance imaging every 8 weeks. RESULTS The authors observed a 6-month progression-free survival (PFS) rate of 18.8% (95% confidence interval [CI], 7.6%-33.7%) and a median PFS of 15.8 weeks. The median overall survival (OS) was 37 weeks, the 6-month OS rate was 62.5% (95% CI, 43.5%-76.7%), and the 12-month OS rate was 31.3% (95% CI, 16.4%-47.3%). Nine patients (28%) had a radiographic response, and 7 patients (22%) had disease progression within the first 8 weeks of treatment. Patterns of progression were available for 21 patients. The authors observed that 52% of patients (n = 11) progressed locally, 38% (n = 8) progressed with a diffuse pattern, and 10% (n = 2) progressed at a distant site. Two patients discontinued therapy secondary to toxicity (prolonged thrombocytopenia and grade 4 pancreatitis). One patient experienced grade 5 pneumonia. CONCLUSIONS The current study demonstrated that a regimen of combined daily temozolomide and biweekly bevacizumab had some activity and was well tolerated. However, the results obtained in this study were inferior to those observed in studies of bevacizumab monotherapy and of combined irinotecan and bevacizumab therapy. The current patient population was more heterogeneous and was pretreated more heavily than patients in previous studies.
Collapse
Affiliation(s)
- Annick Desjardins
- Department of Neurology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Giussani P, Bassi R, Anelli V, Brioschi L, De Zen F, Riccitelli E, Caroli M, Campanella R, Gaini SM, Viani P, Riboni L. Glucosylceramide synthase protects glioblastoma cells against autophagic and apoptotic death induced by temozolomide and Paclitaxel. Cancer Invest 2012; 30:27-37. [PMID: 22236187 DOI: 10.3109/07357907.2011.629379] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glioblastoma is a deadly cancer with intrinsic chemoresistance. Understanding this property will aid in therapy. Glucosylceramide synthase (GCS) is associated with resistance and poor outcome; little is known about glioblastomas. In glioblastoma cells, temozolomide and paclitaxel induce ceramide increase, which in turn promotes cytotoxicity. In drug-resistant cells, both drugs are unable to accumulate ceramide, increased expression and activity of GCS is present, and its inhibitors hinder resistance. Resistant cells exhibit cross-resistance, despite differing in marker expression, and cytotoxic mechanism. These findings suggest that GCS protects glioblastoma cells against autophagic and apoptotic death, and contributes to cell survival under chemotherapy.
Collapse
Affiliation(s)
- P Giussani
- Department of Medical Chemistry, Biochemistry and Biotechnology, LITA-Segrate, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pathological findings and prognostic factors in recurrent glioblastomas. Brain Tumor Pathol 2012; 29:192-200. [PMID: 22331317 DOI: 10.1007/s10014-012-0084-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/20/2012] [Indexed: 10/28/2022]
Abstract
Glioblastomas, which are the most common primary intracranial tumor, are associated with the poorest survival time, which is typically 1-2 years. Age at initial diagnosis, Karnofsky performance score, and O(6)-methylguanine DNA-methyltransferase (MGMT) promoter methylation status are the most well-documented predictors of survival in patients with newly diagnosed glioblastoma. Few studies have examined prognostic factors in patients with recurrent glioblastomas. At relapse, the pathological features of glioblastomas are affected by tumor regrowth and the influence of chemoradiotherapy during the initial treatment. Morphological transformations at recurrence include quantitative changes in tumor cells, such as the presence of giant cells and gemistocytic cell formation, radiation necrosis, and vascular structural changes. Therefore, we should carefully examine pathological findings at recurrence. In this report, we analyzed MGMT promoter status, the MIB-1 index, and the pathology of tumor samples at the first (primary tumor) and second (recurrent tumor) surgeries and clarified prognostic factors in patients with recurrent cases. In the multivariate analysis, we showed that MIB-1 indexes at the time of the second surgery (p = 0.004) persisted as a significant independent prognostic factor in survival of patients with recurrent glioblastoma.
Collapse
|
47
|
Iaccarino C, Nicoli D, Serra S, Froio E, Pisanello A, De Berti G, Ghadirpour R, Marcello N, Servadei F, Carinci F. Analysis of MGMT promoter methylation status on intraoperative fresh tissue section from frameless neuronavigation needle biopsy of 25 patients with brain tumor. Int J Immunopathol Pharmacol 2011; 24:37-43. [PMID: 21781444 DOI: 10.1177/03946320110240s208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Formalin fixation under conditions that adversely affected the quality of the DNA, or indeterminant assay, or extensive tumor necrosis can compromise the genetic analysis of a brain bioptic sample. The success of DNA extraction and Methyl Guanine Methyl Transferase (MGMT) promoter methylation testing could be improved by freezing of fresh tumor tissue at the moment of biopsy. To ensure an increased concentration of the DNA samples the withdrawal should be performed in an area with high probability of neoplastic cells. From May 2007 to January 2011 fifty-two frameless neuronavigation brain needle biopsy were performed at the Neurosurgery Unit of the "Arcispedale Santa Maria Nuova" City Hospital of Reggio Emilia. The "image-guided" neuronavigated protocol sampling provided withdrawal specimens highly correlated with neuroimaging characteristics of the lesions. In this study the Authors report the genetic analysis on 24 cases of freezing fresh tissue from brain needle bioptic sample starting from July 2008. The molecular determination of MGMT promoter was assessed with the Nested-Methylation Specific-Polymerase Chain Reaction on fresh or cryopreserved needle bioptic tissue. The genetic characterization was feasible in all the bioptic samples. The MGMT promoter was methylated in eleven patients, including a brain infection. The diagnostic yield of brain biopsy could be increased by the neuronavigated trajectories and the intraoperative frozen sections. In the future the availability of the molecular-genetic characterization of a brain tumor before open surgery will provide important information for the optimal treatment. The MGMT promoter status analysis on needle bioptic fresh tissue could be available also for that patient not eligible for surgical remotion of the tumor.
Collapse
Affiliation(s)
- C Iaccarino
- Hub and Spoke Neurosurgery Unit-Emergency Department, University Hospital of Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Christmann M, Verbeek B, Roos WP, Kaina B. O(6)-Methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: enzyme activity, promoter methylation and immunohistochemistry. Biochim Biophys Acta Rev Cancer 2011; 1816:179-90. [PMID: 21745538 DOI: 10.1016/j.bbcan.2011.06.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 12/29/2022]
Abstract
O(6)-Methylguanine-DNA methyltransferase (MGMT) is a suicide enzyme that repairs the pre-mutagenic, pre-carcinogenic and pre-toxic DNA damage O(6)-methylguanine. It also repairs larger adducts on the O(6)-position of guanine, such as O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine and O(6)-chloroethylguanine. These adducts are formed in response to alkylating environmental pollutants, tobacco-specific carcinogens and methylating (procarbazine, dacarbazine, streptozotocine, and temozolomide) as well as chloroethylating (lomustine, nimustine, carmustine, and fotemustine) anticancer drugs. MGMT is therefore a key node in the defense against commonly found carcinogens, and a marker of resistance of normal and cancer cells exposed to alkylating therapeutics. MGMT also likely protects against therapy-related tumor formation caused by these highly mutagenic drugs. Since the amount of MGMT determines the level of repair of toxic DNA alkylation adducts, the MGMT expression level provides important information as to cancer susceptibility and the success of therapy. In this article, we describe the methods employed for detecting MGMT and review the literature with special focus on MGMT activity in normal and neoplastic tissues. The available data show that the expression of MGMT varies greatly in normal tissues and in some cases this has been related to cancer predisposition. MGMT silencing in tumors is mainly regulated epigenetically and in brain tumors this correlates with a better therapeutic response. Conversely, up-regulation of MGMT during cancer treatment limits the therapeutic response. In malignant melanoma, MGMT is not related to the therapeutic response, which is due to other mechanisms of inherent drug resistance. For most cancers, studies that relate MGMT activity to therapeutic outcome following O(6)-alkylating drugs are still lacking.
Collapse
Affiliation(s)
- Markus Christmann
- Insitute of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | | | | | |
Collapse
|
49
|
|
50
|
Salehi F, Scheithauer BW, Kros JM, Lau Q, Fealey M, Erickson D, Kovacs K, Horvath E, Lloyd RV. MGMT promoter methylation and immunoexpression in aggressive pituitary adenomas and carcinomas. J Neurooncol 2011; 104:647-57. [DOI: 10.1007/s11060-011-0532-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/31/2011] [Indexed: 01/08/2023]
|