1
|
Swildens KX, Sillevis Smitt PAE, van den Bent MJ, French PJ, Geurts M. The Effect of Dexamethasone on the Microenvironment and Efficacy of Checkpoint Inhibitors in Glioblastoma: A Systematic Review. Neurooncol Adv 2022; 4:vdac087. [PMID: 35990704 PMCID: PMC9389427 DOI: 10.1093/noajnl/vdac087] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Checkpoint inhibitor immunotherapy has not proven clinically effective in glioblastoma. This lack of effectiveness may be partially attributable to the frequent administration of dexamethasone in glioblastoma patients. In this systematic review, we assess whether dexamethasone (1) affects the glioblastoma microenvironment and (2) interferes with checkpoint inhibitor immunotherapy efficacy in the treatment of glioblastoma. Methods PubMed and Embase were systematically searched for eligible articles published up to September 15, 2021. Both in vitro and in vivo preclinical studies, as well as clinical studies were selected. The following information was extracted from each study: tumor model, corticosteroid treatment, and effects on individual immune components or checkpoint inhibitor immunotherapy. Results Twenty-one preclinical studies in cellular glioma models (n = 10), animal glioma models (n = 6), and glioblastoma patient samples (n = 7), and 3 clinical studies were included. Preclinical studies show that dexamethasone decreases the presence of microglia and other macrophages as well as the number of T lymphocytes in both tumor tissue and periphery. Dexamethasone abrogates the antitumor effects of checkpoint inhibitors on T lymphocytes in preclinical studies. Although randomized studies directly addressing our research question are lacking, clinical studies suggest a negative association between corticosteroids and survival outcomes in glioblastoma patients receiving checkpoint inhibitors after adjustment for relevant prognostic factors. Conclusions Preclinical research shows that dexamethasone inhibits the antitumor immune response in glioma, thereby promoting a protumorigenic microenvironment. The efficacy of checkpoint inhibitor immunotherapy in glioblastoma patients may therefore be negatively affected by the use of dexamethasone. Future research could investigate the potential of edema-reducing alternatives to dexamethasone.
Collapse
Affiliation(s)
- Kyra X Swildens
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute , Rotterdam, The Netherlands
| | - Peter A E Sillevis Smitt
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute , Rotterdam, The Netherlands
| | - Martin J van den Bent
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute , Rotterdam, The Netherlands
| | - Pim J French
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute , Rotterdam, The Netherlands
| | - Marjolein Geurts
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute , Rotterdam, The Netherlands
| |
Collapse
|
2
|
Codrici E, Popescu ID, Tanase C, Enciu AM. Friends with Benefits: Chemokines, Glioblastoma-Associated Microglia/Macrophages, and Tumor Microenvironment. Int J Mol Sci 2022; 23:ijms23052509. [PMID: 35269652 PMCID: PMC8910233 DOI: 10.3390/ijms23052509] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
Glioma is the most common primary intracranial tumor and has the greatest prevalence of all brain tumors. Treatment resistance and tumor recurrence in GBM are mostly explained by considerable alterations within the tumor microenvironment, as well as extraordinary cellular and molecular heterogeneity. Soluble factors, extracellular matrix components, tissue-resident cell types, resident or newly recruited immune cells together make up the GBM microenvironment. Regardless of many immune cells, a profound state of tumor immunosuppression is supported and developed, posing a considerable hurdle to cancer cells' immune-mediated destruction. Several studies have suggested that various GBM subtypes present different modifications in their microenvironment, although the importance of the microenvironment in treatment response has yet to be determined. Understanding the microenvironment and how it changes after therapies is critical because it can influence the remaining invasive GSCs and lead to recurrence. This review article sheds light on the various components of the GBM microenvironment and their roles in tumoral development, as well as immune-related biological processes that support the interconnection/interrelationship between different cell types. Also, we summarize the current understanding of the modulation of soluble factors and highlight the dysregulated inflammatory chemokine/specific receptors cascades/networks and their significance in tumorigenesis, cancer-related inflammation, and metastasis.
Collapse
Affiliation(s)
- Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| | - Ionela-Daniela Popescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Department of Clinical Biochemistry, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| |
Collapse
|
3
|
do Nascimento RP, dos Santos BL, Amparo JAO, Soares JRP, da Silva KC, Santana MR, Almeida ÁMAN, da Silva VDA, Costa MDFD, Ulrich H, Moura-Neto V, Lopes GPDF, Costa SL. Neuroimmunomodulatory Properties of Flavonoids and Derivates: A Potential Action as Adjuvants for the Treatment of Glioblastoma. Pharmaceutics 2022; 14:pharmaceutics14010116. [PMID: 35057010 PMCID: PMC8778519 DOI: 10.3390/pharmaceutics14010116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 01/27/2023] Open
Abstract
Glioblastomas (GBMs) are tumors that have a high ability to migrate, invade and proliferate in the healthy tissue, what greatly impairs their treatment. These characteristics are associated with the complex microenvironment, formed by the perivascular niche, which is also composed of several stromal cells including astrocytes, microglia, fibroblasts, pericytes and endothelial cells, supporting tumor progression. Further microglia and macrophages associated with GBMs infiltrate the tumor. These innate immune cells are meant to participate in tumor surveillance and eradication, but they become compromised by GBM cells and exploited in the process. In this review we discuss the context of the GBM microenvironment together with the actions of flavonoids, which have attracted scientific attention due to their pharmacological properties as possible anti-tumor agents. Flavonoids act on a variety of signaling pathways, counteracting the invasion process. Luteolin and rutin inhibit NFκB activation, reducing IL-6 production. Fisetin promotes tumor apoptosis, while inhibiting ADAM expression, reducing invasion. Naringenin reduces tumor invasion by down-regulating metalloproteinases expression. Apigenin and rutin induce apoptosis in C6 cells increasing TNFα, while decreasing IL-10 production, denoting a shift from the immunosuppressive Th2 to the Th1 profile. Overall, flavonoids should be further exploited for glioma therapy.
Collapse
Affiliation(s)
- Ravena Pereira do Nascimento
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Balbino Lino dos Santos
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
- Academic College of Nurse, Department of Health, Federal University of Vale do São Francisco, Petrolina 56304-205, Pernambuco, Brazil
| | - Jéssika Alves Oliveira Amparo
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Janaina Ribeiro Pereira Soares
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Karina Costa da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Monique Reis Santana
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Áurea Maria Alves Nunes Almeida
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Victor Diógenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Maria de Fátima Dias Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
- National Institute for Translational Neurosciences (INCT/CNPq INNT), Rio de Janeiro 21941-902, Rio de Janeiro, Brazil;
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
- Correspondence: (H.U.); (S.L.C.)
| | - Vivaldo Moura-Neto
- National Institute for Translational Neurosciences (INCT/CNPq INNT), Rio de Janeiro 21941-902, Rio de Janeiro, Brazil;
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
- Paulo Niemeyer State Institute of the Brain, Rio de Janeiro 20230-024, Rio de Janeiro, Brazil
| | - Giselle Pinto de Faria Lopes
- Department of Marine Biotechnology, Admiral Paulo Moreira Institute for Sea Studies (IEAPM), Arraial do Cabo 28930-000, Rio de Janeiro, Brazil;
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
- National Institute for Translational Neurosciences (INCT/CNPq INNT), Rio de Janeiro 21941-902, Rio de Janeiro, Brazil;
- Correspondence: (H.U.); (S.L.C.)
| |
Collapse
|
4
|
Upadhyayula PS, Higgins DM, Argenziano MG, Spinazzi EF, Wu CC, Canoll P, Bruce JN. The Sledgehammer in Precision Medicine: Dexamethasone and Immunotherapeutic Treatment of Glioma. Cancer Invest 2021; 40:554-566. [PMID: 34151678 DOI: 10.1080/07357907.2021.1944178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Understanding dexamethasone's effect on the immune microenvironment in glioma patients is of key importance. We performed a comprehensive literature review using the NCBI PubMed database for all articles meeting the following search criteria. ((dexamethasone[All Fields]) AND (glioma or glioblastoma)[Title/Abstract]) AND (immune or T cell or B cell or monocyte or neutrophil or macrophage). Forty-three manuscripts were deemed relevant to the topic at hand. Multiple clinical studies have linked dexamethasone use to decreased overall survival while preclinical studies in murine glioma models have demonstrated decreased tumor-infiltrating lymphocytes after dexamethasone administration.
Collapse
Affiliation(s)
- Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Dominique M Higgins
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Eleonora F Spinazzi
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Peter Canoll
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Manhattan, NY, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| |
Collapse
|
5
|
Tu J, Fang Y, Han D, Tan X, Jiang H, Gong X, Wang X, Hong W, Wei W. Activation of nuclear factor-κB in the angiogenesis of glioma: Insights into the associated molecular mechanisms and targeted therapies. Cell Prolif 2020; 54:e12929. [PMID: 33300633 PMCID: PMC7848966 DOI: 10.1111/cpr.12929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most commonly observed primary intracranial tumour and is associated with massive angiogenesis. Glioma neovascularization provides nutrients for the growth and metabolism of tumour tissues, promotes tumour cell division and proliferation, and provides conditions ideal for the infiltration and migration of tumour cells to distant places. Growing evidence suggests that there is a correlation between the activation of nuclear factor (NF)‐κB and the angiogenesis of glioma. In this review article, we highlighted the functions of NF‐κB in the angiogenesis of glioma, showing that NF‐κB activation plays a pivotal role in the growth and progression of glioma angiogenesis and is a rational therapeutic target for antiangiogenic strategies aimed at glioma.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Yilong Fang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Dafei Han
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xuewen Tan
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Haifeng Jiang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xun Gong
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xinming Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenming Hong
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
McLarnon JG. Consideration of a Pharmacological Combinatorial Approach to Inhibit Chronic Inflammation in Alzheimer's Disease. Curr Alzheimer Res 2020; 16:1007-1017. [PMID: 31692444 DOI: 10.2174/1567205016666191106095038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/26/2019] [Accepted: 10/18/2019] [Indexed: 01/14/2023]
Abstract
A combinatorial cocktail approach is suggested as a rationale intervention to attenuate chronic inflammation and confer neuroprotection in Alzheimer's disease (AD). The requirement for an assemblage of pharmacological compounds follows from the host of pro-inflammatory pathways and mechanisms present in activated microglia in the disease process. This article suggests a starting point using four compounds which present some differential in anti-inflammatory targets and actions but a commonality in showing a finite permeability through Blood-brain Barrier (BBB). A basis for firstchoice compounds demonstrated neuroprotection in animal models (thalidomide and minocycline), clinical trial data showing some slowing in the progression of pathology in AD brain (ibuprofen) and indirect evidence for putative efficacy in blocking oxidative damage and chemotactic response mediated by activated microglia (dapsone). It is emphasized that a number of candidate compounds, other than ones suggested here, could be considered as components of the cocktail approach and would be expected to be examined in subsequent work. In this case, systematic testing in AD animal models is required to rigorously examine the efficacy of first-choice compounds and replace ones showing weaker effects. This protocol represents a practical approach to optimize the reduction of microglial-mediated chronic inflammation in AD pathology. Subsequent work would incorporate the anti-inflammatory cocktail delivery as an adjunctive treatment with ones independent of inflammation as an overall preventive strategy to slow the progression of AD.
Collapse
Affiliation(s)
- James G McLarnon
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada
| |
Collapse
|
7
|
Mencke P, Hanss Z, Boussaad I, Sugier PE, Elbaz A, Krüger R. Bidirectional Relation Between Parkinson's Disease and Glioblastoma Multiforme. Front Neurol 2020; 11:898. [PMID: 32973662 PMCID: PMC7468383 DOI: 10.3389/fneur.2020.00898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer and Parkinson's disease (PD) define two disease entities that include opposite concepts. Indeed, the involved mechanisms are at different ends of a spectrum related to cell survival - one due to enhanced cellular proliferation and the other due to premature cell death. There is increasing evidence indicating that patients with neurodegenerative diseases like PD have a reduced incidence for most cancers. In support, epidemiological studies demonstrate an inverse association between PD and cancer. Both conditions apparently can involve the same set of genes, however, in affected tissues the expression was inversely regulated: genes that are down-regulated in PD were found to be up-regulated in cancer and vice versa, for example p53 or PARK7. When comparing glioblastoma multiforme (GBM), a malignant brain tumor with poor overall survival, with PD, astrocytes are dysregulated in both diseases in opposite ways. In addition, common genes, that are involved in both diseases and share common key pathways of cell proliferation and metabolism, were shown to be oppositely deregulated in PD and GBM. Here, we provide an overview of the involvement of PD- and GBM-associated genes in common pathways that are dysregulated in both conditions. Moreover, we illustrate why the simultaneous study of PD and GBM regarding the role of common pathways may lead to a deeper understanding of these still incurable conditions. Eventually, considering the inverse regulation of certain genes in PD and GBM will help to understand their mechanistic basis, and thus to define novel target-based strategies for causative treatments.
Collapse
Affiliation(s)
- Pauline Mencke
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Zoé Hanss
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Ibrahim Boussaad
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | | | - Alexis Elbaz
- Institut de Statistique de l'Université de Paris, Paris, France
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| |
Collapse
|
8
|
Raguraman R, Parameswaran S, Kanwar JR, Vasudevan M, Chitipothu S, Kanwar RK, Krishnakumar S. Gene expression profiling of tumor stroma interactions in retinoblastoma. Exp Eye Res 2020; 197:108067. [PMID: 32585195 DOI: 10.1016/j.exer.2020.108067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 04/23/2020] [Accepted: 05/08/2020] [Indexed: 01/18/2023]
Abstract
We aimed to identify the critical molecular pathways altered upon tumor stroma interactions in retinoblastoma (RB). In vitro 2 D cocultures of RB tumor cells (Weri-Rb-1 and NCC-RbC-51) with primary bone marrow stromal cells (BMSC) was established. Global gene expression patterns in coculture samples were assessed using Affymetrix Prime view human gene chip microarray and followed with bioinformatics analyses. Key upregulated genes from Weri-Rb-1 + BMSC and NCC-RbC-51 + BMSC coculture were validated using qRT-PCR to ascertain their role in RB progression. Whole genome microarray experiments identified significant (P ≤ 0.05, 1.1 log 2 FC) transcriptome level changes induced upon coculture of RB cells with BMSC. A total of 1155 genes were downregulated and 1083 upregulated in Weri-Rb-1 + BMSC coculture. Similarly, 1865 genes showed downregulation and 1644 genes were upregulation in NCC-RbC-51 + BMSC coculture. The upregulated genes were significantly associated with pathways of focal adhesion, PI3K-Akt signalling, ECM-receptor interaction, JAK-STAT, TGF-β signalling thus contributing to RB progression. Validation of key genes by qRT-PCR revealed significant overexpression of IL8, IL6, MYC and SMAD3 in the case of Weri-Rb-1 + BMSC coculture and IL6 in the case of NCC-RbC-51 + BMSC coculture. The microarray expression study on in vitro RB coculture models revealed the pathways that could be involved in the progression of RB. The gene signature obtained in a stimulated model when a growing tumor interacts with its microenvironment may provide new horizons for potential targeted therapy in RB.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Larsen & Toubro Department of Ocular Pathology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, 600006, Tamil Nadu, India; School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, 3216, VIC, Australia
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, 600006, Tamil Nadu, India
| | - Jagat Rakesh Kanwar
- School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, 3216, VIC, Australia
| | | | - Srujana Chitipothu
- Central Research Instrumentation Facility, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, 600006, Tamil Nadu, India
| | - Rupinder Kaur Kanwar
- School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, 3216, VIC, Australia
| | - Subramanian Krishnakumar
- Larsen & Toubro Department of Ocular Pathology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, 600006, Tamil Nadu, India; School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, 3216, VIC, Australia.
| |
Collapse
|
9
|
Signaling Determinants of Glioma Cell Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:129-149. [PMID: 32034712 DOI: 10.1007/978-3-030-30651-9_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tumor cell invasiveness is a critical challenge in the clinical management of glioma patients. In addition, there is accumulating evidence that current therapeutic modalities, including anti-angiogenic therapy and radiotherapy, can enhance glioma invasiveness. Glioma cell invasion is stimulated by both autocrine and paracrine factors that act on a large array of cell surface-bound receptors. Key signaling elements that mediate receptor-initiated signaling in the regulation of glioblastoma invasion are Rho family GTPases, including Rac, RhoA and Cdc42. These GTPases regulate cell morphology and actin dynamics and stimulate cell squeezing through the narrow extracellular spaces that are typical of the brain parenchyma. Transient attachment of cells to the extracellular matrix is also necessary for glioblastoma cell invasion. Interactions with extracellular matrix components are mediated by integrins that initiate diverse intracellular signalling pathways. Key signaling elements stimulated by integrins include PI3K, Akt, mTOR and MAP kinases. In order to detach from the tumor mass, glioma cells secrete proteolytic enzymes that cleave cell surface adhesion molecules, including CD44 and L1. Key proteases produced by glioma cells include uPA, ADAMs and MMPs. Increased understanding of the molecular mechanisms that control glioma cell invasion has led to the identification of molecular targets for therapeutic intervention in this devastating disease.
Collapse
|
10
|
Martens B, Drebert Z. Glucocorticoid-mediated effects on angiogenesis in solid tumors. J Steroid Biochem Mol Biol 2019; 188:147-155. [PMID: 30654109 DOI: 10.1016/j.jsbmb.2019.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/13/2019] [Accepted: 01/13/2019] [Indexed: 12/28/2022]
Abstract
Angiogenesis is essential in tumor development to maintain the oxygen and nutrient supply. Glucocorticoids have shown both direct and indirect angiostatic properties in various types of solid cancers. In most of the reported cases glucocorticoid-mediated actions involved suppression of multiple pro-angiogenic factors expression by cancer cells. The anti-angiogenic properties of glucocorticoids correlated with diminished tumor vasculature and reduced tumor growth in multiple in vivo studies. However, when glucocorticoid treatment is considered, possible adverse events should be taken into account. Additional research is needed to further test the use of these steroidal drugs in cancer therapy.
Collapse
Affiliation(s)
- Broes Martens
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Zuzanna Drebert
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
11
|
Rezaeeyan H, Shirzad R, McKee TD, Saki N. Role of chemokines in metastatic niche: new insights along with a diagnostic and prognostic approach. APMIS 2018; 126:359-370. [PMID: 29676815 DOI: 10.1111/apm.12818] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/04/2018] [Indexed: 01/10/2023]
Abstract
Chemokines are cytokines that are involved in the movement of leukocytes and the occurrence of immune responses. It has recently been noted that these cytokines play a role in the movement of cancer cells to different parts of the body and create a suitable environment [i.e. (pre) metastatic niche] for their growth and proliferation. We studied the role of chemokines in the metastasis of cancer cells, as well as their involvement in the proliferation and growth of these cells. Relevant literature was identified by a PubMed search (2005-2017) of English language papers using the terms 'chemokine,' 'metastasis niche,' and 'organotropism.' Based on the nature of cancer cells, the expression of chemokine receptors on these cells leads to metastasis to various organs, which ultimately causes changes in different signaling pathways. Finally, the targeting of chemokines on cancer cells could prevent the metastasis of cancer cells toward different organs.
Collapse
Affiliation(s)
- Hadi Rezaeeyan
- Research Center of Thalassemia & Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Shirzad
- WHO-Collaborating Centre for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Trevor D McKee
- Princess Margaret Cancer Centre, STTARR Innovation Facility, Toronto, ON, Canada
| | - Najmaldin Saki
- Research Center of Thalassemia & Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Li C, Liu T, Bazhin AV, Yang Y. The Sabotaging Role of Myeloid Cells in Anti-Angiogenic Therapy: Coordination of Angiogenesis and Immune Suppression by Hypoxia. J Cell Physiol 2017; 232:2312-2322. [PMID: 27935039 DOI: 10.1002/jcp.25726] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022]
Abstract
Tumor angiogenesis has become a promising target for anti-tumor therapy. Unfortunately, the somewhat inevitable occurrence of resistance has limited the efficacy of anti-angiogenic therapy. In addition to their well-established role in immune suppression, bone marrow-derived myeloid cells actively contribute to tumor angiogenesis. More importantly, myeloid cells constitute one of the major mechanisms of resistance to angiogenesis inhibition. As the most pervasive feature in tumor microenvironment, hypoxia is able to initiate both pro-angiogenic and immunosuppressive capacities of myeloid cells. Tumor adapts to hypoxic stress primarily through signaling mediated by hypoxic inducible factors (HIFs) and consequently utilizes hypoxia to its own advantage. In this regard, hypoxia orchestrates both angiogenesis and immune evasion to support tumor growth. In this article, we will review available information on the sabotaging role of myeloid cells in anti-angiogenic therapy. We will also discuss how hypoxia coordinates the dual-role cellular and molecular participants in microenvironment to maximize the efficiency of angiogenesis and immunosuppression to promote tumor progression. J. Cell. Physiol. 232: 2312-2322, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yuhui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Tabatabaei P, Visse E, Bergström P, Brännström T, Siesjö P, Bergenheim AT. Radiotherapy induces an immediate inflammatory reaction in malignant glioma: a clinical microdialysis study. J Neurooncol 2016; 131:83-92. [PMID: 27664151 PMCID: PMC5258803 DOI: 10.1007/s11060-016-2271-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/30/2016] [Indexed: 11/27/2022]
Abstract
The knowledge of response to radiation in the immuno-microenvironment of high grade gliomas is sparse. In vitro results have indicated an inflammatory response of myeloid cells after irradiation. Therefore, microdialysis was used to verify whether this is operative in tumor tissue and brain adjacent to tumor (BAT) after clinical radiotherapy of patients with high grade glioma. Stereotactic biopsies and implantation of microdialysis catheters in tumor tissue and BAT were performed in eleven patients with high-grade glioma. The patients were given daily radiation fractions of 2–3.4 Gy. Microdialysis samples were collected before radiotherapy and during the first five days of radiation. Cytokines, glucose metabolites, glutamate and glycerol were analyzed. Immunohistochemistry was performed to detect macrophages (CD68) and monocytes (CD163) as well as IL-6, IL-8 and MCP-1. A significant increase of IL-8, MCP-1 and MIP-1a were detected in tumor tissue already after the first dose of radiation and increased further during 5 days of radiation. IL-6 did also increase but after five fractions of radiation. In BAT, the cytokine response was modest with significant increase of IL-8 after third dose of radiation. We found a positive correlation between baseline IL-8 and IL-6 microdialysis levels in tumor tissue and survival. Glucose metabolites or glycerol and glutamate did not change during radiation. In all tumors staining for macrophages was demonstrated. IL-6 was found in viable tumor cells while MCP-1 was demonstrated in macrophages or tumor matrix. Our findings suggest that radiation induces a rapid enhancement of the prevailing inflammation in high-grade glioma tissue. The microdialysis technique is feasible for this type of study and could be used to monitor metabolic changes after different interventions.
Collapse
Affiliation(s)
- Pedram Tabatabaei
- Department of Clinical Neuroscience, Neurosurgery, Umea University, 901 85, Umeå, Sweden.
| | - Eward Visse
- Department of Clinical Science, Lund University Hospital, 221 85, Lund, Sweden
| | - Per Bergström
- Department of Radiation Science, Umeå University, 901 85, Umeå, Sweden
| | - Thomas Brännström
- Department of Medical Bioscience, Umeå University, 901 85, Umeå, Sweden
| | - Peter Siesjö
- Department of Clinical Science, Lund University Hospital, 221 85, Lund, Sweden
| | - A Tommy Bergenheim
- Department of Clinical Neuroscience, Neurosurgery, Umea University, 901 85, Umeå, Sweden
| |
Collapse
|
14
|
Brandenburg S, Müller A, Turkowski K, Radev YT, Rot S, Schmidt C, Bungert AD, Acker G, Schorr A, Hippe A, Miller K, Heppner FL, Homey B, Vajkoczy P. Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors. Acta Neuropathol 2016; 131:365-78. [PMID: 26718201 DOI: 10.1007/s00401-015-1529-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/03/2015] [Accepted: 12/19/2015] [Indexed: 12/21/2022]
Abstract
Myeloid cells are an essential part of the glioblastoma microenvironment. However, in brain tumors the function of these immune cells is not sufficiently clarified. In our study, we investigated differential pro-angiogenic activities of resident microglia and peripheral macrophages and their impact on glioma vascularization and progression. Our data demonstrate stable accumulation of microglia/macrophages during tumor growth. These cells often interact with tumor blood vessels correlating with vascular remodeling. Here, we identified resident microglia as well as peripheral macrophages as part of the perivascular niche, primarily contacting endothelial cells. We found overexpression of a variety of pro-angiogenic molecules within freshly isolated microglia/macrophages from glioma. CXCL2, until now a poorly described chemokine, was strongly up-regulated and showed better angiogenic activity than VEGF in vitro. Blocking the CXCL2-CXCR2 signaling pathway resulted in considerably diminished glioma sizes. Additionally, the importance of microglia/macrophages in tumor angiogenesis was confirmed by depletion of these cells in vivo. Vessel density decreased by 50% leading to significantly smaller tumor volumes. Remarkably, selective reduction of resident microglia affected tumoral vessel count comparable to ablation of the whole myeloid cell fraction. These results provide evidence that resident microglia are the crucial modulatory cell population playing a central role in regulation of vascular homeostasis and angiogenesis in brain tumors. Thus, resident microglia represent an alternative source of pro-angiogenic growth factors and cytokines.
Collapse
|
15
|
Zhou W, Jiang Z, Li X, Xu Y, Shao Z. Cytokines: shifting the balance between glioma cells and tumor microenvironment after irradiation. J Cancer Res Clin Oncol 2015; 141:575-89. [PMID: 25005789 DOI: 10.1007/s00432-014-1772-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/30/2014] [Indexed: 12/13/2022]
Abstract
Malignant gliomas invariably recur after irradiation, showing radioresistance. Meanwhile, cranial irradiation can bring some risk for developing cognitive dysfunction. There is increasing evidence that cytokines play their peculiar roles in these processes. On the one hand, cytokines directly influence the progression of malignant glioma, promoting or suppressing tumor progression. On the other hand, cytokines indirectly contribute to the immunologic response against gliomas, exhibiting pro-inflammatory or immunosuppressive activities. We propose that cytokines are not simply unregulated products from tumor cells or immune cells, but mediators finely adjust the balance between glioma cells and tumor microenvironment after irradiation. The paper, therefore, focuses on the changes of cytokines after irradiation, analyzing how these mediate the response of tumor cells and normal cells to irradiation. In addition, cytokine-based immunotherapeutic strategies, accompanied with irradiation, for the treatment of gliomas are also discussed.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Radiation Oncology, Cancer Centre, Qilu Hospital, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | | | | | | | | |
Collapse
|
16
|
Starkweather AR, Sherwood P, Lyon DE, Bovbjerg DH, Broaddus WC, Elswick RK, Sturgill J. Depressive symptoms and cytokine levels in Serum and Tumor Tissue in patients with an Astrocytoma: a pilot study. BMC Res Notes 2014; 7:423. [PMID: 24997057 PMCID: PMC4118281 DOI: 10.1186/1756-0500-7-423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/30/2014] [Indexed: 12/02/2022] Open
Abstract
Background Preoperative depressive symptoms are associated with poor outcomes in patients with an astrocytoma. Cytokines are associated with depressive symptoms in the general population and are important mediators of tumor growth and progression. The aims of this study were to: (1) characterize depressive symptoms, other treatment-related symptoms and biological mediators; and (2) determine whether preoperative depressive symptoms were associated with the selected biological mediators. Methods A prospective, exploratory study was carried out among 22 patients with a high-grade astrocytoma. Self-report questionnaires and peripheral blood samples were collected on the day of surgery. Tumor tissue was collected intraoperatively. Self-report questionnaires were assessed at 3, 6, 9, and 12-months postoperatively. Results In circulation, serum IL-8 was inversely correlated with depressive symptoms while IL-17 measured in tumor tissue supernatant was inversely correlated with depressive symptoms. Depressive symptoms showed a significant increase at 12 months from baseline levels and were positively associated with treatment-related symptoms at 3 months and symptom distress at 12 months post-surgery. Conclusions In this pilot study, depressive symptoms were negatively associated with IL-8 in serum and IL-17 in tumor tissue. The changes among depressive symptoms, treatment-related symptoms and symptom distress highlight the need for multi-faceted symptom management strategies over the treatment trajectory in this patient population.
Collapse
Affiliation(s)
- Angela R Starkweather
- Department of Adult Health and Nursing Systems, Virginia Commonwealth University School of Nursing, 1100 East Leigh Street, P, O, Box 980567, Richmond, VA 23298, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Dehai C, Bo P, Qiang T, Lihua S, Fang L, Shi J, Jingyan C, Yan Y, Guangbin W, Zhenjun Y. Enhanced invasion of lung adenocarcinoma cells after co-culture with THP-1-derived macrophages via the induction of EMT by IL-6. Immunol Lett 2014; 160:1-10. [DOI: 10.1016/j.imlet.2014.03.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 03/06/2014] [Accepted: 03/17/2014] [Indexed: 12/21/2022]
|
18
|
Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol 2014; 5:75. [PMID: 24634660 PMCID: PMC3942647 DOI: 10.3389/fphys.2014.00075] [Citation(s) in RCA: 451] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 02/06/2014] [Indexed: 12/12/2022] Open
Abstract
Tumor angiogenesis is an essential process for supplying rapidly growing malignant tissues with essential nutrients and oxygen. An angiogenic switch allows tumor cells to survive and grow, and provides them access to vasculature resulting in metastatic disease. Monocyte-derived macrophages recruited and reprogrammed by tumor cells serve as a major source of angiogenic factors boosting the angiogenic switch. Tumor endothelium releases angiopoietin-2 and further facilitates recruitment of TIE2 receptor expressing monocytes (TEM) into tumor sites. Tumor-associated macrophages (TAM) sense hypoxia in avascular areas of tumors, and react by production of angiogenic factors such as VEGFA. VEGFA stimulates chemotaxis of endothelial cells (EC) and macrophages. In some tumors, TAM appeared to be a major source of MMP9. Elevated expression of MMP9 by TAM mediates extracellular matrix (ECM) degradation and the release of bioactive VEGFA. Other angiogenic factors released by TAM include basic fibroblast growth factor (bFGF), thymidine phosphorylase (TP), urokinase-type plasminogen activator (uPA), and adrenomedullin (ADM). The same factors used by macrophages for the induction of angiogenesis [like vascular endothelial growth factor A (VEGF-A) and MMP9] support lymphangiogenesis. TAM can express LYVE-1, one of the established markers of lymphatic endothelium. TAM support tumor lymphangiogenesis not only by secretion of pro-lymphangiogenic factors but also by trans-differentiation into lymphatic EC. New pro-angiogenic factor YKL-40 belongs to a family of mammalian chitinase-like proteins (CLP) that act as cytokines or growth factors. Human CLP family comprises YKL-40, YKL-39, and SI-CLP. Production of all three CLP in macrophages is antagonistically regulated by cytokines. It was recently established that YKL-40 induces angiogenesis in vitro and in animal tumor models. YKL-40-neutralizing monoclonal antibody blocks tumor angiogenesis and progression. The role of YKL-39 and SI-CLP in tumor angiogenesis and lymphangiogenesis remains to be investigated.
Collapse
Affiliation(s)
- Vladimir Riabov
- Department of Dermatology, University Medical Center and Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg Mannheim, Germany ; Department of Nanopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences Moscow, Russia
| | - Alexandru Gudima
- Department of Dermatology, University Medical Center and Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg Mannheim, Germany ; Department of Innate Immunity and Tolerance, University Medical Center and Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Ruprecht-Karls University of Heidelberg Mannheim, Germany
| | - Nan Wang
- Department of Dermatology, University Medical Center and Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg Mannheim, Germany
| | - Amanda Mickley
- Department of Dermatology, University Medical Center and Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg Mannheim, Germany ; Department of Innate Immunity and Tolerance, University Medical Center and Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Ruprecht-Karls University of Heidelberg Mannheim, Germany
| | - Alexander Orekhov
- Department of Nanopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences Moscow, Russia
| | - Julia Kzhyshkowska
- Department of Dermatology, University Medical Center and Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg Mannheim, Germany ; Department of Nanopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences Moscow, Russia ; Department of Innate Immunity and Tolerance, University Medical Center and Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Ruprecht-Karls University of Heidelberg Mannheim, Germany
| |
Collapse
|
19
|
Hewedi IH, Radwan NA, Shash LS, Elserry TH. Perspectives on the immunologic microenvironment of astrocytomas. Cancer Manag Res 2013; 5:293-9. [PMID: 24039448 PMCID: PMC3770516 DOI: 10.2147/cmar.s48942] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The microenvironment of astrocytomas includes infiltrative inflammatory cells that are dynamic in nature, possibly reflecting tumor biology. We evaluated the inflammatory cell infiltrate in astrocytic tumors aiming for a better understanding of their immunobiology. Methods Immunohistochemical expression of CD68, CD3, and CD20 was investigated in 21 glioblastomas, 21 anaplastic astrocytomas, 13 diffuse astrocytomas, and 18 pilocytic astrocytomas. The inflammatory infiltrate was classified based on microanatomic location as perivascular and intratumoral, and subsequently graded semiquantitatively. Results Perivascularly, CD68-positive infiltrate was noted in 71.4% of glioblastomas compared with 14.3% of anaplastic astrocytomas (P = 0.0001), 7.7% of diffuse astrocytomas (P = 0.0001), and 33.3% of pilocytic astrocytomas (P = 0.017). Intratumorally, 85.7% of glioblastomas exhibited CD68-positive infiltrate compared with 42.9% of anaplastic astrocytomas (P = 0.004), 38.5% of diffuse astrocytomas (P = 0.008), and 33.3% of pilocytic astrocytomas (P = 0.001). Among diffusely infiltrating astrocytomas, intratumoral CD3-positive infiltrate was only associated with glioblastoma. A CD20-positive infiltrate was only detected in the perivascular space of a single case of diffuse astrocytoma. Conclusion These data indicate a distinct immune profile in the glioblastoma microenvironment primarily related to the prevalence of macrophages. Thus, novel glioblastoma therapies should address this key CD68-positive population and its possible role in generating an antitumor immune response.
Collapse
Affiliation(s)
- Iman H Hewedi
- Departments of Pathology, Ain Shams University, Cairo, Egypt
| | | | | | | |
Collapse
|
20
|
Implantation of GL261 neurospheres into C57/BL6 mice: a more reliable syngeneic graft model for research on glioma-initiating cells. Int J Oncol 2013; 43:477-84. [PMID: 23708048 DOI: 10.3892/ijo.2013.1962] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/05/2013] [Indexed: 11/05/2022] Open
Abstract
Recent studies have demonstrated that inflammatory cells and inflammatory mediators are indispensable components of the tumor-initiating cell (TIC) niche and regulate the malignant behavior of TICs. However, conventional animal models for glioma-initiating cell (GIC) studies are based on the implantation of GICs from human glioblastoma (GBM) into immunodeficient mice without the regulation of immune system. Whether animal models can mimic the cellular microenvironment of malignancy and evaluate the biological features of GICs accurately is unclear. Here, we detected the biological features of neurosphere-like tumor cells derived from the murine GBM cell line GL261 (GL261-NS) and from primary human GBM (PGBM-NS) in vitro, injected GL261-NS into syngeneic C57/BL6 mouse brain and injected PGBM-NS into NOD/SCID mouse brain, respectively. The tumorigenic characteristics of the two different orthotopic transplantation models were analyzed and the histological discrepancy between grafts and human primary GBM was compared. We found that GICs enriched in GL261-NS, GL261-NS and PGBM-NS exhibited increased GIC potential and enhanced chemoresistance in vitro. GL261-NS was significantly more aggressive compared to GL261 adhesive cells (GL261-AC) in vivo and the enhanced aggression was more significant in syngeneic mice compared to immunodeficient mice. The discrepancy of tumorigenicity between GL261-NS and GL261-AC in C57/BL6 mice was also larger compared to that between PGBM-NS and PGBM-AC in immunodeficient mice. Syngrafts derived from GL261-NS in C57/BL6 mice corresponded to the human GBM histologically better, compared with xenografts derived from PGBM-NS in NOD/SCID mice, which lack inflammatory cells and inflammatory mediators. We conclude that the inflammatory niche is involved in the tumorigenicity of GICs and implantation of GL261-NS into C57/BL6 mice is a more reliable syngeneic graft model for in vivo study on GICs relative to the immunodeficiency model.
Collapse
|
21
|
Yeung YT, McDonald KL, Grewal T, Munoz L. Interleukins in glioblastoma pathophysiology: implications for therapy. Br J Pharmacol 2013; 168:591-606. [PMID: 23062197 PMCID: PMC3579281 DOI: 10.1111/bph.12008] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/18/2012] [Accepted: 09/26/2012] [Indexed: 12/14/2022] Open
Abstract
Despite considerable amount of research, the poor prognosis of patients diagnosed with glioblastoma multiforme (GBM) critically needs new drug development to improve clinical outcomes. The development of an inflammatory microenvironment has long been considered important in the initiation and progression of glioblastoma; however, the success of developing therapeutic approaches to target inflammation for GBM therapy has yet been limited. Here, we summarize the accumulating evidence supporting a role for inflammation in the pathogenesis of glioblastoma, discuss anti-inflammatory targets that could be relevant for GBM treatment and provide a perspective on the challenges faced in the development of drugs that target GBM inflammation. In particular, we will review the function of IL-1β, IL-6 and IL-8 as well as the potential of kinase inhibitors targeting key players in inflammatory cell signalling cascades such as JAK, JNK and p38 MAPK.
Collapse
Affiliation(s)
- Y T Yeung
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
22
|
Jiang L, Song L, Wu J, Yang Y, Zhu X, Hu B, Cheng SY, Li M. Bmi-1 promotes glioma angiogenesis by activating NF-κB signaling. PLoS One 2013; 8:e55527. [PMID: 23383216 PMCID: PMC3561301 DOI: 10.1371/journal.pone.0055527] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/27/2012] [Indexed: 01/17/2023] Open
Abstract
Angiogenesis in glioma is associated with the poor prognosis of the disease and closely correlates with the highly invasive phenotype of glioma cells, which represents the most challenging impediment against the currently glioma treatments. Bmi-1, an onco-protein, has been implicated in the progression of various human cancers, including gliomas, whereas its role in glioma angiogenesis remains unclear. Our current study examined the effects of Bmi-1 on glioma angiogenesis in vitro as well as in vivo. We found that overexpression of Bmi-1 enhanced, whereas knockdown of Bmi-1 diminished, the capability of glioma cells to induce tubule formation and migration of endothelial cells and neovascularization in chicken chorioallantoic membrane. In vivo, Bmi-1 overexpression and knockdown, respectively, promoted and inhibited angiogenesis in orthotopically transplanted human gliomas. Furthermore, NF-κB activity and VEGF-C expression was induced by Bmi-1 overexpression, whereas Bmi-1 knockdown attenuated NF-κB signaling and decreased VEGF-C expression. Additionally suppression of NF-κB activity using a specific chemical inhibitor abrogated the NF-κB activation and the pro-angiogenic activities of glioma cells. Together, our data suggest that Bmi-1 plays an important role in glioma angiogenesis and therefore could represent a potential target for anti-angiogenic therapy against the disease.
Collapse
Affiliation(s)
- Lili Jiang
- Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Libing Song
- Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jueheng Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou, Guangdong, China
| | - Yi Yang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou, Guangdong, China
| | - Xun Zhu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou, Guangdong, China
| | - Bo Hu
- Department of Neurology, Northwestern Brain Tumor Institute, Center for Genetic Medicine and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Shi-Yuan Cheng
- Department of Neurology, Northwestern Brain Tumor Institute, Center for Genetic Medicine and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Mengfeng Li
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
23
|
Sasaki A, Yokoo H, Tanaka Y, Homma T, Nakazato Y, Ohgaki H. Characterization of microglia/macrophages in gliomas developed in S-100β-v-erbBtransgenic rats. Neuropathology 2013; 33:505-14. [DOI: 10.1111/neup.12015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 11/26/2022]
Affiliation(s)
- Atsushi Sasaki
- Department of Pathology; Saitama Medical University; Saitama
| | - Hideaki Yokoo
- Department of Human Pathology; University of Gunma Graduate School of Medicine; Maebashi; Japan
| | - Yuko Tanaka
- Department of Human Pathology; University of Gunma Graduate School of Medicine; Maebashi; Japan
| | - Taku Homma
- Department of Pathology; Saitama Medical University; Saitama
| | - Yoichi Nakazato
- Department of Human Pathology; University of Gunma Graduate School of Medicine; Maebashi; Japan
| | - Hiroko Ohgaki
- International Agency for Research on Cancer; Lyon; France
| |
Collapse
|
24
|
Signaling determinants of glioma cell invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 986:121-41. [PMID: 22879067 DOI: 10.1007/978-94-007-4719-7_7] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumor cell invasiveness is a critical challenge in the clinical management of glioma patients. In addition, there is accumulating evidence that current therapeutic modalities, including anti-angiogenic therapy and radiotherapy, can enhance glioma invasiveness. Glioma cell invasion is stimulated by both autocrine and paracrine factors that act on a large array of cell surface-bound receptors. Key signaling elements that mediate receptor-initiated signaling in the regulation of glioblastoma invasion are Rho family GTPases, including Rac, RhoA and Cdc42. These GTPases regulate cell morphology and actin dynamics and stimulate cell squeezing through the narrow extracellular spaces that are typical of the brain parenchyma. Transient attachment of cells to the extracellular matrix is also necessary for glioblastoma cell invasion. Interactions with extracellular matrix components are mediated by integrins that initiate diverse intracellular signalling pathways. Key signaling elements stimulated by integrins include PI3K, Akt, mTOR and MAP kinases. In order to detach from the tumor mass, glioma cells secrete proteolytic enzymes that cleave cell surface adhesion molecules, including CD44 and L1. Key proteases produced by glioma cells include uPA, ADAMs and MMPs. Increased understanding of the molecular mechanisms that control glioma cell invasion has led to the identification of molecular targets for therapeutic intervention in this devastating disease.
Collapse
|
25
|
Dwyer J, Hebda JK, Le Guelte A, Galan-Moya EM, Smith SS, Azzi S, Bidere N, Gavard J. Glioblastoma cell-secreted interleukin-8 induces brain endothelial cell permeability via CXCR2. PLoS One 2012; 7:e45562. [PMID: 23029099 PMCID: PMC3447807 DOI: 10.1371/journal.pone.0045562] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/21/2012] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma constitutes the most aggressive and deadly of brain tumors. As yet, both conventional and molecular-based therapies have met with limited success in treatment of this cancer. Among other explanations, the heterogeneity of glioblastoma and the associated microenvironment contribute to its development, as well as resistance and recurrence in response to treatments. Increased vascularity suggests that tumor angiogenesis plays an important role in glioblastoma progression. However, the molecular crosstalk between endothelial and glioblastoma cells requires further investigation. To examine the effects of glioblastoma-derived signals on endothelial homeostasis, glioblastoma cell secretions were collected and used to treat brain endothelial cells. Here, we present evidence that the glioblastoma secretome provides pro-angiogenic signals sufficient to disrupt VE-cadherin-mediated cell-cell junctions and promote endothelial permeability in brain microvascular endothelial cells. An unbiased angiogenesis-specific antibody array screen identified the chemokine, interleukin-8, which was further demonstrated to function as a key factor involved in glioblastoma-induced permeability, mediated through its receptor CXCR2 on brain endothelia. This underappreciated interface between glioblastoma cells and associated endothelium may inspire the development of novel therapeutic strategies to induce tumor regression by preventing vascular permeability and inhibiting angiogenesis.
Collapse
|
26
|
Kast RE, Lefranc F, Karpel-Massler G, Halatsch ME. Why dapsone stops seizures and may stop neutrophils' delivery of VEGF to glioblastoma. Br J Neurosurg 2012; 26:813-7. [PMID: 22551309 DOI: 10.3109/02688697.2012.674577] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lopez-Gomez et al. recently published remarkable but mechanistically unexplained empirical evidence that the old antibiotic dapsone has antiepileptic activity. We addressed the question "Why should a sulfone antibiotic reduce seizures?". We report here our conclusions based on data from past studies that seizures are associated with elevated interleukin-8 (IL-8) and that dapsone inhibits IL-8 release and function in several different clinical and experimental contexts. Diverse CNS insults cause an increase in CNS IL-8. Thus, the pro-inflammatory environment generated by increase IL-8 leads to a lower seizure threshold. Together this evidence indicates dapsone exerts anti-seizure activity by diminishing IL-8 signalling. Since IL-8 is clearly upregulated in glioblastoma and contributes to the florid angiogenesis of that disease, and since interference with IL-8 function has been shown to inhibit glioblastoma invasion and growth in several experimental models, and dapsone has been repeatedly been shown to clinically inhibit IL-8 function when used to treat human neutrophilic dermatoses, we believe that dapsone thereby reduces seizures by countering IL-8 function and may similarly retard glioblastoma growth by such anti-IL-8 function.
Collapse
Affiliation(s)
- R E Kast
- Department of Psychiatry, University of Vermont, Burlington, VT 05401, USA.
| | | | | | | |
Collapse
|
27
|
Yeung YT, Bryce NS, Adams S, Braidy N, Konayagi M, McDonald KL, Teo C, Guillemin GJ, Grewal T, Munoz L. p38 MAPK inhibitors attenuate pro-inflammatory cytokine production and the invasiveness of human U251 glioblastoma cells. J Neurooncol 2012; 109:35-44. [PMID: 22528800 DOI: 10.1007/s11060-012-0875-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 04/02/2012] [Indexed: 01/16/2023]
Abstract
Increasing evidence suggests that an inflammatory microenvironment promotes invasion by glioblastoma (GBM) cells. Together with p38 mitogen-activated protein kinase (MAPK) activation being regarded as promoting inflammation, we hypothesized that elevated inflammatory cytokine secretion and p38 MAPK activity contribute to expansion of GBMs. Here we report that IL-1β, IL-6, and IL-8 levels and p38 MAPK activity are elevated in human glioblastoma specimens and that p38 MAPK inhibitors attenuate the secretion of pro-inflammatory cytokines by microglia and glioblastoma cells. RNAi knockdown and immunoprecipitation experiments suggest that the p38α MAPK isoform drives inflammation in GBM cells. Importantly, p38 MAPK inhibition strongly reduced invasion of U251 glioblastoma cells in an inflammatory microenvironment, providing evidence for a p38 MAPK-regulated link between inflammation and invasiveness in GBM pathophysiology.
Collapse
Affiliation(s)
- Yiu To Yeung
- Pharmacy, University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Glioma-initiating cells: A predominant role in microglia/macrophages tropism to glioma. J Neuroimmunol 2011; 232:75-82. [DOI: 10.1016/j.jneuroim.2010.10.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 10/07/2010] [Accepted: 10/11/2010] [Indexed: 01/03/2023]
|
29
|
Eikawa S, Ohue Y, Kitaoka K, Aji T, Uenaka A, Oka M, Nakayama E. Enrichment of Foxp3+ CD4 Regulatory T Cells in Migrated T Cells to IL-6– and IL-8–Expressing Tumors through Predominant Induction of CXCR1 by IL-6. THE JOURNAL OF IMMUNOLOGY 2010; 185:6734-40. [DOI: 10.4049/jimmunol.1000225] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Sciumè G, Santoni A, Bernardini G. Chemokines and glioma: Invasion and more. J Neuroimmunol 2010; 224:8-12. [DOI: 10.1016/j.jneuroim.2010.05.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 12/13/2022]
|
31
|
Arismendi-Morillo G, Castellano-Ramírez A, Medina Z. Ultrastructural Characterization of Macrophage-like Mononuclear Leukocytes in Human Astrocytic Tumors. Ultrastruct Pathol 2010; 34:321-6. [DOI: 10.3109/01913123.2010.487972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Siveen KS, Kuttan G. Role of macrophages in tumour progression. Immunol Lett 2009; 123:97-102. [PMID: 19428556 DOI: 10.1016/j.imlet.2009.02.011] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/06/2009] [Accepted: 02/10/2009] [Indexed: 02/08/2023]
Abstract
It is now becoming clear that the inflammatory cells that exist in the tumour microenvironment play an indispensable role in cancer progression. Tumour associated macrophages (TAMs) represent a prominent component of the mononuclear leukocyte population of solid tumours, which displays an ambivalent relationship with tumours. They originate in the circulation and are recruited to the tumour site by tumour-derived attractants such as chemokines and interact with the tumour cells and preferentially localize at the tumour-host tissue interface, in regions often associated with low oxygen tensions. The tumour microenvironment, including cytokines and hypoxia, regulates the localization and function of TAMs. Upon activated by cancer cells, the TAMs can release a vast diversity of growth factors, proteolytic enzymes, cytokines, and inflammatory mediators. Many of these factors are key agents in cancer metastasis. Substantial evidence suggests that TAMs can interact with cancer cells, modify the ECM, and promote cancer cell invasion and metastasis. Several natural products have shown ability to inhibit the production of proinflammatory cytokines and growth factors by TAMs. The presence of extensive TAM infiltration has been shown to correlate with cancer metastasis and poor prognosis in a variety of human carcinomas.
Collapse
Affiliation(s)
- K S Siveen
- Dept. of Immunology, Amala Cancer Research Centre, Amala Nagar Post, Thrissur 680 555, Kerala, India
| | | |
Collapse
|