1
|
Song L, Wu H, Sun X, Liu X, Ling X, Ni W, Li L, Liu B, Wei J, Li X, Li J, Wang Y, Mao F. Penfluridol targets septin7 to suppress endometrial cancer by septin7-Orai/IP3R-Ca 2+-PIK3CA pathway. iScience 2025; 28:111640. [PMID: 39850355 PMCID: PMC11754080 DOI: 10.1016/j.isci.2024.111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/31/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Phenotypic screening of existing drugs is a good strategy to discover new drugs. Herein, 33 psychotherapeutic drugs in our drug library were screened by phenotypic screening and penfluridol (PFD) was found to exhibit excellent anti-endometrial cancer (EC) activity both in vitro and in vivo. Furthermore, the molecular target of PFD was identified as septin7, a tumor suppressor in EC. In septin7-deficient EC cells and xenograft mouse models, PFD exhibited weaker anti-cancer properties, indicating that septin7 was essential for the tumor inhibitory activity. Notably, PFD could induce cell apoptosis by regulating the septin7-Orai/IP3R-Ca2+-PIK3CA pathway. In addition, PFD attenuates the interaction of septin7-tubulin, thereby inhibiting microtubule polymerization. In summary, this study revealed a target and mechanistic insights into EC therapeutic strategies and identified a potential candidate agent for the treatment of EC.
Collapse
Affiliation(s)
- Lingyi Song
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huiwen Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao Sun
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaohu Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xianwu Ling
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Ni
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lijuan Li
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Beibei Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlian Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, China
| | - Yudong Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai 200030, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Jiao F, Yu C, Wheat A, Chen L, Lih TSM, Zhang H, Huang L. DSBSO-Based XL-MS Analysis of Breast Cancer PDX Tissues to Delineate Protein Interaction Network in Clinical Samples. J Proteome Res 2024; 23:3269-3279. [PMID: 38334954 PMCID: PMC11296914 DOI: 10.1021/acs.jproteome.3c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Protein-protein interactions (PPIs) are fundamental to understanding biological systems as protein complexes are the active molecular modules critical for carrying out cellular functions. Dysfunctional PPIs have been associated with various diseases including cancer. Systems-wide PPI analysis not only sheds light on pathological mechanisms, but also represents a paradigm in identifying potential therapeutic targets. In recent years, cross-linking mass spectrometry (XL-MS) has emerged as a powerful tool for defining endogenous PPIs of cellular networks. While proteome-wide studies have been performed in cell lysates, intact cells and tissues, applications of XL-MS in clinical samples have not been reported. In this study, we adopted a DSBSO-based in vivo XL-MS platform to map interaction landscapes from two breast cancer patient-derived xenograft (PDX) models. As a result, we have generated a PDX interaction network comprising 2,557 human proteins and identified interactions unique to breast cancer subtypes. Interestingly, most of the observed differences in PPIs correlated well with protein abundance changes determined by TMT-based proteome quantitation. Collectively, this work has demonstrated the feasibility of XL-MS analysis in clinical samples, and established an analytical workflow for tissue cross-linking that can be generalized for mapping PPIs from patient samples in the future to dissect disease-relevant cellular networks.
Collapse
Affiliation(s)
- Fenglong Jiao
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Andrew Wheat
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Lijun Chen
- Department of Pathology and Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231
| | - Tung-Shing Mamie Lih
- Department of Pathology and Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231
| | - Hui Zhang
- Department of Pathology and Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| |
Collapse
|
3
|
Ráduly Z, Szabó L, Dienes B, Szentesi P, Bana ÁV, Hajdú T, Kókai E, Hegedűs C, Csernoch L, Gönczi M. Migration of Myogenic Cells Is Highly Influenced by Cytoskeletal Septin7. Cells 2023; 12:1825. [PMID: 37508490 PMCID: PMC10378681 DOI: 10.3390/cells12141825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Septin7 as a unique member of the GTP binding protein family, is widely expressed in the eukaryotic cells and considered to be essential in the formation of hetero-oligomeric septin complexes. As a cytoskeletal component, Septin7 is involved in many important cellular processes. However, its contribution in striated muscle physiology is poorly described. In skeletal muscle, a highly orchestrated process of migration is crucial in the development of functional fibers and in regeneration. Here, we describe the pronounced appearance of Septin7 filaments and a continuous change of Septin7 protein architecture during the migration of myogenic cells. In Septin7 knockdown C2C12 cultures, the basic parameters of migration are significantly different, and the intracellular calcium concentration change in migrating cells are lower compared to that of scrambled cultures. Using a plant cytokinin, forchlorfenuron, to dampen septin dynamics, the altered behavior of the migrating cells is described, where Septin7-depleted cells are more resistant to the treatment. These results indicate the functional relevance of Septin7 in the migration of myoblasts, implying its contribution to muscle myogenesis and regeneration.
Collapse
Affiliation(s)
- Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ágnes Viktória Bana
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tibor Hajdú
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Endre Kókai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Nasimi Shad A, Fanoodi A, Maharati A, Akhlaghipour I, Moghbeli M. Molecular mechanisms of microRNA-301a during tumor progression and metastasis. Pathol Res Pract 2023; 247:154538. [PMID: 37209575 DOI: 10.1016/j.prp.2023.154538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Cancer is known as one of the leading causes of human deaths globally. Late diagnosis is considered as one of the main reasons for the high mortality rate among cancer patients. Therefore, the introduction of early diagnostic tumor markers can improve the efficiency of therapeutic modalities. MicroRNAs (miRNAs) have a key role in regulation of cell proliferation and apoptosis. MiRNAs deregulation has been frequently reported during tumor progressions. Since, miRNAs have a high stability in body fluids; they can be used as the reliable non-invasive tumor markers. Here, we discussed the role of miR-301a during tumor progressions. MiR-301a mainly functions as an oncogene via the modulation of transcription factors, autophagy, epithelial-mesenchymal transition (EMT), and signaling pathways. This review paves the way to suggest miR-301a as a non-invasive marker for the early tumor diagnosis. MiR-301a can also be suggested as an effective target in cancer therapy.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Effects of the CDC10 ( Septin 7) Gene on the Proliferation and Differentiation of Bovine Intramuscular Preadipocyte and 3T3-L1 Cells. Animals (Basel) 2023; 13:ani13040609. [PMID: 36830396 PMCID: PMC9951720 DOI: 10.3390/ani13040609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Intramuscular fat content and marbling affecting meat quality are important economic traits in beef cattle. CDC10 (cell division cycle 10 or Septin 7), a member of the septin family involved in cellular proliferation, was considered as a functional and positional candidate gene for beef marbling. In a previous study, we revealed that the expression levels of CDC10 were also positively correlated with marbling scores in Japanese Black cattle. However, the regulatory mechanism of the CDC10 gene on IMF deposition in cattle remains unclear. In the present study, flow cytometry, EdU proliferation assays, and Oil Red O staining results showed that overexpression of CDC10 could promote the differentiation of bovine intramuscular preadipocyte (BIMP) and 3T3-L1 cells, whereas knockdown of CDC10 resulted in the opposite consequences. Furthermore, quantitative PCR and Western blotting results showed that overexpression of CDC10 could promote the expression levels of adipogenic marker genes PPARγ and C/EBPα at both mRNA and protein levels in BIMP and 3T3-L1 cells, whereas knockdown of CDC10 resulted in the opposite consequences. Our results provide new insights into the regulatory roles of CDC10 in adipocytes in animals.
Collapse
|
6
|
Sohn MY, Choi KM, Joo MS, Kang G, Woo WS, Kim KH, Son HJ, Lee JH, Kim DH, Park CI. Molecular characterization and expression analysis of septin gene family and phagocytic function of recombinant septin 2, 3 and 8 of starry flounder (Platichthys stellatus). FISH & SHELLFISH IMMUNOLOGY 2022; 126:251-262. [PMID: 35577319 DOI: 10.1016/j.fsi.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Septin is an evolutionarily conserved family of GTP-binding proteins. Septins are known to be involved in a variety of cellular processes, including cell division, chromosome separation, cell polarity, motility, membrane dynamics, exocytosis, apoptosis, phagocytosis, DNA damage responses, and other immune responses. In this study, the sequences of the septin gene family of starry flounder were obtained using NGS sequencing, and the integrity of the sequences was verified through cloning and sequencing. At first, the amino acid sequence was annotated using the cDNA sequence, and then, the gene sequence was verified through multiple sequence alignment and phylogenetic analyses using the related conserved sequences. The septin gene family was classified into three subgroups based on the phylogenetic analysis. High conservation within the domain and homology between the genes reported in different species were confirmed. The expression level of septin gene family mRNA in each tissue of healthy starry flounder was evaluated to confirm the tissue- and gene-specific expression levels. Additionally, as a result of the analysis of mRNA expression after simulated pathogen infection, significant expression changes and characteristics were confirmed upon infection with bacteria (Streptococcus parauberis PH0710) and virus (VHSV). Based on the current results and that of previous studies, to confirm the immunological function, Septin 2, 3, and 8 were produced as recombinant proteins based on the amino acid sequences, and their role in phagocytosis was further investigated. The results of this study indicate that septin gene family plays a complex and crucial role in the host immune response to pathogens of starry flounder.
Collapse
Affiliation(s)
- Min-Young Sohn
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Kwang-Min Choi
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Min-Soo Joo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Gyoungsik Kang
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Won-Sik Woo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Kyung-Ho Kim
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Ha-Jeong Son
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Jeong-Ho Lee
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, South Korea.
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, 45, Yongso-ro, Nam-Gu., Busan, Republic of Korea.
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
7
|
Liu P, Li Y, Zhang Y, Choi J, Zhang J, Shang G, Li B, Lin YJ, Saleh L, Zhang L, Yi L, Yu S, Lim M, Yang X. Calcium-Related Gene Signatures May Predict Prognosis and Level of Immunosuppression in Gliomas. Front Oncol 2022; 12:708272. [PMID: 35646664 PMCID: PMC9136236 DOI: 10.3389/fonc.2022.708272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Gliomas are the most common primary brain cancer. While it has been known that calcium-related genes correlate with gliomagenesis, the relationship between calcium-related genes and glioma prognosis remains unclear. We assessed TCGA datasets of mRNA expressions with differentially expressed genes (DEGs) and enrichment analysis to specifically screen for genes that regulate or are affected by calcium levels. We then correlated the identified calcium-related genes with unsupervised/supervised learning to classify glioma patients into 2 risk groups. We also correlated our identified genes with immune signatures. As a result, we discovered 460 calcium genes and 35 calcium key genes that were associated with OS. There were 13 DEGs between Clusters 1 and 2 with different OS. At the same time, 10 calcium hub genes (CHGs) signature model were constructed using supervised learning, and the prognostic risk scores of the 3 cohorts of samples were calculated. The risk score was confirmed as an independent predictor of prognosis. Immune enrichment analysis revealed an immunosuppressive tumor microenvironment with upregulation of checkpoint markers in the high-risk group. Finally, a nomogram was generated with risk scores and other clinical prognostic independent indicators to quantify prognosis. Our findings suggest that calcium-related gene expression patterns could be applicable to predict prognosis and predict levels of immunosuppression.
Collapse
Affiliation(s)
- Peidong Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Yu Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Yiming Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - John Choi
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Jinhao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Guanjie Shang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Bailiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Ya-Jui Lin
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Laura Saleh
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Liang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Li Yi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
- *Correspondence: Xuejun Yang, ; Michael Lim,
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- *Correspondence: Xuejun Yang, ; Michael Lim,
| |
Collapse
|
8
|
Wang W, Hao Y, Zhang A, Yang W, Wei W, Wang G, Jia Z. miR-19a/b promote EMT and proliferation in glioma cells via SEPT7-AKT-NF-κB pathway. Mol Ther Oncolytics 2021; 20:290-305. [PMID: 33614912 PMCID: PMC7868923 DOI: 10.1016/j.omto.2021.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/09/2021] [Indexed: 12/12/2022] Open
Abstract
miR-19a/b belong to the miR-17-92 family. We have demonstrated previously that miR-19a/b are overexpressed in glioma and glioma cell lines. However, the role of miR-19a/b in glioma remains unclear. In the present study, we aim to identify the biological function and molecular mechanism of miR-19a/b in glioma cell proliferation and epithelial-mesenchymal transition (EMT). Knocking down miR-19a/b in LN308 glioblastoma (GBM) cells with higher expression of miR-19a/b inhibits cell proliferation and invasion, induces apoptosis, and suppresses EMT by downregulating the expression of Akt, phosphorylated p-Akt, nuclear factor κB (NF-κB), Snail, N-cadherin, and Vimentin and upregulating E-cadherin in vitro and in vivo. Enhanced proliferation and EMT are also observed when miR-19a/b are transfected into SNB19 GBM cells, with lowered expression of miR-19a/b. miR-19a is more effective than miR-19b in the regulation of biological behavior of glioma cells. miR-19a/b modulate molecular events for the promotion of EMT via the Akt-NF-κB pathway. SEPT7 has been confirmed as the target gene of miR-19a/b. The effect of miR-19a/b on proliferation and EMT of glioma cells and the Akt-NF-κB pathway could be reversed by transfection with SEPT7. Our study strongly suggests that miR-19a/b play a significant role in glioma progression and EMT through regulating target gene-SEPT7 and the SEPT7-Akt-NF-κB pathway.
Collapse
Affiliation(s)
- Weihan Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Laboratory of Neuro-Oncology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Yubing Hao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Laboratory of Neuro-Oncology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Anling Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Laboratory of Neuro-Oncology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Laboratory of Neuro-Oncology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Wei Wei
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Laboratory of Neuro-Oncology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Guangxiu Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Laboratory of Neuro-Oncology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Zhifan Jia
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Laboratory of Neuro-Oncology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| |
Collapse
|
9
|
The C-Terminus Tail Regulates ERK3 Kinase Activity and Its Ability in Promoting Cancer Cell Migration and Invasion. Int J Mol Sci 2020; 21:ijms21114044. [PMID: 32516969 PMCID: PMC7312006 DOI: 10.3390/ijms21114044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase (MAPK) family. It harbors a kinase domain in the N-terminus and a long C-terminus extension. The C-terminus extension comprises a conserved in ERK3 and ERK4 (C34) region and a unique C-terminus tail, which was shown to be required for the interaction of ERK3 with the cytoskeletal protein septin 7. Recent studies have elucidated the role of ERK3 signaling in promoting the motility and invasiveness of cancer cells. However, little is known about the intramolecular regulation of the enzymatic activity and cellular functions of ERK3. In this study, we investigated the role of the elongated C-terminus extension in regulating ERK3 kinase activity and its ability to promote cancer cell migration and invasion. Our study revealed that the deletion of the C-terminus tail greatly diminishes the ability of ERK3 to promote the migration and invasion of lung cancer cells. We identified two molecular mechanisms underlying this effect. Firstly, the deletion of the C-terminus tail decreases the kinase activity of ERK3 towards substrates, including the oncogenic protein steroid receptor co-activator 3 (SRC-3), an important downstream target for ERK3 signaling in cancer. Secondly, in line with the previous finding that the C-terminus tail mediates the interaction of ERK3 with septin 7, we found that the depletion of septin 7 abolished the ability of ERK3 to promote migration, indicating that septin 7 acts as a downstream effector for ERK3-induced cancer cell migration. Taken together, the findings of this study advance our understanding of the molecular regulation of ERK3 signaling by unraveling the role of the C-terminus tail in regulating ERK3 kinase activity and functions in cancer cells. These findings provide useful insights for the development of therapeutic agents targeting ERK3 signaling in cancer.
Collapse
|
10
|
Li J, Wang G, Jiang J, Zhang L, Zhou P, Ren H. MicroRNA-127-3p regulates myoblast proliferation by targeting Sept7. Biotechnol Lett 2020; 42:1633-1644. [PMID: 32382971 DOI: 10.1007/s10529-020-02906-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are highly conserved, endogenous small RNAs that regulate gene expression at the post-transcriptional level. miR-127 plays an essential role in myogenic differentiation in vivo and in vitro. However, it is not clear whether miR-127-3p affects myogenic cell proliferation. METHODS The detailed function of miR-127-3p in proliferative C2C12 cell lines and further identified its regulatory mechanism by qRT-PCR, western blot, flow cytometry analysis and luciferase reporter assay. RESULTS Overexpression of miR-127-3p significantly inhibited proliferation of C2C12 cells and vice versa. Sept7 was a target gene of miR-127-3p using dual-luciferase reporter assay, qRT-PCR, and western blotting. The RNA interference analysis, in which Sept7 was downregulated, showed that Sept7 significantly promoted the proliferation of C2C12 cells. Besides, the expression level of Sept7 was detected analysis in muscle cells and tissues. CONCLUSIONS These findings reveal that miR-127-3p regulates myoblast proliferation by targeting Sept7.
Collapse
Affiliation(s)
- Jie Li
- Herbivorous Livestock Institute, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Gaofu Wang
- Herbivorous Livestock Institute, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Jing Jiang
- Herbivorous Livestock Institute, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Li Zhang
- Herbivorous Livestock Institute, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Peng Zhou
- Herbivorous Livestock Institute, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Hangxing Ren
- Herbivorous Livestock Institute, Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
| |
Collapse
|
11
|
Treatment of cancer stem cells from human colon adenocarcinoma cell line HT-29 with resveratrol and sulindac induced mesenchymal-endothelial transition rate. Cell Tissue Res 2019; 376:377-388. [DOI: 10.1007/s00441-019-02998-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
|
12
|
Liu G, Fei F, Qu J, Wang X, Zhao Y, Li Y, Zhang S. iTRAQ-based proteomic analysis of DMH-induced colorectal cancer in mice reveals the expressions of β-catenin, decorin, septin-7, and S100A10 expression in 53 cases of human hereditary polyposis colorectal cancer. Clin Transl Oncol 2019; 21:220-231. [PMID: 29956073 DOI: 10.1007/s12094-018-1912-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE The aim of this study is to explore the roles of β-catenin, decorin, septin-7, and S100A10 expression in colorectal cancer development. METHODS Twenty-five BALB/c mice were divided into five groups; four groups were administrated N,N-dimethylhydrazine for 0, 10, 15, and 20 weeks, and one group was administrated normal saline for 20 weeks. The colons were collected for histopathological analysis. Protein samples prepared from the frozen colon tissues of mice treated with N,N-dimethylhydrazine for the different time points were evaluated using the isobaric tags for relative and absolute quantification (iTRAQ) labeling technique coupled with the 2D liquid chromatography-tandem mass spectrometry analysis. Based on the proteomic analysis results, immunohistochemical staining of β-catenin, decorin, septin-7, and S100A10 was performed in paraffin-embedded mice colorectal tissue, and 53 cases of human hereditary polyposis colorectal cancer samples. RESULTS Colorectal cancer was observed in mice treated with N,N-dimethylhydrazine for 20 weeks, and adenomas were observed in mice subjected to the 10-, and 15-week treatments. Seventy-two differentially expressed proteins were involved in the development of cancer as per the iTRAQ and spectrometry analysis. In normal epithelium, adenoma, and cancer from human hereditary polyposis colorectal cancer, S100A10 expression (c2 = 100.989, P = 0.000) was highest in cancer, whereas decorin (c2 = 12.852, P = 0.002) and septin-7 (c2 = 66.519, P = 0.002) expressions were highest in the normal epithelium, which was confirmed via immunohistochemical staining. CONCLUSIONS The subcellular localization of β-catenin and decorin, septin-7, and S100A10 expressions are associated with the development of colorectal cancer in mice after N,N-dimethylhydrazine treatment and in human hereditary polyposis colorectal cancers.
Collapse
Affiliation(s)
- G Liu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - F Fei
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - J Qu
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - X Wang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Y Zhao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Y Li
- Departments of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - S Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China.
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
13
|
Kappel S, Borgström A, Stokłosa P, Dörr K, Peinelt C. Store-operated calcium entry in disease: Beyond STIM/Orai expression levels. Semin Cell Dev Biol 2019; 94:66-73. [PMID: 30630032 DOI: 10.1016/j.semcdb.2019.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/29/2018] [Accepted: 01/05/2019] [Indexed: 12/19/2022]
Abstract
Precise intracellular calcium signaling is crucial to numerous cellular functions. In non-excitable cells, store-operated calcium entry (SOCE) is a key step in the generation of intracellular calcium signals. Tight regulation of SOCE is important, and dysregulation is involved in several pathophysiological cellular malfunctions. The current underlying SOCE, calcium release-activated calcium current (ICRAC), was first discovered almost three decades ago. Since its discovery, the molecular components of ICRAC, Orai1 and stromal interaction molecule 1 (STIM1), have been extensively investigated. Several regulatory mechanisms and proteins contribute to alterations in SOCE and cellular malfunctions in cancer, immune and neurodegenerative diseases, inflammation, and neuronal disorders. This review summarizes these regulatory mechanisms, including glycosylation, pH sensing, and the regulatory proteins golli, α-SNAP, SARAF, ORMDL3, CRACR2A, and TRPM4 channels.
Collapse
Affiliation(s)
- Sven Kappel
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Anna Borgström
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Paulina Stokłosa
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | | | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
14
|
Septin 7 mediates high glucose-induced podocyte apoptosis. Biochem Biophys Res Commun 2018; 506:522-528. [PMID: 30361092 DOI: 10.1016/j.bbrc.2018.10.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/13/2018] [Indexed: 12/21/2022]
Abstract
Podocyte depletion is a central pathological mechanism of diabetic nephropathy (DN). Hyperglycemia induced podocyte apoptosis, resulting in podocyte depletion. However, the crucial mechanism of hyperglycemia-induced podocyte apoptosis remains poorly understood. In this study, we evaluated the expression of septin 7, a GTP-binding protein, in glomerular podocytes of patients and mice with DN, and investigated the pro-apoptotic effect of septin 7 on high glucose (HG) induced podocyte apoptosis in vitro. We found septin 7 expression was markedly increased not only in glomerular podocytes of patients and db/db mice with DN but also in cultured podocytes with HG stimulation. Knocking down septin 7 with siRNA could attenuate HG induced podocytes apoptosis and excessive intracellular Ca2+ concentration. This study revealed septin7 may potentially play a proapoptotic role in podocyte under diabetic conditions and may provide a potential target for preventing podocyte apoptosis in DN.
Collapse
|
15
|
Wang X, Fei F, Qu J, Li C, Li Y, Zhang S. The role of septin 7 in physiology and pathological disease: A systematic review of current status. J Cell Mol Med 2018; 22:3298-3307. [PMID: 29602250 PMCID: PMC6010854 DOI: 10.1111/jcmm.13623] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
Septins are a conserved family of cytoskeletal GTPases present in different organisms, including yeast, drosophila, Caenorhabditis elegans and humans. In humans, septins are involved in various cellular processes, including exocytosis, apoptosis, leukemogenesis, carcinogenesis and neurodegeneration. Septin 7 is unique out of 13 human septins. Mammalian septin 6, septin 7, septin 2 and septin 9 coisolate together in complexes to form the core unit for the generation of the septin filaments. Physiological septin filaments are hetero-oligomeric complexes consisting of core septin hexamers and octamers. Furthermore, septin 7 plays a crucial role in cytokinesis and mitosis. Septin 7 is localized to the filopodia and branches of developing hippocampal neurons, and is the most abundant septin in the adult rat forebrain as well as a structural component of the human and mouse sperm annuli. Septin 7 is crucial to the spine morphogenesis and dendrite growth in neurons, and is also a structural constituent of the annulus in human and mouse sperm. It can suppress growth of some tumours such as glioma and papillary thyroid carcinoma. However, the molecular mechanisms of involvement of septin 7 in human disease, especially in the development of cancer, remain unclear. This review focuses on the structure, function and mechanism of septin 7 in vivo, and summarizes the role of septin 7 in cell proliferation, cytokinesis, nervous and reproductive systems, as well as the underlying molecular events linking septin 7 to various diseases, such as Alzheimer's disease, schizophrenia, neuropsychiatric systemic lupus erythematosus, tumour and so on.
Collapse
Affiliation(s)
- Xinlu Wang
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Fei Fei
- Department of PathologyTianjin Union Medical CenterTianjinChina
- Nankai University School of MedicineNankai UniversityTianjinChina
| | - Jie Qu
- Department of PathologyTianjin Union Medical CenterTianjinChina
- Nankai University School of MedicineNankai UniversityTianjinChina
| | - Chunyuan Li
- Department of PathologyTianjin Union Medical CenterTianjinChina
- Nankai University School of MedicineNankai UniversityTianjinChina
| | - Yuwei Li
- Department of Colorectal SurgeryTianjin Union Medical CenterTianjinChina
| | - Shiwu Zhang
- Department of PathologyTianjin Union Medical CenterTianjinChina
| |
Collapse
|
16
|
Repression of Septin9 and Septin2 suppresses tumor growth of human glioblastoma cells. Cell Death Dis 2018; 9:514. [PMID: 29724999 PMCID: PMC5938713 DOI: 10.1038/s41419-018-0547-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 01/18/2023]
Abstract
Glioblastoma (GBM) is the most common primary malignancy of the central nervous system (CNS) with <10% 5-year survival rate. The growth and invasion of GBM cells into normal brain make the resection and treatment difficult. A better understanding of the biology of GBM cells is crucial to the targeted therapies for the disease. In this study, we identified Septin9 (SEPT9) and Septin2 (SEPT2) as GBM-related genes through integrated multi-omics analysis across independent transcriptomic and proteomic studies. Further studies revealed that expression of SEPT9 and SEPT2 was elevated in glioma tissues and cell lines (A172, U87-MG). Knockdown of SEPT9 and SEPT2 in A172/U87-MG was able to inhibit GBM cell proliferation and arrest cell cycle progression in the S phase in a synergistic mechanism. Moreover, suppression of SEPT9 and SEPT2 decreased the GBM cell invasive capability and significantly impaired the growth of glioma xenografts in nude mice. Furthermore, the decrease in GBM cell growth caused by SEPT9 and SEPT2 RNAi appears to involve two parallel signaling pathway including the p53/p21 axis and MEK/ERK activation. Together, our integration of multi-omics analysis has revealed previously unrecognized synergistic role of SEPT9 and SEPT2 in GBM, and provided novel insights into the targeted therapy of GBM.
Collapse
|
17
|
Zhang N, Liu L, Fan N, Zhang Q, Wang W, Zheng M, Ma L, Li Y, Shi L. The requirement of SEPT2 and SEPT7 for migration and invasion in human breast cancer via MEK/ERK activation. Oncotarget 2018; 7:61587-61600. [PMID: 27557506 PMCID: PMC5308674 DOI: 10.18632/oncotarget.11402] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/28/2016] [Indexed: 11/25/2022] Open
Abstract
Septins are a novel class of GTP-binding cytoskeletal proteins evolutionarily conserved from yeast to mammals and have now been found to play a contributing role in a broad range of tumor types. However, their functional importance in breast cancer remains largely unclear. Here, we demonstrated that pharmaceutical inhibition of global septin dynamics would greatly suppress proliferation, migration and invasiveness in breast cancer cell lines. We then examined the expression and subcellular distribution of the selected septins SEPT2 and SEPT7 in breast cancer cells, revealing a rather variable localization of the two proteins with cell cycle progression. To determine the role of both septins in mediating malignant behavior of cancer cells, we used RNA silencing to specifically deplete endogenous SEPT2 or SEPT7 in highly invasive breast cancer cell line MDA-MB-231. Our findings showed that SEPT2/7 depletion had virtually identical inhibitory effects on cellular proliferation, apoptosis, migration and invasion. Moreover, the opposite performance in migration and invasion was observed after enforced expression of SEPT2/7 in the same cell line. We further demonstrated MEK/ERK activation, but not other MAPKs and AKT, was positively correlated with the protein levels of SEPT2 and SEPT7. Additionally, in SEPT2/7-overexpressing cells, the MEK specific inhibitor U0126 was able to correct the high active status of MEK/ERK while normalizing the increased invasive behaviors of these cells. Taken together, these results strongly suggest that SEPT2 and SEPT7 are involved in breast carcinogenesis and may serve as valuable therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Nianzhu Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, P.R.China
| | - Lu Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044 Liaoning, P.R.China
| | - Ning Fan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044 Liaoning, P.R.China
| | - Qian Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, P.R.China
| | - Weijie Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, P.R.China
| | - Mingnan Zheng
- Department of Gynecology and Obstetrics, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, 116033, Liaoning, P.R.China
| | - Lingfei Ma
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, P.R.China
| | - Yan Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044 Liaoning, P.R.China
| | - Lei Shi
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, P.R.China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P.R.China
| |
Collapse
|
18
|
Meng X, Zhu Y, Tao L, Zhao S, Qiu S. Overexpression of septin-7 inhibits melatonin-induced cell apoptosis in human fetal osteoblastic cells via suppression of endoplasmic reticulum stress. Mol Med Rep 2018; 17:4817-4822. [PMID: 29344665 DOI: 10.3892/mmr.2018.8449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/12/2017] [Indexed: 11/05/2022] Open
Abstract
Our previous study demonstrated that melatonin could induce apoptosis in the human fetal osteoblastic (hFOB) 1.19 cell line via induction of endoplasmic reticulum stress (ERS), and recent studies have demonstrated that the expression of septin‑7 (SEPT7) exhibits a positive correlation with the concentration of melatonin. Western blotting demonstrated the expression level of SEPT7 was significantly upregulated in a dose‑dependent manner following treatment with differing concentrations of melatonin compared with the control groups, which did not receive any treatment. The expression of proteins associated with cell apoptosis and endoplasmic reticulum stress (ERS; pro-caspase‑3, cleaved caspase‑3, C/EBP‑homologous protein, 78 kDa glucose‑regulated protein and phosphorylated‑eukaryotic translation initiation factor 2α) were decreased following transfection with SEPT7 overexpression plasmid and increased following transfection with SEPT7 small interfering RNA compared with the control groups. The results of the present study suggest that SEPT7 inhibits melatonin‑induced cell apoptosis via suppression of ERS.
Collapse
Affiliation(s)
- Xiaotong Meng
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yue Zhu
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lin Tao
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Sichao Zhao
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shui Qiu
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
19
|
Yue X, Cao D, Lan F, Pan Q, Xia T, Yu H. MiR-301a is activated by the Wnt/β-catenin pathway and promotes glioma cell invasion by suppressing SEPT7. Neuro Oncol 2016; 18:1288-96. [PMID: 27006177 DOI: 10.1093/neuonc/now044] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/19/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND miR-301a is frequently dysregulated and specific to human tumors, playing a critical role in tumorigenesis; however, the exact functions and regulatory mechanisms of miR-301a in glioma cells remain largely unknown. Herein, we show that miR-301a activated by the Wnt/β-catenin pathway promoted the invasion of glioma cells by directly targeting SEPT7. METHODS Biochemical, luciferase reporter, and hromatin immunoprecipitation PCR assays characterized the function and regulatory mechanisms of miR-301a in glioma invasion. RESULTS Initially, we detected the expression of miR-301a in glioma tissues and identified that miR-301a had increased, with ascending grades of the tumor. Furthermore, high levels of miR-301a were associated with a poorer prognosis in glioma patients. It is important to note that the Wnt/β-catenin/TCF4 pathway enhanced miR-301a expression by binding to the promoter region. To determine the oncogenic functions of miR-301a in glioma, SEPT7 was supported as the direct target gene. In addition, the Wnt/β-catenin pathway repressed SEPT7 expression, which was dependent on miR-301a in glioma cells. Finally, miR-301a was activated by Wnt/β-catenin and then promoted invasion of glioma cells by inhibiting the expression of SEPT7 in vitro and in vivo. CONCLUSIONS Our findings revealed the mechanism of action for miR-301a in tumor cell invasion. Moreover, the Wnt/miR-301a/SEPT7 signaling axis might be a novel target in treating glioma.
Collapse
Affiliation(s)
- Xiao Yue
- Tianjin Huanhu Hospital, Tianjin Neurosurgery Institute, Tianjin , China (X.Y., D.C.); Department of Radiation Oncology, Tianjin Hospital, Tianjin , China (F.L.); Department of Neurosurgery, Laiwu City People's Hospital, Laiwu, China (Q.P.); Department of Radiation Oncology, P.L.A Airforce General Hospital, Beijing, China (T.X.); Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital & Institute, Beijing, China (H.Y.)
| | - Dechen Cao
- Tianjin Huanhu Hospital, Tianjin Neurosurgery Institute, Tianjin , China (X.Y., D.C.); Department of Radiation Oncology, Tianjin Hospital, Tianjin , China (F.L.); Department of Neurosurgery, Laiwu City People's Hospital, Laiwu, China (Q.P.); Department of Radiation Oncology, P.L.A Airforce General Hospital, Beijing, China (T.X.); Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital & Institute, Beijing, China (H.Y.)
| | - FengMing Lan
- Tianjin Huanhu Hospital, Tianjin Neurosurgery Institute, Tianjin , China (X.Y., D.C.); Department of Radiation Oncology, Tianjin Hospital, Tianjin , China (F.L.); Department of Neurosurgery, Laiwu City People's Hospital, Laiwu, China (Q.P.); Department of Radiation Oncology, P.L.A Airforce General Hospital, Beijing, China (T.X.); Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital & Institute, Beijing, China (H.Y.)
| | - Qiang Pan
- Tianjin Huanhu Hospital, Tianjin Neurosurgery Institute, Tianjin , China (X.Y., D.C.); Department of Radiation Oncology, Tianjin Hospital, Tianjin , China (F.L.); Department of Neurosurgery, Laiwu City People's Hospital, Laiwu, China (Q.P.); Department of Radiation Oncology, P.L.A Airforce General Hospital, Beijing, China (T.X.); Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital & Institute, Beijing, China (H.Y.)
| | - Tingyi Xia
- Tianjin Huanhu Hospital, Tianjin Neurosurgery Institute, Tianjin , China (X.Y., D.C.); Department of Radiation Oncology, Tianjin Hospital, Tianjin , China (F.L.); Department of Neurosurgery, Laiwu City People's Hospital, Laiwu, China (Q.P.); Department of Radiation Oncology, P.L.A Airforce General Hospital, Beijing, China (T.X.); Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital & Institute, Beijing, China (H.Y.)
| | - Huiming Yu
- Tianjin Huanhu Hospital, Tianjin Neurosurgery Institute, Tianjin , China (X.Y., D.C.); Department of Radiation Oncology, Tianjin Hospital, Tianjin , China (F.L.); Department of Neurosurgery, Laiwu City People's Hospital, Laiwu, China (Q.P.); Department of Radiation Oncology, P.L.A Airforce General Hospital, Beijing, China (T.X.); Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital & Institute, Beijing, China (H.Y.)
| |
Collapse
|
20
|
Hou M, Liu X, Cao J, Chen B. SEPT7 overexpression inhibits glioma cell migration by targeting the actin cytoskeleton pathway. Oncol Rep 2016; 35:2003-10. [PMID: 26846171 DOI: 10.3892/or.2016.4609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/23/2015] [Indexed: 11/06/2022] Open
Abstract
Glioma cell metastasis is a serious obstacle for surgical treatment and prognosis, of which locomotion of the cytoskeleton is a key contributor of cancer cell spreading. SEPT7 is documented as a cytoskeletal protein with GTPase activity and involved in glioma progression. However, the underlying mechanism of SEPT7 in glioma invasion remains unresolved. Our study investigated whether SEPT7 influences glioma cell migration involved in cytoskeleton modulation. The SEPT7 expression in various glioma cell lines was markedly decreased compared to in normal human brain cells. It was demonstrated that SEPT7 overexpression significantly inhibits LN18 cell migration and chemotaxis induced by IGF‑1 (P<0.01 and P<0.01). Moreover, MMP‑2 and MMP‑9 were dramatically depressed after SEPT7 upregulation. To understand the mechanisms by which SEPT7 modulates homeostasis of the actin cytoskeleton, the F‑actin/G‑actin ratio and cofilin expression were determined. The data revealed that the F‑actin/G‑actin ratio and cofilin were reduced, and p‑cofilin increased conversely in cells with SEPT7 overexpression, indicating that SEPT7 reduced glioma cell migration by promoting cofilin phosphorylation and depolymerizing actin. Then, to understand the role of cofilin in SEPT7‑mediated actin dynamic equilibrium and cell migration, cofilin siRNA was transfected into cells. Surprisingly, cell migration and actin polymerization which had been improved by SEPT7 siRNA were significantly reversed, and the accompanying cofilin phosphorylation increased, indicating that cofilin phospho‑regulation played an important role in SEPT7‑mediated cytoskeleton locomotion and glioma cell migration. In conclusion, SEPT7 is involved in glioma cell migration with the assistance of cofilin phospho‑mediated cytoskeleton locomotion.
Collapse
Affiliation(s)
- Mingshan Hou
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, The Affiliated Hospital of Xi'an Medical University, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Xiaobing Liu
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, The Affiliated Hospital of Xi'an Medical University, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Jie Cao
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, The Affiliated Hospital of Xi'an Medical University, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Bo Chen
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, The Affiliated Hospital of Xi'an Medical University, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
21
|
Saad MA, Kuo SZ, Rahimy E, Zou AE, Korrapati A, Rahimy M, Kim E, Zheng H, Yu MA, Wang-Rodriguez J, Ongkeko WM. Alcohol-dysregulated miR-30a and miR-934 in head and neck squamous cell carcinoma. Mol Cancer 2015; 14:181. [PMID: 26472042 PMCID: PMC4608114 DOI: 10.1186/s12943-015-0452-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alcohol consumption is a well-established risk factor for head and neck squamous cell carcinoma (HNSCC); however, the molecular mechanisms by which alcohol promotes HNSCC pathogenesis and progression remain poorly understood. Our study sought to identify microRNAs that are dysregulated in alcohol-associated HNSCC and investigate their contribution to the malignant phenotype. METHOD Using RNA-sequencing data from 136 HNSCC patients, we compared the expression levels of 1,046 microRNAs between drinking and non-drinking cohorts. Dysregulated microRNAs were verified by qRT-PCR in normal oral keratinocytes treated with biologically relevant doses of ethanol and acetaldehyde. The most promising microRNA candidates were investigated for their effects on cellular proliferation and invasion, sensitivity to cisplatin, and expression of cancer stem cell genes. Finally, putative target genes were identified and evaluated in vitro to further establish roles for these miRNAs in alcohol-associated HNSCC. RESULTS From RNA-sequencing analysis we identified 8 miRNAs to be significantly upregulated in alcohol-associated HNSCCs. qRT-PCR experiments determined that among these candidates, miR-30a and miR-934 were the most highly upregulated in vitro by alcohol and acetaldehyde. Overexpression of miR-30a and miR-934 in normal and HNSCC cell lines produced up to a 2-fold increase in cellular proliferation, as well as induction of the anti-apoptotic gene BCL-2. Upon inhibition of these miRNAs, HNSCC cell lines exhibited increased sensitivity to cisplatin and reduced matrigel invasion. miRNA knockdown also indicated direct targeting of several tumor suppressor genes by miR-30a and miR-934. CONCLUSIONS Alcohol induces the dysregulation of miR-30a and miR-934, which may play crucial roles in HNSCC pathogenesis and progression. Future investigation of the alcohol-mediated pathways effecting these transformations will prove valuable for furthering the understanding and treatment of alcohol-associated HNSCC.
Collapse
Affiliation(s)
- Maarouf A Saad
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| | - Selena Z Kuo
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| | - Elham Rahimy
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| | - Angela E Zou
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| | - Avinaash Korrapati
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| | - Mehran Rahimy
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| | - Elizabeth Kim
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| | - Hao Zheng
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| | - Michael Andrew Yu
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| | - Jessica Wang-Rodriguez
- Department of Pathology, Veterans Administration Health Care System, San Diego, CA, USA. .,Department of Pathology, University of California, San Diego, CA, USA.
| | - Weg M Ongkeko
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
22
|
Lu Y, Cai G, Cui S, Geng W, Chen D, Wen J, Zhang Y, Zhang F, Xie Y, Fu B, Chen X. FHL2-driven molecular network mediated Septin2 knockdown inducing apoptosis in mesangial cell. Proteomics 2014; 14:2485-97. [PMID: 25103794 DOI: 10.1002/pmic.201400252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/22/2014] [Accepted: 08/04/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Yang Lu
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Guangyan Cai
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Shaoyuan Cui
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Wenjia Geng
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Dapeng Chen
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Jun Wen
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Yuanyuan Zhang
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Fujian Zhang
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Yuansheng Xie
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Bo Fu
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Xiangmei Chen
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| |
Collapse
|
23
|
Igci YZ, Erkilic S, Arslan A. Septin 7 immunoexpression in papillary thyroid carcinoma: A preliminary study. Pathol Res Pract 2014; 210:426-31. [DOI: 10.1016/j.prp.2014.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/17/2013] [Accepted: 02/24/2014] [Indexed: 11/28/2022]
|
24
|
Deighton RF, Le Bihan T, Martin SF, Barrios-Llerena ME, Gerth AMJ, Kerr LE, McCulloch J, Whittle IR. The proteomic response in glioblastoma in young patients. J Neurooncol 2014; 119:79-89. [PMID: 24838487 PMCID: PMC4129242 DOI: 10.1007/s11060-014-1474-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 05/04/2014] [Indexed: 01/06/2023]
Abstract
Increasing age is an important prognostic variable in glioblastoma (GBM). We have defined the proteomic response in GBM samples from 7 young patients (mean age 36 years) compared to peritumoural-control samples from 10 young patients (mean age 32 years). 2-Dimensional-gel-electrophoresis, image analysis, and protein identification (LC/MS) were performed. 68 proteins were significantly altered in young GBM samples with 29 proteins upregulated and 39 proteins downregulated. Over 50 proteins are described as altered in GBM for the first time. In a parallel analysis in old GBM (mean age 67 years), an excellent correlation could be demonstrated between the proteomic profile in young GBM and that in old GBM patients (r2 = 0.95) with only 5 proteins altered significantly (p < 0.01). The proteomic response in young GBM patients highlighted alterations in protein–protein interactions in the immunoproteosome, NFkB signalling, and mitochondrial function and the same systems participated in the responses in old GBM patients.
Collapse
Affiliation(s)
- Ruth F Deighton
- Department of Clinical Neurosciences, Western General Hospital, Edinburgh, EH4 2XU, UK,
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Saggioro FP, Neder L, Stávale JN, Paixão-Becker ANP, Malheiros SM, Soares FA, Pittella JEH, Matias CCM, Colli BO, Carlotti CG, Franco M. Fas, FasL, and cleaved caspases 8 and 3 in glioblastomas: A tissue microarray-based study. Pathol Res Pract 2014; 210:267-73. [DOI: 10.1016/j.prp.2013.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/03/2013] [Accepted: 12/30/2013] [Indexed: 02/04/2023]
|
26
|
Degroote RL, Hauck SM, Amann B, Hirmer S, Ueffing M, Deeg CA. Unraveling the equine lymphocyte proteome: differential septin 7 expression associates with immune cells in equine recurrent uveitis. PLoS One 2014; 9:e91684. [PMID: 24614191 PMCID: PMC3951111 DOI: 10.1371/journal.pone.0091684] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/13/2014] [Indexed: 11/25/2022] Open
Abstract
Equine recurrent uveitis is a spontaneous, lymphocyte-driven autoimmune disease. It affects horses worldwide and presents with painful remitting-relapsing inflammatory attacks of inner eye structures eventually leading to blindness. Since lymphocytes are the key players in equine recurrent uveitis, we were interested in potential changes of their protein repertoire which may be involved in disease pathogenesis. To create a reference for differential proteome analysis, we first unraveled the equine lymphocyte proteome by two-dimensional sodium dodecyl sulfate - polyacrylamide gel electrophoresis and subsequently identified 352 protein spots. Next, we compared lymphocytes from ERU cases and healthy horses with a two-dimensional fluorescence difference in gel electrophoresis approach. With this technique, we identified seven differentially expressed proteins between conditions. One of the significantly lower expressed candidates, septin 7, plays a role in regulation of cell shape, motility and migration. Further analyses revealed T cells as the main cell type with decreased septin 7 abundance in equine recurrent uveitis. These findings point to a possible pathogenetic role of septin 7 in this sight-threatening disease.
Collapse
Affiliation(s)
- Roxane L. Degroote
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Sciences, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Barbara Amann
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - Sieglinde Hirmer
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - Marius Ueffing
- Research Unit Protein Sciences, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Center for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Cornelia A. Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilians University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
27
|
Jiang H, Hua D, Zhang J, Lan Q, Huang Q, Yoon JG, Han X, Li L, Foltz G, Zheng S, Lin B. MicroRNA-127-3p promotes glioblastoma cell migration and invasion by targeting the tumor-suppressor gene SEPT7. Oncol Rep 2014; 31:2261-9. [PMID: 24604520 DOI: 10.3892/or.2014.3055] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/06/2014] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs of 20-25 nucleotides in length that are capable of modulating gene expression post-transcriptionally. The potential roles of miRNAs in the tumorigenesis of glioblastoma (GBM) have been under intensive studies in the past few years. In the present study, we found a positive correlation between the levels of miR-127-3p and the cell migration and invasion abilities in several human GBM cell lines. We showed that miR-127-3p promoted cell migration and invasion of GBM cells using in vitro cell lines and in vivo mouse models. We identified SEPT7, a known tumor-suppressor gene that has been reported to suppress GBM cell migration and invasion, as a direct target of miR-127-3p. SEPT7 was able to partially abrogate the effect of miR-127-3p on cell migration and invasion. In addition, microarray analysis revealed that miR-127-3p regulated a number of migration and invasion-related genes. Finally, we verified that miR-127-3p affected the remodeling of the actin cytoskeleton mediated by SEPT7 in GBM cells.
Collapse
Affiliation(s)
- Huawei Jiang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Dasong Hua
- Systems Biology Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Jing Zhang
- Systems Biology Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Qing Lan
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Qiang Huang
- Department of Neurosurgery and Brain Tumor Research Laboratory, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jae-Geun Yoon
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, WA 98122, USA
| | - Xu Han
- Systems Biology Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Lisha Li
- Systems Biology Division, Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang 310029, P.R. China
| | - Gregory Foltz
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, WA 98122, USA
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Biaoyang Lin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
28
|
The human septin7 and the yeast CDC10 septin prevent Bax and copper mediated cell death in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3186-3194. [DOI: 10.1016/j.bbamcr.2013.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 01/18/2023]
|
29
|
Shvedova AA, Yanamala N, Kisin ER, Tkach AV, Murray AR, Hubbs A, Chirila MM, Keohavong P, Sycheva LP, Kagan VE, Castranova V. Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons. Am J Physiol Lung Cell Mol Physiol 2013; 306:L170-82. [PMID: 24213921 DOI: 10.1152/ajplung.00167.2013] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The hallmark geometric feature of single-walled carbon nanotubes (SWCNT) and carbon nanofibers (CNF), high length to width ratio, makes them similar to a hazardous agent, asbestos. Very limited data are available concerning long-term effects of pulmonary exposure to SWCNT or CNF. Here, we compared inflammatory, fibrogenic, and genotoxic effects of CNF, SWCNT, or asbestos in mice 1 yr after pharyngeal aspiration. In addition, we compared pulmonary responses to SWCNT by bolus dosing through pharyngeal aspiration and inhalation 5 h/day for 4 days, to evaluate the effect of dose rate. The aspiration studies showed that these particles can be visualized in the lung at 1 yr postexposure, whereas some translocate to lymphatics. All these particles induced chronic bronchopneumonia and lymphadenitis, accompanied by pulmonary fibrosis. CNF and asbestos were found to promote the greatest degree of inflammation, followed by SWCNT, whereas SWCNT were the most fibrogenic of these three particles. Furthermore, SWCNT induced cytogenetic alterations seen as micronuclei formation and nuclear protrusions in vivo. Importantly, inhalation exposure to SWCNT showed significantly greater inflammatory, fibrotic, and genotoxic effects than bolus pharyngeal aspiration. Finally, SWCNT and CNF, but not asbestos exposures, increased the incidence of K-ras oncogene mutations in the lung. No increased lung tumor incidence occurred after 1 yr postexposure to SWCNT, CNF, and asbestos. Overall, our data suggest that long-term pulmonary toxicity of SWCNT, CNF, and asbestos is defined, not only by their chemical composition, but also by the specific surface area and type of exposure.
Collapse
|
30
|
MiR-30a-5p antisense oligonucleotide suppresses glioma cell growth by targeting SEPT7. PLoS One 2013; 8:e55008. [PMID: 23383034 PMCID: PMC3557229 DOI: 10.1371/journal.pone.0055008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/17/2012] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by targeting the mRNAs of hundreds of human genes. Variations in miRNA expression levels were shown to be associated with glioma. We have previously found miR-30a-5p overexpression in glioma cell lines and specimens. Bioinformatics analyses predict that several miRNAs, including miR-30a-5p, are involved in the post-transcriptional regulation of SEPT7. SEPT7 is a member of the septin family, which is a highly conserved subfamily of GTPases implicated in exocytosis, apoptosis, synaptogenesis, neurodegeneration and tumorigenesis. Our previous study has also demonstrated that SEPT7 expression is decreased in astrocytic gliomas with different grades and plays a tumor suppressor role. In the present study, we knocked down miR-30a-5p with antisense oligonucleotide (miR-30a-5p AS) in LN229 and SNB19 glioblastoma(GBM) cells, and found that cell growth and invasion were inhibited, while apoptosis was induced. miR-30a-5p AS treated cells showed upregulation of SEPT7 and downregulation of PCNA, cyclin D1, Bcl2, MMP2 and MMP9. In contrast, when miR-30a-5p mimics were transfected into LN229 and SNB19 GBM cells, cell growth and invasion were promoted and the expression of relevant proteins increased. Meanwhile, the effect of miR-30a-5p mimics on glioma cells can be reversed by transfection of SEPT7 construct. Additionaly, miR-30a-5p directly targeting SEPT7 was identified by the reporter gene assay. Our study demonstrates,for the first time, that miR-30a-5p is a bona fide negative regulator of SEPT7 and the oncogenic activity of miR-30a-5p in human gliomas is at least in part through the repression of SEPT7.
Collapse
|
31
|
Zhang WJ, Zhang WG, Zhang PY, Cao XM, He AL, Chen YX, Gu LF. The expression and functional characterization associated with cell apoptosis and proteomic analysis of the novel gene MLAA-34 in U937 cells. Oncol Rep 2012; 29:491-506. [PMID: 23135622 DOI: 10.3892/or.2012.2129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/25/2012] [Indexed: 11/06/2022] Open
Abstract
MLAA-34 is a novel acute monocytic leukemia (M5)-associated antigen (MLAA) that plays a role in the apoptosis of U937 cells. However, the expression and molecular mechanism of MLAA-34 in U937 cells remain largely unclear. Here, we utilized three strategies to gain insight into the expression and molecular functions of MLAA-34 and to identify its interacting proteins and pathways involved in the fine-tuning of the MLAA-34 response. Western blot analysis was performed to assess the expression of MLAA-34 in 41 cell lines and five mixed cell types, which revealed that MLAA-34 is most strongly expressed in U937 cells. Immunostaining indicated that MLAA-34 is localized in the cytoplasm and cell membrane. Furthermore, lentivirus-mediated overexpression of MLAA-34 in the U937 cell line led to significant suppression of apoptosis and increased the potential of tumorigenicity. Co-immunoprecipitation (Co-IP), shotgun and bioinformatic analysis identified 256 proteins and 225 of them were annotated by gene ontology categories. This analysis revealed 71 proteins involved in cell apoptosis or proliferation of biological processes and signaling pathways. Moreover, the effect of MLAA-34 apoptosis may be through interaction with the Ras, Wnt, calcium and chemokine signaling pathways and thirteen of the annotated proteins may interact with MLAA-34 and participate in carcinogenesis directly. This study provides a basis for a better understanding of the molecular mechanism and proteomics in the inhibition of apoptosis by MLAA-34 in U937 cells and indicates that MLAA-34 may be a potential candidate for the early diagnosis and therapeutic application of M5.
Collapse
Affiliation(s)
- Wen-Juan Zhang
- Department of Clinical Hematology, Affiliated No. 2 Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710004, PR China
| | | | | | | | | | | | | |
Collapse
|
32
|
Valdiglesias V, Fernández-Tajes J, Pásaro E, Méndez J, Laffon B. Identification of differentially expressed genes in SHSY5Y cells exposed to okadaic acid by suppression subtractive hybridization. BMC Genomics 2012; 13:46. [PMID: 22284234 PMCID: PMC3296583 DOI: 10.1186/1471-2164-13-46] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 01/27/2012] [Indexed: 12/02/2022] Open
Abstract
Background Okadaic acid (OA), a toxin produced by several dinoflagellate species is responsible for frequent food poisonings associated to shellfish consumption. Although several studies have documented the OA effects on different processes such as cell transformation, apoptosis, DNA repair or embryogenesis, the molecular mechanistic basis for these and other effects is not completely understood and the number of controversial data on OA is increasing in the literature. Results In this study, we used suppression subtractive hybridization in SHSY5Y cells to identify genes that are differentially expressed after OA exposure for different times (3, 24 and 48 h). A total of 247 subtracted clones which shared high homology with known genes were isolated. Among these, 5 specific genes associated with cytoskeleton and neurotransmission processes (NEFM, TUBB, SEPT7, SYT4 and NPY) were selected to confirm their expression levels by real-time PCR. Significant down-regulation of these genes was obtained at the short term (3 and 24 h OA exposure), excepting for NEFM, but their expression was similar to the controls at 48 h. Conclusions From all the obtained genes, 114 genes were up-regulated and 133 were down-regulated. Based on the NCBI GenBank and Gene Ontology databases, most of these genes are involved in relevant cell functions such as metabolism, transport, translation, signal transduction and cell cycle. After quantitative PCR analysis, the observed underexpression of the selected genes could underlie the previously reported OA-induced cytoskeleton disruption, neurotransmission alterations and in vivo neurotoxic effects. The basal expression levels obtained at 48 h suggested that surviving cells were able to recover from OA-caused gene expression alterations.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Toxicology Unit, Psychobiology Department, University of A Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071 A Coruña, Spain
| | | | | | | | | |
Collapse
|
33
|
Involvement of SEPT4_i1 in hepatocellular carcinoma: SEPT4_i1 regulates susceptibility to apoptosis in hepatocellular carcinoma cells. Mol Biol Rep 2011; 39:4519-26. [PMID: 21952823 DOI: 10.1007/s11033-011-1242-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/14/2011] [Indexed: 11/27/2022]
Abstract
SEPT4 belongs to the Septin family with multiple functions in cell division, cytoskeletal organization and other processes. This study aims to investigate the relationship between SEPT4_i1 isoform and human hepatocellular carcinoma (HCC). We showed that over-expression of SEPT4_i1 in HCC cells was able to sensitize cells to serum starvation-induced apoptosis. By contrast, knockdown of SEPT4_i1 expression in HCC cells was able to rescue cells from apoptosis induced by serum deprivation and to promote cell growth. Expressional analysis of SEPT4_i1 in tumor tissues further revealed that SEPT4_i1 was significantly down-regulated in human HCC tissues. Taken together, these data suggests a tumor suppressor role of SEPT4_i1 in HCC through regulating HCC cell apoptosis.
Collapse
|
34
|
Connolly D, Abdesselam I, Verdier-Pinard P, Montagna C. Septin roles in tumorigenesis. Biol Chem 2011; 392:725-38. [PMID: 21740328 DOI: 10.1515/bc.2011.073] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Septins are a family of cytoskeleton related proteins consisting of 14 members that associate and interact with actin and tubulin. From yeast to humans, septins maintain a conserved role in cytokinesis and they are also involved in a variety of other cellular functions including chromosome segregation, DNA repair, migration and apoptosis. Tumorigenesis entails major alterations in these processes. A substantial body of literature reveals that septins are overexpressed, downregulated or generate chimeric proteins with MLL in a plethora of solid tumors and in hematological malignancies. Thus, members of this gene family are emerging as key players in tumorigenesis. The analysis of septins during cancer initiation and progression is challenged by the presence of many family members and by their potential to produce numerous isoforms. However, the development and application of advanced technologies is allowing for a more detailed analysis of septins during tumorigenesis. Specifically, such applications have led to the establishment and validation of SEPT9 as a biomarker for the early detection of colorectal cancer. This review summarizes the current knowledge on the role of septins in tumorigenesis, emphasizing their significance and supporting their use as potential biomarkers in various cancer types.
Collapse
Affiliation(s)
- Diana Connolly
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
35
|
Jin J, Kwon YW, Paek JS, Cho HJ, Yu J, Lee JY, Chu IS, Park IH, Park YB, Kim HS, Kim Y. Analysis of differential proteomes of induced pluripotent stem cells by protein-based reprogramming of fibroblasts. J Proteome Res 2011; 10:977-89. [PMID: 21175196 DOI: 10.1021/pr100624f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The recent generation of induced pluripotent stem (iPS) cells represents a novel opportunity to complement embryonic stem (ES) cell-based approaches. iPS cells can be generated by viral transduction of specific transcription factors, but there is a potential risk of tumorigenicity by random retroviral integration. We have generated novel iPS (sFB-protein-iPS) cells from murine dermal fibroblasts (FVB-sFB) that have ES cell characteristics, using ES cell-derived cell extracts instead of performing viral transduction. Notably, only cell extracts from an ES cell line (C57-mES) on the C57/BL6 background generated iPS cells in our protocol-not an ES cell line (E14-mES) on the 129 background. Hypothesizing that determining the differences in these 2 mES cell lines will provide vital insight into the reprogramming machinery, we performed proteomic and global gene expression analysis by iTRAQ and mRNA microarray, respectively. We observed that pluripotent ES cells and ES cell extract-derived iPS cells had differential proteomes and global gene expression patterns. Notably, reprogramming-competent C57-mES cells highly expressed proteins that regulate protein synthesis and metabolism, compared with reprogramming-incompetent 129-mES cells, suggesting that there is a threshold that protein synthetic machinery must exceed to initiate reprogramming.
Collapse
Affiliation(s)
- Jonghwa Jin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Overview of cellular immunotherapy for patients with glioblastoma. Clin Dev Immunol 2010; 2010. [PMID: 20953324 PMCID: PMC2952949 DOI: 10.1155/2010/689171] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/13/2010] [Accepted: 08/27/2010] [Indexed: 12/22/2022]
Abstract
High grade gliomas (HGG) including glioblastomas (GBM) are the most common and devastating primary brain tumours. Despite important progresses in GBM treatment that currently includes surgery combined to radio- and chemotherapy, GBM patients' prognosis remains very poor. Immunotherapy is one of the new promising therapeutic approaches that can specifically target tumour cells. Such an approach could also maintain long term antitumour responses without inducing neurologic defects. Since the past 25 years, adoptive and active immunotherapies using lymphokine-activated killer cells, cytotoxic T cells, tumour-infiltrating lymphocytes, autologous tumour cells, and dendritic cells have been tested in phase I/II clinical trials with HGG patients. This paper inventories these cellular immunotherapeutic strategies and discusses their efficacy, limits, and future perspectives for optimizing the treatment to achieve clinical benefits for GBM patients.
Collapse
|