1
|
Tosi U, Souweidane M. Fifty years of DIPG: looking at the future with hope. Childs Nerv Syst 2023; 39:2675-2686. [PMID: 37382660 DOI: 10.1007/s00381-023-06037-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a primary brainstem tumor of childhood that carries a dismal prognosis, with median survival of less than 1 year. Because of the brain stem location and pattern of growth within the pons, Dr. Harvey Cushing, the father of modern neurosurgery, urged surgical abandonment. Such a dismal prognosis remained unchanged for decades, coupled with a lack of understanding of tumor biology and an unchanging therapeutic panorama. Beyond palliative external beam radiation therapy, no therapeutic approach has been widely accepted. In the last one to two decades, however, increased tissue availability, an improving understanding of biology, genetics, and epigenetics have led to the development of novel therapeutic targets. In parallel with this biological revolution, new methods intended to enhance drug delivery into the brain stem are contributing to a surge of exciting experimental therapeutic strategies.
Collapse
Affiliation(s)
- Umberto Tosi
- Department of Neurosurgery, Weill Cornell Medicine, 525 E 68th St Box 99, New York, NY, 10021, USA
| | - Mark Souweidane
- Department of Neurosurgery, Weill Cornell Medicine, 525 E 68th St Box 99, New York, NY, 10021, USA.
| |
Collapse
|
2
|
Shi S, Lu S, Jing X, Liao J, Li Q. The Prognostic Impact of Radiotherapy in Conjunction with Temozolomide in Diffuse Intrinsic Pontine Glioma: A Systematic Review and Meta-Analysis. World Neurosurg 2021; 148:e565-e571. [PMID: 33476781 DOI: 10.1016/j.wneu.2021.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Diffuse intrinsic pontine glioma (DIPG) is a rare and devastating brainstem glioma that occurs predominately in children. To date, the prognostic impact of radiotherapy (RT) in conjunction with temozolomide (TMZ) in DIPG has not been thoroughly analyzed. The aim of this meta-analysis was to analyze the effectiveness of RT quantitatively and precisely in conjunction with TMZ in improving the prognosis of DIPG. METHODS A systematic search of 8 electronic databases was conducted. Articles mainly discussing the prognostic impact of RT in conjunction with TMZ in DIPG were selected. The pooled 1- and 2-year overall survival (OS) and progression-free survival (PFS) were calculated. RESULTS A total of 14 studies fulfilled our inclusion criteria, involving 283 cases of patients with DIPG who were treated with RT in conjunction with TMZ. The pooled 1- and 2-year OS of this treatment was 43% and 11%, respectively. The pooled 1- and 2-year PFS was 20% and 2%, respectively. Subgroup analysis revealed that the heterogeneity remained almost the same in all stratum. Egger's test demonstrated that the possibility of publication bias was low. CONCLUSIONS Requirements of up-to-date evidence on evaluating the prognostic impact of this therapy are urgent.
Collapse
Affiliation(s)
- Shuai Shi
- Department of Neurosurgery, Tianjin Medical University, Tianjin, PR China; Department of Neurology, Tianjin Huanhu Hospital, Tianjin, PR China
| | - Shan Lu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, PR China
| | - Xiyue Jing
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, PR China
| | - Jianwen Liao
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin, PR China
| | - Qingguo Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, PR China.
| |
Collapse
|
3
|
Convection Enhanced Delivery for Diffuse Intrinsic Pontine Glioma: Review of a Single Institution Experience. Pharmaceutics 2020; 12:pharmaceutics12070660. [PMID: 32674336 PMCID: PMC7407112 DOI: 10.3390/pharmaceutics12070660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 01/24/2023] Open
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) are a pontine subtype of diffuse midline gliomas (DMGs), primary central nervous system (CNS) tumors of childhood that carry a terrible prognosis. Because of the highly infiltrative growth pattern and the anatomical position, cytoreductive surgery is not an option. An initial response to radiation therapy is invariably followed by recurrence; mortality occurs approximately 11 months after diagnosis. The development of novel therapeutics with great preclinical promise has been hindered by the tightly regulated blood-brain barrier (BBB), which segregates the tumor comportment from the systemic circulation. One possible solution to this obstacle is the use of convection enhanced delivery (CED), a local delivery strategy that bypasses the BBB by direct infusion into the tumor through a small caliber cannula. We have recently shown CED to be safe in children with DIPG (NCT01502917). In this review, we discuss our experience with CED, its advantages, and technical advancements that are occurring in the field. We also highlight hurdles that will likely need to be overcome in demonstrating clinical benefit with this therapeutic strategy.
Collapse
|
4
|
Role of Radiation Therapy in the Management of Diffuse Intrinsic Pontine Glioma: A Systematic Review. Adv Radiat Oncol 2019; 4:520-531. [PMID: 31360809 PMCID: PMC6639749 DOI: 10.1016/j.adro.2019.03.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/20/2019] [Indexed: 01/05/2023] Open
Abstract
Purpose Diffuse intrinsic pontine glioma (DIPG) is the most aggressive primary pediatric brain tumor, with <10% of children surviving 2 years. Radiation therapy (RT) remains the mainstay of treatment, but there is a great clinical need for improvements and advancements in treatment strategies. The aim of this systematic review was to identify all available studies in which RT was used to treat patients with DIPG. Methods and Materials A literature search for studies published up to March 10, 2018 was conducted using the PubMed database. We identified 384 articles using search items “diffuse intrinsic pontine glioma” and 221 articles using search items “diffuse brainstem glioma radiotherapy.” Included studies were prospective and retrospective series that reported outcomes of DIPG treatment with RT. Results We identified 49 studies (1286 patients) using upfront conventionally fractionated RT, 5 studies (92 patients) using hypofractionated RT, and 8 studies (348 patients) using hyperfractionated RT. The mean median overall survival (OS) was 12.0 months, 10.2 months, and 7.9 months in patients who received conventional, hyperfractionated, and hypofractionated RT regimens, respectively. Patients undergoing radiosensitizing therapy had a mean median OS of 11.5 months, and patients who did not receive concomitant systemic therapy had an OS of 9.4 months. In patients who received salvage RT, the mean median OS from initial diagnosis was 16.3 months. Conclusions As one of the largest systematic reviews examining RT for DIPG, this report may serve as a useful tool to help clinicians choose the most appropriate treatment approach, while also providing a platform for future investigations into the utility of RT and systemic therapy.
Collapse
|
5
|
Norris JL, Farrow MA, Gutierrez DB, Palmer LD, Muszynski N, Sherrod SD, Pino JC, Allen JL, Spraggins JM, Lubbock ALR, Jordan A, Burns W, Poland JC, Romer C, Manier ML, Nei YW, Prentice BM, Rose KL, Hill S, Van de Plas R, Tsui T, Braman NM, Keller MR, Rutherford SA, Lobdell N, Lopez CF, Lacy DB, McLean JA, Wikswo JP, Skaar EP, Caprioli RM. Integrated, High-Throughput, Multiomics Platform Enables Data-Driven Construction of Cellular Responses and Reveals Global Drug Mechanisms of Action. J Proteome Res 2017; 16:1364-1375. [PMID: 28088864 DOI: 10.1021/acs.jproteome.6b01004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An understanding of how cells respond to perturbation is essential for biological applications; however, most approaches for profiling cellular response are limited in scope to pre-established targets. Global analysis of molecular mechanism will advance our understanding of the complex networks constituting cellular perturbation and lead to advancements in areas, such as infectious disease pathogenesis, developmental biology, pathophysiology, pharmacology, and toxicology. We have developed a high-throughput multiomics platform for comprehensive, de novo characterization of cellular mechanisms of action. Platform validation using cisplatin as a test compound demonstrates quantification of over 10 000 unique, significant molecular changes in less than 30 days. These data provide excellent coverage of known cisplatin-induced molecular changes and previously unrecognized insights into cisplatin resistance. This proof-of-principle study demonstrates the value of this platform as a resource to understand complex cellular responses in a high-throughput manner.
Collapse
Affiliation(s)
| | | | | | | | | | - Stacy D Sherrod
- Vanderbilt Institute of Chemical Biology, Vanderbilt University , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | | - James C Poland
- Vanderbilt Institute of Chemical Biology, Vanderbilt University , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | | - Raf Van de Plas
- Delft Center for Systems and Control, Delft University of Technology , Delft 2628 CD, The Netherlands
| | | | - Nathaniel M Braman
- Biomedical Engineering, Vanderbilt University School of Engineering , Nashville, Tennessee 37235, United States
| | - M Ray Keller
- Vanderbilt Institute of Chemical Biology, Vanderbilt University , Nashville, Tennessee 37232, United States
| | | | | | - Carlos F Lopez
- Biomedical Engineering, Vanderbilt University School of Engineering , Nashville, Tennessee 37235, United States
| | | | - John A McLean
- Vanderbilt Institute of Chemical Biology, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - John P Wikswo
- Biomedical Engineering, Vanderbilt University School of Engineering , Nashville, Tennessee 37235, United States
| | | | | |
Collapse
|
6
|
Lee MJ. Overview of CNS Gliomas in Childhood. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2016. [DOI: 10.15264/cpho.2016.23.1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mee Jeong Lee
- Department of Pediatrics, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
7
|
Yoshida K, Sulaiman NS, Miyawaki D, Ejima Y, Nishimura H, Ishihara T, Matsuo Y, Nishikawa R, Sasayama T, Hayakawa A, Kohmura E, Sasaki R. Radiotherapy for brainstem gliomas in children and adults: A single-institution experience and literature review. Asia Pac J Clin Oncol 2016; 13:e153-e160. [DOI: 10.1111/ajco.12451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/10/2015] [Accepted: 11/25/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Kenji Yoshida
- Division of Radiation Oncology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Nor Shazrina Sulaiman
- Division of Radiation Oncology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Daisuke Miyawaki
- Division of Radiation Oncology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Yasuo Ejima
- Division of Radiation Oncology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Hideki Nishimura
- Department of Radiation Oncology; Kobe Minimally Invasive Cancer Center; Kobe Japan
| | - Takeaki Ishihara
- Division of Radiation Oncology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Yoshiro Matsuo
- Division of Radiation Oncology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Ryo Nishikawa
- Division of Radiation Oncology; Kobe University Graduate School of Medicine; Kobe Japan
| | - Takashi Sasayama
- Department of Neurosurgery; Kobe University Graduate School of Medicine; Kobe Japan
| | - Akira Hayakawa
- Department of Pediatrics; Kobe University Graduate School of Medicine; Kobe Japan
| | - Eiji Kohmura
- Department of Neurosurgery; Kobe University Graduate School of Medicine; Kobe Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology; Kobe University Graduate School of Medicine; Kobe Japan
| |
Collapse
|
8
|
Vanan MI, Eisenstat DD. DIPG in Children - What Can We Learn from the Past? Front Oncol 2015; 5:237. [PMID: 26557503 PMCID: PMC4617108 DOI: 10.3389/fonc.2015.00237] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 10/08/2015] [Indexed: 02/02/2023] Open
Abstract
Brainstem tumors represent 10–15% of pediatric central nervous system tumors and diffuse intrinsic pontine glioma (DIPG) is the most common brainstem tumor of childhood. DIPG is almost uniformly fatal and is the leading cause of brain tumor-related death in children. To date, radiation therapy (RT) is the only form of treatment that offers a transient benefit in DIPG. Chemotherapeutic strategies including multi-agent neoadjuvant chemotherapy, concurrent chemotherapy with RT, and adjuvant chemotherapy have not provided any survival advantage. To overcome the restrictive ability of the intact blood–brain barrier (BBB) in DIPG, several alternative drug delivery strategies have been proposed but have met with minimal success. Targeted therapies either alone or in combination with RT have also not improved survival. Five decades of unsuccessful therapies coupled with recent advances in the genetics and biology of DIPG have taught us several important lessons (1). DIPG is a heterogeneous group of tumors that are biologically distinct from other pediatric and adult high grade gliomas (HGG). Adapting chemotherapy and targeted therapies that are used in pediatric or adult HGG for the treatment of DIPG should be abandoned (2). Biopsy of DIPG is relatively safe and informative and should be considered in the context of multicenter clinical trials (3). DIPG probably represents a whole brain disease so regular neuraxis imaging is important at diagnosis and during therapy (4). BBB permeability is of major concern in DIPG and overcoming this barrier may ensure that drugs reach the tumor (5). Recent development of DIPG tumor models should help us accurately identify and validate therapeutic targets and small molecule inhibitors in the treatment of this deadly tumor.
Collapse
Affiliation(s)
- Magimairajan Issai Vanan
- Department of Pediatrics and Child Health, University of Manitoba , Winnipeg, MB , Canada ; Department of Biochemistry and Medical Genetics, University of Manitoba , Winnipeg, MB , Canada
| | - David D Eisenstat
- Department of Pediatrics, University of Alberta , Edmonton, AB , Canada ; Department of Medical Genetics, University of Alberta , Edmonton, AB , Canada ; Department of Oncology, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
9
|
Alken SP, D'Urso P, Saran FH. Managing teenage/young adult (TYA) brain tumors: a UK perspective. CNS Oncol 2015; 4:235-46. [PMID: 26118974 DOI: 10.2217/cns.15.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Tumors of the CNS are among the commonest malignancies occurring in teenage/young adult patients (i.e., those aged between 15 and 24 years). The treatment of this patient population is challenging. Adolescence and young adulthood are a turbulent period of life, with physical, emotional, social and cognitive changes. Best practice advocates their treatment in dedicated teenage/young adult units, with multidisciplinary team input and access to clinical trials. Treatment of CNS malignancies is dependent upon histological subtype and staging, with varying combinations of surgery, radiotherapy and chemotherapy used. Clinical trials directly targeted at this patient population are rare; treatments are based on pediatric protocols as studies have demonstrated improved outcomes in patients (with other malignancies) treated as such. Scope for improvement lies in minimizing patient risk of recurrence and long-term sequelae of treatment. Molecular characterization of tumors may provide further information.
Collapse
Affiliation(s)
- Scheryll P Alken
- Department of Neuro Oncology, Royal Marsden Hospital, Sutton, UK
| | - Pietro D'Urso
- Department of Neurosurgery, Salford Royal Hospital Foundation Trust, Salford, UK
| | - Frank H Saran
- Department of Neuro Oncology, Royal Marsden Hospital, Sutton, UK
| |
Collapse
|
10
|
Hassler MR, Sax C, Flechl B, Ackerl M, Preusser M, Hainfellner JA, Woehrer A, Dieckmann KU, Rössler K, Prayer D, Marosi C. Thalidomide as palliative treatment in patients with advanced secondary glioblastoma. Oncology 2015; 88:173-9. [PMID: 25427949 DOI: 10.1159/000368903] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/05/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND For its numerous abilities including sedation, we have been using thalidomide (TH) as the 'last therapeutic option' in patients with advanced gliomas. We noticed that a small subgroup, i.e. patients with secondary glioblastoma (GBM, whose GBM has evolved over several months or years from a less malignant glioma), survived for prolonged periods. Therefore, we retrospectively evaluated the outcomes of patients with secondary GBM treated with TH at our centre. PATIENTS AND METHODS Starting in the year 2000, we have studied 23 patients (13 females, 10 males, with a median age of 31.5 years) with secondary GBM who have received palliative treatment with TH 100 mg at bedtime. All patients had previously undergone radiotherapy and received at least 1 and up to 5 regimens of chemotherapy. RESULTS The median duration of TH administration was 4.0 months (range 0.8-32). The median duration of overall survival after the start of TH therapy was 18.3 months (range 0.8-57). Eleven patients with secondary GBM survived longer than 1 year. Symptomatic improvement was most prominent in the restoration of a normal sleep pattern. CONCLUSION The palliative effects of TH, especially the normalization of a sleep pattern, were highly valued by patients and families. The prolongation of survival of patients with secondary GBM has not been reported previously.
Collapse
|
11
|
Yang CS, Kim C, Antaya RJ. Review of thalidomide use in the pediatric population. J Am Acad Dermatol 2015; 72:703-11. [DOI: 10.1016/j.jaad.2015.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/22/2014] [Accepted: 01/05/2015] [Indexed: 02/08/2023]
|
12
|
Vanan MI, Eisenstat DD. Management of high-grade gliomas in the pediatric patient: Past, present, and future. Neurooncol Pract 2014; 1:145-157. [PMID: 26034626 DOI: 10.1093/nop/npu022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Indexed: 11/12/2022] Open
Abstract
High-grade gliomas (HGGs) constitute ∼15% of all primary brain tumors in children and adolescents. Routine histopathological diagnosis is based on tissue obtained from biopsy or, preferably, from the resected tumor itself. The majority of pediatric HGGs are clinically and biologically distinct from histologically similar adult malignant gliomas; these differences may explain the disparate responses to therapy and clinical outcomes when comparing children and adults with HGG. The recently proposed integrated genomic classification identifies 6 distinct biological subgroups of glioblastoma (GBM) throughout the age spectrum. Driver mutations in genes affecting histone H3.3 (K27M and G34R/V) coupled with mutations involving specific proteins (TP53, ATRX, DAXX, SETD2, ACVR1, FGFR1, NTRK) induce defects in chromatin remodeling and may play a central role in the genesis of many pediatric HGGs. Current clinical practice in pediatric HGGs includes surgical resection followed by radiation therapy (in children aged > 3 years) with concurrent and adjuvant chemotherapy with temozolomide. However, these multimodality treatment strategies have had a minimal impact on improving survival. Ongoing clinical trials are investigating new molecular targets, chemoradiation sensitization strategies, and immunotherapy. Future clinical trials of pediatric HGG will incorporate the distinction between GBM molecular subgroups and stratify patients using group-specific biomarkers.
Collapse
Affiliation(s)
- Magimairajan Issai Vanan
- Section of Pediatric Hematology/Oncology/BMT, CancerCare Manitoba, Departments of Pediatrics & Child Health and Biochemistry & Medical Genetics , University of Manitoba , Winnipeg, Manitoba , Canada (M.I.V.); Division of Hematology/Oncology and Palliative Care, Stollery Children's Hospital, Departments of Pediatrics, Medical Genetics and Oncology , University of Alberta , Edmonton, Alberta , Canada (D.D.E.)
| | - David D Eisenstat
- Section of Pediatric Hematology/Oncology/BMT, CancerCare Manitoba, Departments of Pediatrics & Child Health and Biochemistry & Medical Genetics , University of Manitoba , Winnipeg, Manitoba , Canada (M.I.V.); Division of Hematology/Oncology and Palliative Care, Stollery Children's Hospital, Departments of Pediatrics, Medical Genetics and Oncology , University of Alberta , Edmonton, Alberta , Canada (D.D.E.)
| |
Collapse
|
13
|
Porkholm M, Valanne L, Lönnqvist T, Holm S, Lannering B, Riikonen P, Wojcik D, Sehested A, Clausen N, Harila-Saari A, Schomerus E, Thorarinsdottir HK, Lähteenmäki P, Arola M, Thomassen H, Saarinen-Pihkala UM, Kivivuori SM. Radiation therapy and concurrent topotecan followed by maintenance triple anti-angiogenic therapy with thalidomide, etoposide, and celecoxib for pediatric diffuse intrinsic pontine glioma. Pediatr Blood Cancer 2014; 61:1603-9. [PMID: 24692119 DOI: 10.1002/pbc.25045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/05/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Despite major treatment attempts, the prognosis for pediatric diffuse intrinsic pontine gliomas (DIPGs) remains dismal. Gliomas are highly vascularized tumors, suggesting that the prevention of vessel formation by anti-angiogenic treatment might be effective. PROCEDURE Forty-one pediatric patients with DIPG were treated according to the Angiocomb protocol, starting with radiotherapy combined with topotecan and followed by anti-angiogenic triple medication consisting of thalidomide, etoposide, and celecoxib. Overall survival, radiological response, quality of life, requirement of corticosteroids, and adverse effects were monitored. Eight patients treated with only radiotherapy were used as controls. RESULTS For study patients, the 12 and 24 months overall survival was 61% and 17%, respectively. The median overall survival was 12 months (range 4-60 months). Four radiological complete responses were seen, of which two were transient. Radiologically, 56% of the tumors reduced in size and 78% in signal intensity. Study patients were able to visit school or daycare and walk for a significantly longer time compared to controls (Log Rank 0.036 and 0.008, respectively). Adverse effects were generally minor. CONCLUSIONS The Angiocomb protocol created a noticeable share of long-term survivors and was well tolerated, suggesting that anti-angiogenic therapy for patients with DIPG should be studied more in the future.
Collapse
Affiliation(s)
- Mikaela Porkholm
- Division of Hematology-Oncology and Stem Cell Transplantation, Children's Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Histologically proven, low-grade brainstem gliomas in children: 30-year experience with long-term follow-up at Mayo Clinic. Am J Clin Oncol 2014; 37:51-6. [PMID: 23357966 DOI: 10.1097/coc.0b013e31826b9903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION To evaluate long-term overall survival (OS), progression-free survival (PFS), and outcomes in pathologically proven brainstem low-grade gliomas (BS-LGG) in children. METHODS The Mayo Clinic tumor registry identified 48 consecutive children (≤20 y, 52% female) with biopsy-proven BS-LGG treated at Mayo Clinic between January 1971 and December 2004. Medical records were retrospectively reviewed. For analysis, patients were censored at the time of recurrence, death, or last follow-up. RESULTS The median age at diagnosis was 12 years with a median follow-up of 6.0 years. The majority of tumors were grade I (69%) and pathology was consistent with an astrocytoma in the majority of patients (98%). Gross total resection was obtained in 4, subtotal in 17, and 27 patients were biopsied only. Postoperative radiotherapy (RT) was used in 29 patients. Median OS for the entire group was 14.8 years with a 1-, 5-, and 10-year OS of 85%, 67% and 59%, respectively. Median PFS for the entire group was 7.3 years. Improved survival was associated with undergoing resection versus biopsy-only with 5-year OS rates of 85% and 50% (P=0.002), respectively. A high proportion of patients (42%) had diffuse tumors and 13 patients (27%) had diffuse pontine gliomas (DPGs). DPGs had an OS of 1.8 years with a worse median PFS than non-DPGs (1.8 vs. 11.1 y; P=0.009). RT was used preferentially in patients with poor prognosis such as those who had a biopsy-only procedure (19/27) and DPGs (9/13). CONCLUSIONS OS in this single institution retrospective study in pathologically proven BS-LGG with extensive follow-up displayed favorable long-term outcomes. Improved outcomes were associated with nondiffuse classification.
Collapse
|
15
|
Sie M, den Dunnen WF, Hoving EW, de Bont ES. Anti-angiogenic therapy in pediatric brain tumors: An effective strategy? Crit Rev Oncol Hematol 2014; 89:418-32. [DOI: 10.1016/j.critrevonc.2013.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/10/2013] [Accepted: 09/27/2013] [Indexed: 12/15/2022] Open
|
16
|
Abstract
The prognosis for children with diffuse intrinsic pontine gliomas (DIPGs) is dismal. Although DIPGs constitute only 10-15 % of all pediatric brain tumors, they are the main cause of death in this group with a median survival of less than 12 months. Standard therapy involves radiotherapy, which produces transient neurologic improvement. Despite several clinical trials having been conducted, including trials on targeted agents to assess their efficacy, there is no clear improvement in prognosis. However, knowledge of DIPG biology is increasing, mainly as a result of research using biopsy and autopsy samples. In this review, we discuss recent studies in which systemic therapy was administered prior to, concomitantly with, or after radiotherapy. The discussion also includes novel therapeutic options in DIPG. Continuing multimodal and multitargeted therapies might lead to an improvement in the dismal prognosis of the disease.
Collapse
Affiliation(s)
- Rejin Kebudi
- Istanbul University Cerrahpasa Medical Faculty Pediatric Hematology-Oncology, P.C: 34090, Millet Street, Capa, Istanbul, Turkey,
| | | |
Collapse
|
17
|
Abstract
Brainstem gliomas (BGs) are a heterogenous group of gliomas that occur predominately in children. They can be separated into groups on the basis of anatomy and clinical behavior: diffuse intrinsic pontine glioma (DIPG), exophytic medullary glioma, and tectal glioma. DIPG is the commonest BG. Median age at onset is 6.5 years and median survival is less than 1 year. Adults with DIPG survive longer, suggesting a less aggressive and biologically different tumor from that in children. Patients present with cranial nerve dysfunction, long tract signs, or ataxia, either in isolation or in combination. Magnetic resonance imaging shows an infiltrative lesion occupying most of the pons and contrast enhancement is usually not prominent. Standard treatment is fractionated radiotherapy. Platelet-derived growth factor receptor alpha and epidermal growth factor receptor mutations have been identified. Inhibitors of these growth factor receptors are being evaluated in clinical trials. Exophytic medullary and tectal gliomas are relatively indolent tumors that can often be followed closely without treatment.
Collapse
Affiliation(s)
- Sean A Grimm
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | |
Collapse
|
18
|
Dasgupta T, Haas-Kogan DA. The combination of novel targeted molecular agents and radiation in the treatment of pediatric gliomas. Front Oncol 2013; 3:110. [PMID: 23717811 PMCID: PMC3650671 DOI: 10.3389/fonc.2013.00110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/22/2013] [Indexed: 11/13/2022] Open
Abstract
Brain tumors are the most common solid pediatric malignancy. For high-grade, recurrent, or refractory pediatric brain tumors, radiation therapy (XRT) is an integral treatment modality. In the era of personalized cancer therapy, molecularly targeted agents have been designed to inhibit pathways critical to tumorigenesis. Our evolving knowledge of genetic aberrations in pediatric gliomas is being exploited with the use of specific targeted inhibitors. These agents are additionally being combined with XRT to increase the efficacy and duration of local control. In this review, we discuss novel agents targeting three different pathways in gliomas, and their potential combination with XRT. BRAF is a serine/threonine kinase in the RAS/RAF/MAPK kinase pathway, which is integral to cellular division, survival, and metabolism. Two-thirds of pilocytic astrocytomas, a low-grade pediatric glioma, contain a translocation within the BRAF gene called KIAA1549:BRAF that causes an overactivation of the MEK/MAPK signaling cascade. In vitro and in vivo data support the use of MEK or mammalian target of rapamycin (mTOR) inhibitors in low-grade gliomas expressing this translocation. Additionally, 15-20% of high-grade pediatric gliomas express BRAF V600E, an activating mutation of the BRAF gene. Pre-clinical in vivo and in vitro data in BRAF V600E gliomas demonstrate dramatic cooperation between XRT and small molecule inhibitors of BRAF V600E. Another major signaling cascade that plays a role in pediatric glioma pathogenesis is the PI3-kinase (PI3K)/mTOR pathway, known to be upregulated in the majority of high- and low-grade pediatric gliomas. Dual PI3K/mTOR inhibitors are in clinical trials for adult high-grade gliomas and are poised to enter studies of pediatric tumors. Finally, many brain tumors express potent stimulators of angiogenesis that render them refractory to treatment. An analog of thalidomide, CC-5103 increases the secretion of critical cytokines of the tumor microenvironment, including IL-2, IFN-γ, TNF-α, and IL-10, and is currently being evaluated in clinical trials for the treatment of recurrent or refractory pediatric central nervous system tumors. In summary, several targeted inhibitors with radiation are currently under investigation in both translational bench research and early clinical trials. This review article summarizes the molecular rationale for, and the pre-clinical data supporting the combinations of these targeted agents with other anti-cancer agents and XRT in pediatric gliomas. In many cases, parallels are drawn to molecular mechanisms and targeted inhibitors of adult gliomas. We additionally discuss the potential mechanisms underlying the efficacy of these agents.
Collapse
Affiliation(s)
- Tina Dasgupta
- Department of Radiation Oncology, University of California San FranciscoSan Francisco, CA, USA
| | - Daphne A. Haas-Kogan
- Department of Radiation Oncology, University of California San FranciscoSan Francisco, CA, USA
| |
Collapse
|
19
|
Kebudi R, Cakir FB, Agaoglu FY, Gorgun O, Ayan I, Darendeliler E. Pediatric diffuse intrinsic pontine glioma patients from a single center. Childs Nerv Syst 2013; 29:583-8. [PMID: 23224361 DOI: 10.1007/s00381-012-1986-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 11/21/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND The prognosis of children with diffuse intrinsic pontine gliomas (DIPG) is dismal. This study aims to evaluate the characteristics and treatment outcome of children with DIPG in a single center. METHODS We reviewed the outcome of children with DIPG treated at the Oncology Institute of Istanbul University from February 1999 to May 2012. RESULTS Fifty children (26 female, 24 male) with the median age of 7 years were analyzed. The median duration of symptoms was 30 days. All patients received radiotherapy (RT). Before the year 2000, 12 patients received only RT. Thirty-eight had concomitant and/or adjuvant chemotherapy with RT. Between 2000 and 2004, 17 patients received cis-platinum or vincristine as sensitizers during RT and CCNU + vincristine combination after RT. Since 2004, 21 patients received temozolomide (TMZ) concomitantly during RT and as adjuvant chemotherapy after RT. The median survival time of all patients was 13 months (1-160 months). Patients receiving RT + TMZ had a significantly higher overall survival than patients with only RT (p = 0.018). Patients receiving RT + chemotherapy other than TMZ also had a significantly higher overall survival than patients receiving only RT (p = 0.013). Patients receiving RT + TMZ + and chemotherapy other than TMZ had a significantly higher survival than patients receiving only RT (p = 0.005). CONCLUSION In our series, patients receiving RT + TMZ and also patients receiving RT + chemotherapy other than TMZ had a significantly higher overall survival than patients treated with only RT. Hence, administering chemotherapy during and after RT seems to prolong survival in some DIPG patients.
Collapse
Affiliation(s)
- Rejin Kebudi
- Pediatric Hematology-Oncology, Cerrahpasa Medical Faculty and Oncology Institute, Istanbul University, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
20
|
Prolonged survival after treatment of diffuse intrinsic pontine glioma with radiation, temozolamide, and bevacizumab: report of 2 cases. J Pediatr Hematol Oncol 2013; 35:e42-6. [PMID: 23249962 DOI: 10.1097/mph.0b013e318279aed8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Diffuse intrinsic pontine gliomas have poor prognosis. OBSERVATION We report on 2 patients with diffuse intrinsic pontine glioma treated with radiation, followed by temozolamide 200 mg/m/d for 5 days every 28 days and bevacizumab 10 mg/kg/dose every 14 days. Both patients have ongoing PFS of 37 and 47 months from diagnosis. A decrease in tumor size by >65% was observed in both the patients. Both patients continue treatment. No steroid requirement since 10 weeks after radiation. Quality of life is excellent and the chemotherapy regimen is well tolerated. CONCLUSIONS A clinical trial in an expanded cohort is warranted to determine the toxicity and evaluate response.
Collapse
|
21
|
Warren KE. Diffuse intrinsic pontine glioma: poised for progress. Front Oncol 2012; 2:205. [PMID: 23293772 PMCID: PMC3531714 DOI: 10.3389/fonc.2012.00205] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/11/2012] [Indexed: 12/21/2022] Open
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) are amongst the most challenging tumors to treat. Surgery is not an option, the effects of radiation therapy are temporary, and no chemotherapeutic agent has demonstrated significant efficacy. Numerous clinical trials of new agents and novel therapeutic approaches have been performed over the course of several decades in efforts to improve the outcome of children with DIPG, yet without success. The diagnosis of DIPG is based on radiographic findings in the setting of a typical clinical presentation, and tissue is not routinely obtained as the standard of care. The paradigm for treating children with these tumors has been based on that for supratentorial high-grade gliomas in adults as the biology of these lesions were presumed to be similar. However, recent pivotal studies demonstrate that DIPGs appear to be their own entity. Simply identifying this fact releases a number of constraints and opens opportunities for biologic investigation of these lesions, setting the stage to move forward in identifying DIPG-specific treatments. This review will summarize the current state of knowledge of DIPG, discuss obstacles to therapy, and summarize results of recent biologic studies.
Collapse
Affiliation(s)
- Katherine E Warren
- Pediatric Neuro-Oncology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
22
|
A phase II study of conventional radiation therapy and thalidomide for supratentorial, newly-diagnosed glioblastoma (RTOG 9806). J Neurooncol 2012; 111:33-9. [PMID: 23086432 DOI: 10.1007/s11060-012-0987-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
The Radiation Therapy Oncology Group (RTOG) initiated the single-arm, phase II study 9806 to determine the safety and efficacy of daily thalidomide with radiation therapy in patients with newly diagnosed glioblastoma. Patients were treated with thalidomide (200 mg daily) from day one of radiation therapy, increasing by 100-200 to 1,200 mg every 1-2 weeks until tumor progression or unacceptable toxicity. The median survival time (MST) of all 89 evaluable patients was 10 months. When compared with the historical database stratified by recursive partitioning analysis (RPA) class, this end point was not different [hazard ratio (HR) = 1.18; 95 % CI: 0.95-1.46; P = 0.93]. The MST of RPA class III and IV patients was 13.9 versus 12.5 months in controls (HR = 0.99; 95 % CI: 0.73-1.36; P = 0.48), and 4.3 versus 8.6 months in RPA class V controls (HR = 1.63, 95 % CI: 1.17-2.27; P = 0.99). In all, 34 % of patients discontinued thalidomide because of adverse events or refusal. The most common grade 3-4 toxicities were venous thrombosis, fatigue, skin reactions, encephalopathy, and neuropathy. In conclusion, thalidomide given simultaneously with radiation therapy was safe, but did not improve survival in patients with newly diagnosed glioblastoma.
Collapse
|
23
|
Current world literature. Curr Opin Pediatr 2012; 24:134-44. [PMID: 22245849 DOI: 10.1097/mop.0b013e328350498a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Jansen M, van Vuurden D, Vandertop W, Kaspers G. Diffuse intrinsic pontine gliomas: A systematic update on clinical trials and biology. Cancer Treat Rev 2012; 38:27-35. [DOI: 10.1016/j.ctrv.2011.06.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/17/2011] [Accepted: 06/25/2011] [Indexed: 11/28/2022]
|
25
|
Ko C, Kaushal A, Hammoud DA, Steffen-Smith EA, Bent R, Citrin D, Camphausen K, Warren KE. Role of early postradiation magnetic resonance imaging scans in children with diffuse intrinsic pontine glioma. Int J Radiat Oncol Biol Phys 2012; 83:1252-1256. [PMID: 22280788 DOI: 10.1016/j.ijrobp.2011.09.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 09/12/2011] [Accepted: 09/16/2011] [Indexed: 10/14/2022]
Abstract
PURPOSE To determine optimal timing of assessing postradiation radiographic response on magnetic resonance imaging (MRI) scans in pediatric patients with diffuse intrinsic pontine glioma (DIPG). METHODS AND MATERIALS Patients were treated on a prospective study at the National Cancer Institute (Protocol #06-C-0219) evaluating the effects of radiotherapy (RT). Standard RT was administered in standard fractionation over 6 weeks. Postradiation MRI scans were performed at 2 and 6-8 weeks. RESULTS Eleven patients with DIPG were evaluated. Median age was 6 years (range, 4-13 years). Patients were treated with external-beam RT to 55.8 Gy (n = 10) or 54 Gy (n = 1), with a gross tumor volume to planning target volume expansion of 1.8-2.0 cm. All patients received prescribed dose and underwent posttreatment MRI scans at 2 and 6-8 weeks. Pretreatment imaging revealed compression of fourth ventricle (n = 11); basilar artery encasement (n = 9); tumor extension outside the pons (n = 11); and tumor hemorrhage (n = 2). At the 2-week scan, basilar artery encasement improved in 7 of 9 patients, and extent of tumor was reduced in 5 of 11 patients. Fourth ventricle compression improved in 6 of 11 patients but worsened in 3 of 11 patients. Presumed necrosis was observed in 5 of 11 patients at 2 weeks and in 1 additional patient at 6-8 weeks. There was no significant difference in mean anteroposterior and transverse diameters of tumor between the 2- and 6-8-week time points. Six of 11 patients had increasing ventricular size, with no evidence of obstruction. CONCLUSIONS There is no significant difference in tumor size of DIPG patients who have received standard RT when measured at 2 weeks vs. 6-8 weeks after RT. The majority of patients had the largest change in tumor size at the 2-week post-RT scan, with evolving changes documented on the 6-8-week scan. Six of 11 patients had progressive ventriculomegaly without obstruction, suggestive of communicating hydrocephalus. To the best of our knowledge, this is the first documentation of this phenomenon in this cohort of patients.
Collapse
Affiliation(s)
- Christine Ko
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Aradhana Kaushal
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - Dima A Hammoud
- Radiology and Imaging Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Emilie A Steffen-Smith
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Robyn Bent
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Deborah Citrin
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Katherine E Warren
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
26
|
Steffen-Smith EA, Shih JH, Hipp SJ, Bent R, Warren KE. Proton magnetic resonance spectroscopy predicts survival in children with diffuse intrinsic pontine glioma. J Neurooncol 2011; 105:365-73. [PMID: 21567301 PMCID: PMC3199333 DOI: 10.1007/s11060-011-0601-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
Patients with diffuse intrinsic pontine glioma (DIPG) face a grim prognosis with limited treatment options. Many patients will enroll on investigational trials though the role of chemotherapy or immunotherapy is unclear. Radiographic changes on conventional MRI are used to evaluate tumor response and progression, but are not predictive of outcome in these patients. More sensitive measures of tumor biology are needed to improve patient management. We evaluated changes in magnetic resonance spectroscopy (MRS) biomarkers in patients with DIPG. Thirty-eight patients were enrolled prospectively on an IRB-approved protocol, which included standard MRI, single voxel spectroscopy (SVS) and multi-slice multi-voxel spectroscopy (MRSI). Scans were performed at multiple time points during each patient's clinical course, with a total of 142 scans. The prognostic values of Choline:N-acetylaspartate (Cho:NAA), Cho:Creatine (Cho:Cr) and the presence of lactate and lipids (+Lac/Lip) were evaluated. Cho:NAA and variance in Cho:NAA values among different voxels within a tumor were each predictive of shorter survival. This prospective study shows that MRS can be used to identify high-risk patients and monitor changes in tumor metabolism, which may reflect changes in tumor behavior.
Collapse
Affiliation(s)
- Emilie A. Steffen-Smith
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD
| | - Joanna H. Shih
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD
| | - Sean J. Hipp
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD
- Walter Reed Army Medical Center, Department of Pediatrics, Washington, DC
- Uniformed Services University of the Health Sciences, Department of Pediatrics, Bethesda, MD
| | - Robyn Bent
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD
| | - Katherine E. Warren
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD
| |
Collapse
|
27
|
Diffuse intrinsic pontine glioma-current status and future strategies. Childs Nerv Syst 2011; 27:1391-7. [PMID: 21533575 DOI: 10.1007/s00381-011-1468-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Diffuse intrinsic pontine gliomas which constitute 15% of all childhood brain tumors are inoperable and response to radiation and chemotherapy has not improved long-term survival. Due to lack of newer effective therapies, mean survival after diagnosis has remained less than 12 months. Trials investigating chemotherapy and/or radiation have proven disappointing. As biopsy of these tumors are rarely performed due to the high eloquence of the brain stem, information about the pathology and biology remains elusive hindering development of novel biologic agents. Poor access of most chemotherapeutic agents to these tumors due to the blood-brain barrier continues to undermine therapeutic efficacy. Thus, to date, we remain at a virtual standstill in our attempts to improve the prognosis of children with these tumors. METHODS An extensive review of the literature was performed concerning children with diffuse brain stem gliomas including clinical trials, evolving molecular biology, and newer therapeutic endeavors. CONCLUSION A pivotal approach in improving the prognosis of these tumors should include the initiation of biopsy and encouraging families to consider autopsy to study the molecular biology. This will help in redefining this tumor by its molecular signature and profiling targeted therapy. Continued advances should be pursued in neuroimaging technology including identifying surrogate markers of early disease progression. Defining strategies to enhance local delivery of drugs into tumors with the help of newer surgical techniques are important. Exhaustive research in all these aspects as a multidisciplinary approach could provide hope to children with these fatal tumors.
Collapse
|