1
|
Rui T, Zhu K, Mao Z, Wu J, Pan Y, Ye Q, Chen C, Xiang A, Guo J, Tang N, Zhang J, Zheng S, Liu J, Xu X. A Novel tRF, HCETSR, Derived From tRNA-Glu/TTC, Inhibits HCC Malignancy by Regulating the SPBTN1-catenin Complex Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415229. [PMID: 39921434 PMCID: PMC11967833 DOI: 10.1002/advs.202415229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/20/2025] [Indexed: 02/10/2025]
Abstract
tRNA-derived fragments (tRFs), a novel class of small non-coding RNAs cleaved from transfer RNAs, have been implicated in tumor regulation. In this study, the role of a specific tRF, HCETSR is investigated, which is significantly downregulated in hepatocellular carcinoma (HCC) and correlates with advanced tumor burden and higher HCC mortality. Functional analyses revealed that HCETSR inhibits HCC malignancy and serves as an independent predictor of poor prognosis. Mechanistically, a novel SPTBN1/catenin complex axis regulated by HCETSR is identified. HCETSR binds to a critical domain of SPTBN1, disrupting its interaction with the catenin complex (comprising β-catenin, α-catenin, and P120-catenin), and facilitates the transfer of the catenin complex from the cell membrane to the nucleus. Specifically, HCETSR decreases the proteasomal degradation of β-catenin and inhibits the synthesis of nascent β-catenin. Furthermore, HCETSR suppresses the transcriptional activity of LEF1 through P120-catenin rather than α-catenin, thereby reducing β-catenin's influence on LEF1 activity. It is demonstrated that HCETSR is spliced from tRNA-Glu/TTC. The biogenesis of HCETSR and tRNA-Glu/TTC is regulated by the spliceosome and Dicer1. In conclusion, These findings suggest that HCETSR, derived from tRNA-Glu/TTC, inhibits HCC malignancy via modulation of the SPTBN1/catenin axis and may represent a promising prognostic marker and therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Tao Rui
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
- The Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310003China
| | - Kangbei Zhu
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
| | - Zonglei Mao
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
| | - Jiaping Wu
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
- The Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310003China
| | - Yi Pan
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
- The Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310003China
| | - Qianwei Ye
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
- The Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310003China
| | - Cong Chen
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
- The Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310003China
| | - Aizhai Xiang
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
| | - Jufeng Guo
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
| | - Ning Tang
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
| | - Jing Zhang
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
| | - Shusen Zheng
- Department of SurgeryCollaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseasesthe First Affiliated HospitalZhejiang University School of MedicineZhejiang University HangzhouHangzhou310003China
| | - Jian Liu
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
| | - Xiao Xu
- School of Clinical MedicineHangzhou Medical CollegeHangzhou310059China
- Institute of Translational MedicineZhejiang UniversityHangzhou310000China
- NHC Key Laboratory of Combined Multi‐Organ TransplantationInstitute of Organ TransplantationZhejiang UniversityHangzhou310003China
| |
Collapse
|
2
|
Pelaz SG, Flores-Hernández R, Vujic T, Schvartz D, Álvarez-Vázquez A, Ding Y, García-Vicente L, Belloso A, Talaverón R, Sánchez JC, Tabernero A. A proteomic approach supports the clinical relevance of TAT-Cx43 266-283 in glioblastoma. Transl Res 2024; 272:95-110. [PMID: 38876188 DOI: 10.1016/j.trsl.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/18/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary brain cancer. The Src inhibitor, TAT-Cx43266-283, exerts antitumor effects in in vitro and in vivo models of GBM. Because addressing the mechanism of action is essential to translate these results to a clinical setting, in this study we carried out an unbiased proteomic approach. Data-independent acquisition mass spectrometry proteomics allowed the identification of 190 proteins whose abundance was modified by TAT-Cx43266-283. Our results were consistent with the inhibition of Src as the mechanism of action of TAT-Cx43266-283 and unveiled antitumor effectors, such as p120 catenin. Changes in the abundance of several proteins suggested that TAT-Cx43266-283 may also impact the brain microenvironment. Importantly, the proteins whose abundance was reduced by TAT-Cx43266-283 correlated with an improved GBM patient survival in clinical datasets and none of the proteins whose abundance was increased by TAT-Cx43266-283 correlated with shorter survival, supporting its use in clinical trials.
Collapse
Affiliation(s)
- Sara G Pelaz
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain.
| | - Raquel Flores-Hernández
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Tatjana Vujic
- Department of Medicine, University of Geneva, 1211, Geneva, Switzerland; University Center of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne, Geneva University Hospital and University of Geneva, Lausanne Geneva, Switzerland
| | - Domitille Schvartz
- Department of Medicine, University of Geneva, 1211, Geneva, Switzerland; University of Geneva, Faculty of Medicine, Proteomics Core Facility, Geneva, Switzerland
| | - Andrea Álvarez-Vázquez
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Yuxin Ding
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Laura García-Vicente
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Aitana Belloso
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | - Rocío Talaverón
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain
| | | | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Calle Pintor Fernando Gallego 1, Salamanca, 37007, Spain.
| |
Collapse
|
3
|
Boudouaia-Ouali A, Dali-Sahi M. Alpha T-catenin: a crucial tumor suppressor in cancer pathogenesis. J Mol Histol 2024; 55:655-660. [PMID: 39083160 DOI: 10.1007/s10735-024-10232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/21/2024] [Indexed: 10/10/2024]
Abstract
Alpha T-catenin has recently been identified as a crucial tumor suppressor in various cancer types, with roles that go beyond just providing structural support in adherens junctions. This review brings together recent findings on alpha T-catenin's important involvement in key signaling pathways related to cancer progression. We present strong evidence of its regulatory role in Wnt signaling, a pathway often disrupted in colorectal cancer, and explain how it inhibits cell proliferation and tumor growth. We also discuss the significant downregulation of alpha T-catenin in colorectal cancers and its potential as a prognostic marker. Moreover, this review looks at how increasing alpha T-catenin levels can reduce tumor growth and spread, suggesting new therapeutic strategies. Additionally, we reveal alpha T-catenin's unexpected impact on NF-κB signaling in basal E-cadherin-negative breast cancer, expanding its importance across different cancer types. By bringing these findings together, we provide a thorough understanding of alpha T-catenin's tumor-suppressing actions, setting the stage for new targeted therapies and diagnostic tools in cancer treatment.
Collapse
Affiliation(s)
| | - Majda Dali-Sahi
- Department of Biology, University of Tlemcen, 13000, Tlemcen, Algeria
- Analytical Chemistry and Electrochemistry Laboratory, University of Tlemcen, 13000, Tlemcen, Algeria
| |
Collapse
|
4
|
Zhu X, Yang M, Zhao P, Li S, Zhang L, Huang L, Huang Y, Fei P, Yang Y, Zhang S, Xu H, Yuan Y, Zhang X, Zhu X, Ma S, Hao F, Sundaresan P, Zhu W, Yang Z. Catenin α 1 mutations cause familial exudative vitreoretinopathy by overactivating Norrin/β-catenin signaling. J Clin Invest 2021; 131:139869. [PMID: 33497368 DOI: 10.1172/jci139869] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a severe retinal vascular disease that causes blindness. FEVR has been linked to mutations in several genes associated with inactivation of the Norrin/β-catenin signaling pathway, but these account for only approximately 50% of cases. We report that mutations in α-catenin (CTNNA1) cause FEVR by overactivating the β-catenin pathway and disrupting cell adherens junctions. We identified 3 heterozygous mutations in CTNNA1 (p.F72S, p.R376Cfs*27, and p.P893L) by exome sequencing and further demonstrated that FEVR-associated mutations led to overactivation of Norrin/β-catenin signaling as a result of impaired protein interactions within the cadherin-catenin complex. The clinical features of FEVR were reproduced in mice lacking Ctnna1 in vascular endothelial cells (ECs) or with overactivated β-catenin signaling by an EC-specific gain-of-function allele of Ctnnb1. In isolated mouse lung ECs, both CTNNA1-P893L and F72S mutants failed to rescue either the disrupted F-actin arrangement or the VE-cadherin and CTNNB1 distribution. Moreover, we discovered that compound heterozygous Ctnna1 F72S and a deletion allele could cause a similar phenotype. Furthermore, in a FEVR family, we identified a mutation of LRP5, which activates Norrin/β-catenin signaling, and the corresponding knockin mice exhibited a partial FEVR-like phenotype. Our study demonstrates that the precise regulation of β-catenin activation is critical for retinal vascular development and provides new insights into the pathogenesis of FEVR.
Collapse
Affiliation(s)
- Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Lin Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ping Fei
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shanshan Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Huijuan Xu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ye Yuan
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiong Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shi Ma
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Fang Hao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Periasamy Sundaresan
- Department of Genetics, Aravind Medical Research Foundation, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Weiquan Zhu
- Department of Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
5
|
Lee JH, Shao F, Ling J, Lu S, Liu R, Du L, Chung JW, Koh SS, Leem SH, Shao J, Xing D, An Z, Lu Z. Phosphofructokinase 1 Platelet Isoform Promotes β-Catenin Transactivation for Tumor Development. Front Oncol 2020; 10:211. [PMID: 32195176 PMCID: PMC7066116 DOI: 10.3389/fonc.2020.00211] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/06/2020] [Indexed: 02/05/2023] Open
Abstract
Metabolism plays a critical role in direct regulation of a variety of cellular activities via metabolic enzymes and metabolites. Here, we demonstrate that phosphofructokinase 1 platelet isoform (PFKP), which catalyzes a rate-limiting reaction in glycolysis, promotes EGFR activation-induced nuclear translocation and activation of β-catenin, thereby enhancing the expression of its downstream genes CCND1 and MYC in human glioblastoma cells. Importantly, we showed that EGFR-phosphorylated PFKP Y64 has a critical role in AKT activation and AKT-mediated β-catenin S552 phosphorylation and subsequent β-catenin transactivation and promotion of tumor cell glycolysis, migration, invasion, proliferation, and brain tumor growth. These findings highlight a novel mechanism underlying a glycolytic enzyme-mediated β-catenin transactivation and underscore the integrated and reciprocal regulation of metabolism and gene expression, which are two fundamental biological processes in tumor development.
Collapse
Affiliation(s)
- Jong-Ho Lee
- Department of Biological Sciences, Dong-A University, Busan, South Korea
| | - Fei Shao
- Cancer Institute of the Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Jinjie Ling
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sean Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyong Du
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Jin Woong Chung
- Department of Biological Sciences, Dong-A University, Busan, South Korea
| | - Sang Seok Koh
- Department of Biological Sciences, Dong-A University, Busan, South Korea
| | - Sun-Hee Leem
- Department of Biological Sciences, Dong-A University, Busan, South Korea
| | - Jichun Shao
- Department of Urology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Dongming Xing
- Cancer Institute of the Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Zhimin Lu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease of the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Song J, Zhang P, Liu M, Xie M, Gao Z, Wang X, Wang T, Yin J, Liu R. Novel-miR-4885 Promotes Migration and Invasion of Esophageal Cancer Cells Through TargetingCTNNA2. DNA Cell Biol 2019; 38:151-161. [DOI: 10.1089/dna.2018.4377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jing Song
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Peng Zhang
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, P.R. China
| | - Mengxin Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu, Hebei, P.R. China
| | - Zhikui Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Xianghu Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Tian Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Jiechen Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
7
|
Bhat NS, Colden M, Dar AA, Saini S, Arora P, Shahryari V, Yamamura S, Tanaka Y, Kato T, Majid S, Dahiya R. MicroRNA-720 Regulates E-cadherin-αE-catenin Complex and Promotes Renal Cell Carcinoma. Mol Cancer Ther 2017; 16:2840-2848. [PMID: 28802251 PMCID: PMC5893503 DOI: 10.1158/1535-7163.mct-17-0400] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/06/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022]
Abstract
miRNAs are implicated in regulating cancer progression and metastasis. Here, we show that miR-720 is positively associated with renal cell carcinoma (RCC). Elevated levels of miR-720 were observed in a panel of RCC cell lines and clinical tissues compared with nonmalignant cell line and normal samples. Loss of miR-720 function inhibited proliferation, migration, and invasion and induced apoptosis in RCC cell lines in vitro and repressed tumor growth in xenograft mouse models. Conversely, gain of miR-720 function in nonmalignant HK-2 cells induced procancerous characteristics. Silencing of miR-720 caused a marked induction in the levels of endogenous αE-catenin and E-cadherin protein levels in anti720 transfected cells compared with control, whereas miR-720 overexpression in RCC cell lines reduced activity of a luciferase reporter gene fused to the wild-type αE-catenin or E-cadherin 3'UTR compared with nonspecific 3'UTR control, indicating that αE-catenin-E-cadherin complex is a direct and functional target of miR-720 in RCC. We also observed attenuation of β-catenin, CD44, and Akt expression in RCC cells transfected with miR-720 inhibitor compared with control. Furthermore, miR-720 exhibited clinical significance in RCC. Expression of miR-720 significantly distinguished malignant from normal samples. Elevated miR-720 levels positively correlated with higher Fuhrman grade, pathologic stage, and poor overall survival of RCC patients. These findings uncover a new regulatory network in RCC involving metastasis-promoting miR-720 that directly targets expression of key metastasis-suppressing proteins E-cadherin and αE-catenin complex. These results suggest that therapeutic regulation of miR-720 may provide an opportunity to regulate EMT and metastasis in RCC. Mol Cancer Ther; 16(12); 2840-8. ©2017 AACR.
Collapse
Affiliation(s)
- Nadeem S Bhat
- Department of Urology, VA Medical Center and UCSF, San Francisco, California
| | - Melissa Colden
- Department of Urology, VA Medical Center and UCSF, San Francisco, California
| | - Altaf A Dar
- Research Institute, California Pacific Medical Center, San Francisco, California
| | - Sharanjot Saini
- Department of Urology, VA Medical Center and UCSF, San Francisco, California
| | - Prerna Arora
- Department of Urology, VA Medical Center and UCSF, San Francisco, California
| | - Varahram Shahryari
- Department of Urology, VA Medical Center and UCSF, San Francisco, California
| | - Soichiro Yamamura
- Department of Urology, VA Medical Center and UCSF, San Francisco, California
| | - Yuichiro Tanaka
- Department of Urology, VA Medical Center and UCSF, San Francisco, California
| | - Taku Kato
- Department of Urology, VA Medical Center and UCSF, San Francisco, California
| | - Shahana Majid
- Department of Urology, VA Medical Center and UCSF, San Francisco, California.
| | - Rajvir Dahiya
- Department of Urology, VA Medical Center and UCSF, San Francisco, California.
| |
Collapse
|
8
|
Lu H, Liu S, Zhang G, Wu B, Zhu Y, Frederick DT, Hu Y, Zhong W, Randell S, Sadek N, Zhang W, Chen G, Cheng C, Zeng J, Wu LW, Zhang J, Liu X, Xu W, Krepler C, Sproesser K, Xiao M, Miao B, Liu J, Song CD, Liu JY, Karakousis GC, Schuchter LM, Lu Y, Mills G, Cong Y, Chernoff J, Guo J, Boland GM, Sullivan RJ, Wei Z, Field J, Amaravadi RK, Flaherty KT, Herlyn M, Xu X, Guo W. PAK signalling drives acquired drug resistance to MAPK inhibitors in BRAF-mutant melanomas. Nature 2017; 550:133-136. [PMID: 28953887 PMCID: PMC5891348 DOI: 10.1038/nature24040] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 08/24/2017] [Indexed: 12/18/2022]
Abstract
Targeted BRAF inhibition (BRAFi) and combined BRAF and MEK inhibition (BRAFi and MEKi) therapies have markedly improved the clinical outcomes of patients with metastatic melanoma. Unfortunately, the efficacy of these treatments is often countered by the acquisition of drug resistance. Here we investigated the molecular mechanisms that underlie acquired resistance to BRAFi and to the combined therapy. Consistent with previous studies, we show that resistance to BRAFi is mediated by ERK pathway reactivation. Resistance to the combined therapy, however, is mediated by mechanisms independent of reactivation of ERK in many resistant cell lines and clinical samples. p21-activated kinases (PAKs) become activated in cells with acquired drug resistance and have a pivotal role in mediating resistance. Our screening, using a reverse-phase protein array, revealed distinct mechanisms by which PAKs mediate resistance to BRAFi and the combined therapy. In BRAFi-resistant cells, PAKs phosphorylate CRAF and MEK to reactivate ERK. In cells that are resistant to the combined therapy, PAKs regulate JNK and β-catenin phosphorylation and mTOR pathway activation, and inhibit apoptosis, thereby bypassing ERK. Together, our results provide insights into the molecular mechanisms underlying acquired drug resistance to current targeted therapies, and may help to direct novel drug development efforts to overcome acquired drug resistance.
Collapse
Affiliation(s)
- Hezhe Lu
- Department of Biology, the Hospital of the University of Pennsylvania, and Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, the Hospital of the University of Pennsylvania, and Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA19104, U.S.A
| | - Bin Wu
- Department of Biology, the Hospital of the University of Pennsylvania, and Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Yueyao Zhu
- Department of Biology, the Hospital of the University of Pennsylvania, and Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | | | - Yi Hu
- Department of Biology, Drexel University, Philadelphia, PA19104, U.S.A
| | - Wenqun Zhong
- Department of Biology, the Hospital of the University of Pennsylvania, and Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Sergio Randell
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA19104, U.S.A
| | - Norah Sadek
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA19104, U.S.A
| | - Wei Zhang
- Department of Biology, the Hospital of the University of Pennsylvania, and Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Gang Chen
- Department of Biology, the Hospital of the University of Pennsylvania, and Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Chaoran Cheng
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ07102, U.S.A
| | - Jingwen Zeng
- Department of Biology, the Hospital of the University of Pennsylvania, and Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Lawrence W. Wu
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA19104, U.S.A
| | - Jie Zhang
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ07102, U.S.A
| | - Xiaoming Liu
- Department of Pathology and Laboratory Medicine, the Hospital of the University of Pennsylvania, and Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Wei Xu
- Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Clemens Krepler
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA19104, U.S.A
| | - Katrin Sproesser
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA19104, U.S.A
| | - Min Xiao
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA19104, U.S.A
| | - Benchun Miao
- Massachusetts General Hospital Cancer Center, Boston, MA02114, U.S.A
| | - Jianglan Liu
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA19104, U.S.A
| | - Claire D. Song
- Department of Biology, the Hospital of the University of Pennsylvania, and Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Jephrey Y. Liu
- Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Giorgos C. Karakousis
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA19104, U.S.A
| | - Lynn M. Schuchter
- Abramson Cancer Center and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX77054, USA
| | - Gordon Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX77054, USA
| | - Yusheng Cong
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Jonathan Chernoff
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA19111, U.S.A
| | - Jun Guo
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, 100036, China
| | - Genevieve M. Boland
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114, U.S.A
| | - Ryan J. Sullivan
- Massachusetts General Hospital Cancer Center, Boston, MA02114, U.S.A
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ07102, U.S.A
| | - Jeffrey Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104, U.S.A
| | - Ravi K. Amaravadi
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA19104, U.S.A
| | - Keith T. Flaherty
- Massachusetts General Hospital Cancer Center, Boston, MA02114, U.S.A
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA19104, U.S.A
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, the Hospital of the University of Pennsylvania, and Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Wei Guo
- Department of Biology, the Hospital of the University of Pennsylvania, and Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
9
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Thermodynamics in Gliomas: Interactions between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma. Front Physiol 2017; 8:352. [PMID: 28620312 PMCID: PMC5451860 DOI: 10.3389/fphys.2017.00352] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/15/2017] [Indexed: 12/19/2022] Open
Abstract
Gliomas cells are the site of numerous metabolic and thermodynamics abnormalities with an increasing entropy rate which is characteristic of irreversible processes driven by changes in Gibbs energy, heat production, intracellular acidity, membrane potential gradient, and ionic conductance. We focus our review on the opposing interactions observed in glioma between the canonical WNT/beta-catenin pathway and PPAR gamma and their metabolic and thermodynamic implications. In gliomas, WNT/beta-catenin pathway is upregulated while PPAR gamma is downregulated. Upregulation of WNT/beta-catenin signaling induces changes in key metabolic enzyme that modify their thermodynamics behavior. This leads to activation pyruvate dehydrogenase kinase 1(PDK-1) and monocarboxylate lactate transporter 1 (MCT-1). Consequently, phosphorylation of PDK-1 inhibits pyruvate dehydrogenase complex (PDH). Thus, a large part of pyruvate cannot be converted into acetyl-CoA in mitochondria and in TCA (tricarboxylic acid) cycle. This leads to aerobic glycolysis despite the availability of oxygen, named Warburg effect. Cytoplasmic pyruvate is, in major part, converted into lactate. The WNT/beta-catenin pathway induces also the transcription of genes involved in cell proliferation, cell invasiveness, nucleotide synthesis, tumor growth, and angiogenesis, such as c-Myc, cyclin D1, PDK. In addition, in gliomas cells, PPAR gamma is downregulated, leading to a decrease in insulin sensitivity and an increase in neuroinflammation. Moreover, PPAR gamma contributes to regulate some key circadian genes. Abnormalities in the regulation of circadian rhythms and dysregulation in circadian clock genes are observed in gliomas. Circadian rhythms are dissipative structures, which play a key role in far-from-equilibrium thermodynamics through their interactions with WNT/beta-catenin pathway and PPAR gamma. In gliomas, metabolism, thermodynamics, and circadian rhythms are tightly interrelated.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, Institut National de la Santé et de la Recherche Médicale U1084, University of PoitiersPoitiers, France
- Laboratoire de Mathématiques et Applications, UMR Centre National de la Recherche Scientifique 7348, Université de PoitiersPoitiers, France
| | | | - Rémy Guillevin
- DACTIM, Laboratoire de Mathématiques et Applications, Université de Poitiers et CHU de Poitiers, UMR Centre National de la Recherche Scientifique 7348, SP2MIFuturoscope, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications, UMR Centre National de la Recherche Scientifique 7348, Université de PoitiersPoitiers, France
- CHU Amiens Picardie, Université Picardie Jules VerneAmiens, France
| |
Collapse
|
10
|
Cheng G, Yang S, Zhang G, Xu Y, Liu X, Sun W, Zhu L. Lipopolysaccharide-induced α-catenin downregulation enhances the motility of human colorectal cancer cells in an NF-κB signaling-dependent manner. Onco Targets Ther 2016; 9:7563-7571. [PMID: 28008274 PMCID: PMC5167382 DOI: 10.2147/ott.s123986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
α-Catenin is an important molecule involved in the maintenance of cell-cell adhesion and a prognostic marker in cancer since its expression is essential for preventing cancer metastasis. However, the mechanism that leads to the downregulation of α-catenin in cancer progression remains unclear. The present study revealed that lipopolysaccharide (LPS)-induced NF-κB signaling activation suppressed α-catenin expression and motility in SW620 colorectal cancer (CRC) cells, using real-time polymerase chain reaction, Western blotting, and transwell migration assays. LPS treatment reduced both the mRNA and protein expression of α-catenin and thereby enhanced cell motility. Conversely, incubating cells with an NF-κB inhibitor disrupted these effects. Furthermore, the ectopic expression of p65 alone mimicked the effects of LPS stimulation. In CRC tissues, the presence of enteric bacterial LPS-related neutrophil-enriched foci was correlated with α-catenin downregulation. Collectively, these findings suggest that LPS-induced NF-κB signaling is related to α-catenin suppression and enhanced cell motility in CRC. Therefore, NF-κB is a novel potential therapeutic target for CRC metastasis.
Collapse
Affiliation(s)
- Guoping Cheng
- Department of Pathology, Zhejiang Cancer Hospital; Cancer Research Institute, Zhejiang Cancer Hospital and Key laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province
| | - Shifeng Yang
- Department of Pathology, Zhejiang Cancer Hospital
| | - Gu Zhang
- Department of Pathology, Zhejiang Cancer Hospital
| | - Yanxia Xu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoling Liu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Wenyong Sun
- Department of Pathology, Zhejiang Cancer Hospital; Cancer Research Institute, Zhejiang Cancer Hospital and Key laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province
| | - Liang Zhu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
11
|
He B, Li T, Guan L, Liu FE, Chen XM, Zhao J, Lin S, Liu ZZ, Zhang HQ. CTNNA3 is a tumor suppressor in hepatocellular carcinomas and is inhibited by miR-425. Oncotarget 2016; 7:8078-89. [PMID: 26882563 PMCID: PMC4884977 DOI: 10.18632/oncotarget.6978] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common and leading cause of death worldwide. Here, we identified that a cell-cell adhesion gene, CTNNA3, is a tumor suppressor in HCC. CTNNA3 inhibited the proliferation, migration and invasion of HCC cell lines. In these cells, CTNNA3 inhibited Akt signal, and in turn decreased the proliferating cell nuclear antigen (PCNA) and the matrix metallopeptidase MMP-9, and increased the cell cycle inhibitor p21(Cip1/Waf1). Meanwhile, CTNNA3 is inhibited by miR-425 in HCC. The miR-425 directly bound to the 3'UTR of CTNNA3 and inhibited its expression. The tumor suppressor function of CTNNA3 and the oncogenic function of miR-425 were further confirmed in HCC cell xenograft in nude mice. The miR-425/CTNNA3 axis may provide insights into the mechanisms underlying HCC, and contribute to potential therapeutic strategy of HCC.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Animals
- Apoptosis
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Case-Control Studies
- Cell Cycle
- Cell Movement
- Cell Proliferation
- Fluorescent Antibody Technique
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Immunoenzyme Techniques
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- alpha Catenin/genetics
- alpha Catenin/metabolism
Collapse
Affiliation(s)
- Bing He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Ting Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Lei Guan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Fang-E Liu
- The Center of Basic Medicine Teaching Experiments, School of Basic Medicine, Fourth Military Medicine University (FMMU), Xi'an 710032, P.R. China
| | - Xue-Mei Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Jing Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Song Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Zhi-Zhen Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Hu-Qin Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| |
Collapse
|
12
|
Abstract
Ras GTPase-activating proteins (GAPs) are important regulators for Ras activation, which is instrumental in tumor development. However, the mechanism underlying this regulation remains elusive. We demonstrate here that activated EGFR phosphorylates the Y593 residue of the protein known as family with sequence similarity 129, member B (FAM129B), which is overexpressed in many types of human cancer. FAM129B phosphorylation increased the interaction between FAM129B and Ras, resulting in reduced binding of p120-RasGAP to Ras. FAM129B phosphorylation promoted Ras activation, increasing ERK1/2- and PKM2-dependent β-catenin transactivation and leading to the enhanced glycolytic gene expression and the Warburg effect; promoting tumor cell proliferation and invasion; and supporting brain tumorigenesis. Our studies unearthed a novel and important mechanism underlying EGFR-mediated Ras activation in tumor development.
Collapse
|
13
|
Chang L, Lei X, Qin YU, Zeng G, Zhang X, Jin H, Wang C, Wang X, Su J. Expression and prognostic value of SFRP1 and β-catenin in patients with glioblastoma. Oncol Lett 2015; 11:69-74. [PMID: 26870169 PMCID: PMC4727037 DOI: 10.3892/ol.2015.3873] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 09/04/2015] [Indexed: 01/11/2023] Open
Abstract
The roles of secreted frizzled-related protein-1 (SFRP1) and β-catenin in human cancer have been widely studied, and it has recently been demonstrated that these proteins are associated with numerous human carcinomas. However, their clinical significance in glioblastoma multiforme (GBM) has not been examined. The current study aimed to analyze the correlation between the expression of SFRP1 and β-catenin, and clinicopathological characteristics in GBM patients. The expression of SFRP1 and β-catenin was assessed by immunohistochemistry in 113 samples of GBM and 40 normal brain tissues. Compared with normal brain tissues, GBM tissues exhibited significantly lower expression of SFRP1, and higher expression of β-catenin (both P<0.05). A Kaplan-Meier analysis revealed that patients with positive SFRP1 expression had a significantly longer overall survival (OS) time relative to those with negative SFRP1 expression (P<0.000), and that patients with positive β-catenin expression had a shorter OS time than those with negative β-catenin expression (P<0.000). A multivariate Cox regression analysis indicated that adjuvant treatment, SFRP1 expression and β-catenin expression were independent prognostic factors for OS (P<0.000, P=0.008 and P=0.001, respectively) in patients with GBM. The current data suggest that expression of SFRP1 and β-catenin may be considered significant prognostic indicators for patients with GBM.
Collapse
Affiliation(s)
- Liang Chang
- Department of Neurosurgery, The Tumor Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xuhui Lei
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Y U Qin
- Department of Pathology, The Tumor Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Guangchun Zeng
- Department of Pathology, The Tumor Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xuexin Zhang
- Department of Neurosurgery, The Tumor Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hua Jin
- Department of Neurosurgery, The Tumor Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Chao Wang
- Department of Neurosurgery, The Tumor Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xin Wang
- Department of Neurosurgery, The Tumor Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jun Su
- Department of Neurosurgery, The Tumor Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
14
|
Sun Y, Zhang J, Ma L. α-catenin. A tumor suppressor beyond adherens junctions. Cell Cycle 2015; 13:2334-9. [PMID: 25483184 DOI: 10.4161/cc.29765] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Yutong Sun
- a Department of Molecular and Cellular Oncology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | | | | |
Collapse
|
15
|
Wang Y, Lu H, Yu D, Zhang J, Liang W, Zhang Z, Fang X. Potent selective inhibition of MMP-14 by chloroauric acid and its inhibitory effect on cancer cell invasion. RSC Adv 2015. [DOI: 10.1039/c4ra16532b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enzyme kinetics and Matrigel invasion assay indicated that the specific inhibition of HAuCl4 on MMP-14 involves a non-competitive reversible inhibitory mechanism and HAuCl4 inhibits HT-1080 cell invasion in a dose-dependent manner.
Collapse
Affiliation(s)
- Yanyan Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun
- P. R. China
| | - Hezhen Lu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun
- P. R. China
| | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun
- P. R. China
| | - Jinrui Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun
- P. R. China
| | - Weiguo Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun
- P. R. China
| | - Zhimin Zhang
- Department of Endodontics and Operative Dentistry
- School of Stomatology
- Jilin University
- Changchun
- P. R. China
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
16
|
Fu Y, Zheng Y, Chan KG, Liang A, Hu F. Lithium chloride decreases proliferation and migration of C6 glioma cells harboring isocitrate dehydrogenase 2 mutant via GSK-3β. Mol Biol Rep 2014; 41:3907-13. [DOI: 10.1007/s11033-014-3258-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/08/2014] [Indexed: 11/30/2022]
|
17
|
α-catenin acts as a tumour suppressor in E-cadherin-negative basal-like breast cancer by inhibiting NF-κB signalling. Nat Cell Biol 2014; 16:245-54. [PMID: 24509793 PMCID: PMC3943677 DOI: 10.1038/ncb2909] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/19/2013] [Indexed: 02/06/2023]
Abstract
Basal-like breast cancer is a highly aggressive tumour subtype associated with poor prognosis. Aberrant activation of NF-κB signalling is frequently found in triple-negative basal-like breast cancer cells, but the cause of this activation has remained elusive.Here we report that α-catenin functions as a tumour suppressor in E-cadherin-negative basal-like breast cancer cells by inhibiting NF-κB signalling. Mechanistically, α-catenin interacts with the IκBα protein, and stabilizes IκBα by inhibiting its ubiquitylation and its association with the proteasome. This stabilization in turn prevents nuclear localization of RelA and p50, leading to decreased expression of TNF-α, IL-8 and RelB. In human breast cancer, CTNNA1 expression is specifically downregulated in the basal-like subtype, correlates with clinical outcome and inversely correlates with TNF and RELB expression. Taken together, these results uncover a previously undescribed mechanism by which the NF-κB pathway is activated in E-cadherin-negative basal-like breast cancer.
Collapse
|
18
|
Sayegh ET, Kaur G, Bloch O, Parsa AT. Systematic review of protein biomarkers of invasive behavior in glioblastoma. Mol Neurobiol 2013; 49:1212-44. [PMID: 24271659 DOI: 10.1007/s12035-013-8593-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/11/2013] [Indexed: 12/26/2022]
Abstract
Glioblastoma (GBM) is an aggressive and incurable brain tumor with a grave prognosis. Recurrence is inevitable even with maximal surgical resection, in large part because GBM is a highly invasive tumor. Invasiveness also contributes to the failure of multiple cornerstones of GBM therapy, including radiotherapy, temozolomide chemotherapy, and vascular endothelial growth factor blockade. In recent years there has been significant progress in the identification of protein biomarkers of invasive phenotype in GBM. In this article, we comprehensively review the literature and survey a broad spectrum of biomarkers, including proteolytic enzymes, extracellular matrix proteins, cell adhesion molecules, neurodevelopmental factors, cell signaling and transcription factors, angiogenic effectors, metabolic proteins, membrane channels, and cytokines and chemokines. In light of the marked variation seen in outcomes in GBM patients, the systematic use of these biomarkers could be used to form a framework for better prediction, prognostication, and treatment selection, as well as the identification of molecular targets for further laboratory investigation and development of nascent, directed therapies.
Collapse
Affiliation(s)
- Eli T Sayegh
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611-2911, USA
| | | | | | | |
Collapse
|
19
|
Tang Z, Araysi LM, Fathallah-Shaykh HM. c-Src and neural Wiskott-Aldrich syndrome protein (N-WASP) promote low oxygen-induced accelerated brain invasion by gliomas. PLoS One 2013; 8:e75436. [PMID: 24069415 PMCID: PMC3777891 DOI: 10.1371/journal.pone.0075436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/16/2013] [Indexed: 11/22/2022] Open
Abstract
Malignant gliomas remain associated with poor prognosis and high morbidity because of their ability to invade the brain; furthermore, human gliomas exhibit a phenotype of accelerated brain invasion in response to anti-angiogenic drugs. Here, we study 8 human glioblastoma cell lines; U251, U87, D54 and LN229 show accelerated motility in low ambient oxygen. Src inhibition by Dasatinib abrogates this phenotype. Molecular discovery and validation studies evaluate 46 molecules related to motility or the src pathway in U251 cells. Demanding that the molecular changes induced by low ambient oxygen are reversed by Dasatinib in U251 cells, identifies neural Wiskott-Aldrich syndrome protein (NWASP), Focal adhesion Kinase (FAK), -Catenin, and Cofilin. However, only Src-mediated NWASP phosphorylation distinguishes the four cell lines that exhibit enhanced motility in low ambient oxygen. Downregulating c-Src or NWASP by RNA interference abrogates the low-oxygen-induced enhancement in motility by in vitro assays and in organotypic brain slice cultures. The findings support the idea that c-Src and NWASP play key roles in mediating the molecular pathogenesis of low oxygen-induced accelerated brain invasion by gliomas.
Collapse
Affiliation(s)
- Zhuo Tang
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lita M. Araysi
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hassan M Fathallah-Shaykh
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Mathematics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Mechanical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- The UAB Comprehensive Neuroscience Center, Birmingham, Alabama, United States of America
- The UAB Comprehensive Cancer Center, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
20
|
Ortensi B, Setti M, Osti D, Pelicci G. Cancer stem cell contribution to glioblastoma invasiveness. Stem Cell Res Ther 2013; 4:18. [PMID: 23510696 PMCID: PMC3706754 DOI: 10.1186/scrt166] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive and lethal brain tumor in adults. Its invasive nature currently represents the most challenging hurdle to surgical resection. The mechanism adopted by GBM cells to carry out their invasive strategy is an intricate program that recalls what takes place in embryonic cells during development and in carcinoma cells during metastasis formation, the so-called epithelial-to-mesenchymal transition. GBM cells undergo a series of molecular and conformational changes shifting the tumor toward mesenchymal traits, including extracellular matrix remodeling, cytoskeletal re-patterning, and stem-like trait acquisition. A deeper understanding of the mechanisms driving the whole infiltrative process represents the first step toward successful treatment of this pathology. Here, we review recent findings demonstrating the invasive nature of GBM cancer stem cells, together with novel candidate molecules associated with both cancer stem cell biology and GBM invasion, like doublecortin and microRNAs. These findings may affect the design of effective therapies currently not considered for GBM invasive progression.
Collapse
|
21
|
Zhang K, Zhang J, Han L, Pu P, Kang C. Wnt/beta-catenin signaling in glioma. J Neuroimmune Pharmacol 2012; 7:740-9. [PMID: 22454041 DOI: 10.1007/s11481-012-9359-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/15/2012] [Indexed: 01/29/2023]
Abstract
Extensive data have shown that Wnt/beta-catenin signaling is associated with various disease pathologies, including an important role in tumorigenesis. Here, we review the regulation of Wnt/beta-catenin signaling in glioma, with particular focus on the expression signatures of the main components in Wnt/beta-catenin signaling, the role of key factors in Wnt/beta-catenin signaling, and crosstalk with other signaling pathways. Finally, we discuss the involvement of microRNAs in Wnt/beta-catenin signaling in glioma. This review reveals new insights into the role of Wnt/beta-catenin signaling in gliomagenesis, and highlights new therapeutic approaches for glioma, based on the modulation of the Wnt/beta-catenin pathway.
Collapse
Affiliation(s)
- Kailiang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
Fu Y, Zheng Y, Li K, Huang R, Zheng S, An N, Liang A. Mutations in isocitrate dehydrogenase 2 accelerate glioma cell migration via matrix metalloproteinase-2 and 9. Biotechnol Lett 2011; 34:441-6. [PMID: 22105553 DOI: 10.1007/s10529-011-0800-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/09/2011] [Indexed: 11/25/2022]
Abstract
The gene encoding isocitrate dehydrogenase (IDH) is somatically mutated predominantly in secondary glioblastoma multiforme. Glioma-specific mutations in IDH1 always produced a single amino acid substitution at R132, but mutations in IDH2 were exclusively at R172 which was the analogous site to R132 in IDH1. Mutations of IDH1 and IDH2 led to simultaneous loss and gain of activities in the production of α-ketoglutarate and 2-hydroxyglutarate, respectively. Matrix metalloproteinases (MMPs) are zinc-dependent endoproteinases involved in the degradation of the extracellular matrix. The exact role of IDH2 mutant on MMPs activity and cell migration has not been fully studied. Here, we show that in response to IDH2 mutations, low levels of α-ketoglutarate increased the stabilization of HIF-1α which can contribute to tumor growth. Moreover, mutant IDH2-induced HIF-1α improved the secretion levels of pro-MMP-2 and pro-MMP-9 as well as the conversion from pro-MMP-2 to its active form, giving C6 glioma cells a higher migration potential. The HIF-1α pathway is probably a critical pathway for release of MMPs in the glioma cancer harboring IDH mutant.
Collapse
Affiliation(s)
- Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|