1
|
Richard SA. The pivotal role of autophagy in the pathogenesis and therapy of medulloblastoma. Future Oncol 2024; 20:3313-3324. [PMID: 39513232 PMCID: PMC11633412 DOI: 10.1080/14796694.2024.2420629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Medulloblastoma (MB) is the most frequent malignant brain tumor in children. MB originates from neural precursor cells in distinctive regions of the rhombic lip and their maturation occurs in the cerebellum or the brain stem during embryonal development. Autophagy is also referred to as self-eating' which is a catabolic process that often triggers cellular homeostasis through the salvaging of degenerated proteins as well as organelles. Autophagy influence cell survival via aberrant proteins that could accumulate within the cell and influence potential signaling and transport mechanisms. The role of autophagy in MB aggressiveness as well as tumorigenesis is a very complex process. This review targets specifically data reporting the key roles of autophagy in the pathogenesis and therapy of MB.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Biochemistry and Forensic Sciences, School of Chemistry and Biochemical Science, C. K. Tedam University of Technology and Applied Sciences, P. O. Box 24, Navrongo, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052,China
| |
Collapse
|
2
|
Niu H, Li C, Zhang H, Liu H, Shang C, Jia Y, Wuenjiya, Li Z, Wang A, Jin Y, Lin P. Androgen synthesis cell-specific CREBZF deficiency alters adrenal cortex steroid secretion and develops behavioral abnormalities in adult male mice. FASEB J 2024; 38:e23650. [PMID: 38696238 DOI: 10.1096/fj.202400130r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
The global challenge of male infertility is escalating, notably due to the decreased testosterone (T) synthesis in testicular Leydig cells under stress, underscoring the critical need for a more profound understanding of its regulatory mechanisms. CREBZF, a novel basic region-leucine zipper transcription factor, regulates testosterone synthesis in mouse Leydig cells in vitro; however, further validation through in vivo experiments is essential. Our study utilized Cyp17a1-Cre to knock out CREBZF in androgen-synthesis cells and explored the physiological roles of CREBZF in fertility, steroid hormone synthesis, and behaviors in adult male mice. Conditional knockout (cKO) CREBZF did not affect fertility and serum testosterone level in male mice. Primary Leydig cells isolated from CREBZF-cKO mice showed impaired testosterone secretion and decreased mRNA levels of Star, Cyp17a1, and Hsd3b1. Loss of CREBZF resulted in thickening of the adrenal cortex, especially X-zone, with elevated serum corticosterone and dehydroepiandrosterone levels and decreased serum dehydroepiandrosterone sulfate levels. Immunohistochemical staining revealed increased expression of StAR, Cyp11a1, and 17β-Hsd3 in the adrenal cortex of CREBZF-cKO mice, while the expression of AR was significantly reduced. Along with the histological changes and abnormal steroid levels in the adrenal gland, CREBZF-cKO mice showed higher anxiety-like behavior and impaired memory in the elevated plus maze and Barnes maze, respectively. In summary, CREBZF is dispensable for fertility, and CREBZF deficiency in Leydig cells promotes adrenal function in adult male mice. These results shed light on the requirement of CREBZF for fertility, adrenal steroid synthesis, and stress response in adult male mice, and contribute to understanding the crosstalk between testes and adrenal glands.
Collapse
Affiliation(s)
- Hongyu Niu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Hexin Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Haokun Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunmei Shang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanni Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Wuenjiya
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zuhui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Zhou B, Xue J, Wu R, Meng H, Li R, Mo Z, Zhai H, Chen X, Liu R, Lai G, Chen X, Li T, Zheng S. CREBZF mRNA nanoparticles suppress breast cancer progression through a positive feedback loop boosted by circPAPD4. J Exp Clin Cancer Res 2023; 42:138. [PMID: 37264406 DOI: 10.1186/s13046-023-02701-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Breast cancer (BC) negatively impacts the health of women worldwide. Circular RNAs (circRNAs) are a group of endogenous RNAs considered essential regulatory factor in BC tumorigenesis and progression. However, the underlying molecular mechanisms of circRNAs remain unclear. METHODS Expression levels of circPAPD4, miR-1269a, CREBZF, and ADAR1 in BC cell lines and tissues were measured using bioinformatics analysis, RT-qPCR, ISH, and IHC. Cell proliferation and apoptosis were measured using CCK8, EdU staining, flow cytometry, and TUNEL assays. Pearson correlation analysis, RNA pull-down, dual-luciferase reporter, and co-immunoprecipitation assays were used to explore the correlation among circPAPD4, miR-1269a, CREBZF, STAT3, and ADAR1. Effects of circPAPD4 overexpression on tumor progression were investigated using in vivo assays. Moreover, CREBZF mRNA delivered by polymeric nanoparticles (CREBZF-mRNA-NPs) was used to examine application value of our findings. RESULTS CircPAPD4 expression was low in BC tissues and cells. Functionally, circPAPD4 inhibited proliferation and promoted apoptosis in vitro and in vivo. Mechanistically, circPAPD4 biogenesis was regulated by ADAR1. And circPAPD4 promoted CREBZF expression by competitively binding to miR-1269a. More importantly, CREBZF promoted circPAPD4 expression by suppressing STAT3 dimerization and ADAR1 expression, revealing a novel positive feedback loop that curbed BC progression. Systematic delivery of CREBZF-mRNA-NPs effectively induced CREBZF expression and activated the positive feedback loop of circPAPD4/miR-1269a/CREBZF/STAT3/ADAR1, which might suppress BC progression in vitro and in vivo. CONCLUSION Our findings firstly illustrated that circPAPD4/miR-1269a/CREBZF/STAT3/ADAR1 positive feedback loop mediated BC progression, and delivering CREBZF mRNA nanoparticles suppressed BC progression in vitro and in vivo, which might provide novel insights into therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Boxuan Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
- Department of Breast Surgery, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Jinhua Xue
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Runxin Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hongyu Meng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Ruixi Li
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Zhaohong Mo
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Hang Zhai
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Xianyu Chen
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Rongqiang Liu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guie Lai
- Department of Breast Surgery, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Xiaohong Chen
- Department of Laboratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| | - Taiyuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| | - Shiyang Zheng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
- Department of Head and Neck surgery, Cancer Center of Guangzhou Medical University, Guangzhou, 510060, China.
| |
Collapse
|
4
|
Thomaz A, Jaeger M, Brunetto AL, Brunetto AT, Gregianin L, de Farias CB, Ramaswamy V, Nör C, Taylor MD, Roesler R. Neurotrophin Signaling in Medulloblastoma. Cancers (Basel) 2020; 12:E2542. [PMID: 32906676 PMCID: PMC7564905 DOI: 10.3390/cancers12092542] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins are a family of secreted proteins that act by binding to tropomyosin receptor kinase (Trk) or p75NTR receptors to regulate nervous system development and plasticity. Increasing evidence indicates that neurotrophins and their receptors in cancer cells play a role in tumor growth and resistance to treatment. In this review, we summarize evidence indicating that neurotrophin signaling influences medulloblastoma (MB), the most common type of malignant brain cancer afflicting children. We discuss the potential of neurotrophin receptors as new therapeutic targets for the treatment of MB. Overall, activation of TrkA and TrkC types of receptors seem to promote cell death, whereas TrkB might stimulate MB growth, and TrkB inhibition displays antitumor effects. Importantly, we show analyses of the gene expression profile of neurotrophins and their receptors in MB primary tumors, which indicate, among other findings, that higher levels of NTRK1 or NTRK2 are associated with reduced overall survival (OS) of patients with SHH MB tumors.
Collapse
Affiliation(s)
- Amanda Thomaz
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Algemir L. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - André T. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Lauro Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
5
|
Lu M, Zhang R, Yu T, Wang L, Liu S, Cai R, Guo X, Jia Y, Wang A, Jin Y, Lin P. CREBZF regulates testosterone production in mouse Leydig cells. J Cell Physiol 2019; 234:22819-22832. [PMID: 31124138 DOI: 10.1002/jcp.28846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 01/03/2023]
Abstract
CREBZF, including the two isoforms SMILE (long isoform of CREBZF) and Zhangfei (short isoform of CREBZF), has been identified as a novel transcriptional coregulator of a variety of nuclear receptors. Our previous studies found that SMILE is expressed in the mouse uterine luminal and glandular epithelium and is upregulated by estrogen. In the present study, CREBZF was age-dependently and -specifically expressed in mouse interstitial Leydig cells during sexual maturation. The expression pattern of CREBZF exhibited an age-related increase, and SMILE was the dominant isoform in the mouse testis. Although hCG did not affect CREBZF expression, CREBZF silencing significantly inhibited hCG-stimulated testosterone production in primary Leydig cells and MLTC-1 cells. Meanwhile, the serum concentration of testosterone was significantly decreased after microinjection of lentiviral-mediated shRNA-CREBZF into the mature mouse testis. In addition, CREBZF silencing markedly decreased P450c17, 17β-HSD, and 3β-HSD expression following hCG stimulation in primary Leydig cells, and this inhibitory effect was obviously reversed by overexpression of CREBZF. Furthermore, CREBZF significantly upregulated the mRNA levels of Nr4a1 and Nr5a1, which are the essential orphan nuclear receptors for steroidogenic gene expression. Together our data indicate that CREBZF promotes hCG-induced testosterone production in mouse Leydig cells by affecting Nr4a1 and Nr5a1 expression levels and subsequently increasing the expression of steroidogenic genes such as 3β-HSD, 17β-HSD, and P450c17, suggesting a potential important role of CREBZF in testicular testosterone synthesis.
Collapse
Affiliation(s)
- Minjie Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruixue Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Shouqin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Cai
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyan Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanni Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Associations between clinical symptoms, plasma norepinephrine and deregulated immune gene networks in subgroups of adolescent with Chronic Fatigue Syndrome. Brain Behav Immun 2019; 76:82-96. [PMID: 30419269 DOI: 10.1016/j.bbi.2018.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/01/2018] [Accepted: 11/08/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chronic Fatigue Syndrome (CFS) is one of the most important causes of disability among adolescents while limited knowledge exists on genetic determinants underlying disease pathophysiology. METHODS We analyzed deregulated immune-gene modules using Pathifier software on whole blood gene expression data (29 CFS patients, 18 controls). Deconvolution of immune cell subtypes based on gene expression profile was performed using CIBERSORT. Supervised consensus clustering on pathway deregulation score (PDS) was used to define CFS subgroups. Associations between PDS and immune, neuroendocrine/autonomic and clinical markers were examined. The impact of plasma norepinephrine level on clinical markers over time was assessed in a larger cohort (91 patients). RESULTS A group of 29 immune-gene sets was shown to differ patients from controls and detect subgroups within CFS. Group 1P (high PDS, low norepinephrine, low naïve CD4+ composition) had strong association with levels of serum C-reactive protein and Transforming Growth Factor-beta. Group 2P (low PDS, high norepinephrine, high naïve CD4+ composition) had strong associations with neuroendocrine/autonomic markers. The corresponding plasma norepinephrine level delineated 91 patients into two subgroups with significant differences in fatigue score. CONCLUSION We identified 29 immune-gene sets linked to plasma norepinephrine level that could delineate CFS subgroups. Plasma norepinephrine stratification revealed that lower levels of norepinephrine were associated with higher fatigue. Our data suggests potential involvement of neuro-immune dysregulation and genetic stratification in CFS.
Collapse
|
7
|
Zhang X, Qi Z, Yin H, Yang G. Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1α-mediated regulation of apoptosis and autophagy. Am J Cancer Res 2019; 9:1096-1114. [PMID: 30867818 PMCID: PMC6401400 DOI: 10.7150/thno.29673] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
The interplay between p53 and RAS signaling regulates cancer chemoresistance, but the detailed mechanism is unclear. In this study, we investigated the interactive effects of p53 and RAS on ovarian cancer cisplatin resistance to explore the potential therapeutic targets. Methods: An inducible p53 and RAS mutants active in either MAPK/ERK (S35 and E38) or PI3K/AKT (C40) or both (V12) were sequentially introduced into a p53-null ovarian cancer cell line-SKOV3. Comparative microarray analysis was performed using Gene Chip Prime View Human Gene Expression arrays (Affymetrix). In vitro assays of autophagy and apoptosis and in vivo animal experiments were performed by p53 induction and/or cisplatin treatment using the established cell lines. The correlation between HDAC4 and HIF-1α or CREBZF and the association of HDAC4, HIF-1α, CREBZF, ERK, AKT, and p53 mRNA levels with patient survival in 523 serous ovarian cancer cases from TCGA was assessed. Results: We show that p53 and RAS mutants differentially control cellular apoptosis and autophagy to inhibit or to promote chemoresistance through dysregulation of Bax, Bcl2, ATG3, and ATG12. ERK and AKT active RAS mutants are mutually suppressive to confer or to deprive cisplatin resistance. Further studies demonstrate that p53 induces HIF-1α degradation and HDAC4 cytoplasmic translocation and phosphorylation. S35, E38, and V12 but not C40 promote HDAC4 phosphorylation and its cytoplasmic translocation along with HIF-1α. Wild-type p53 expression in RAS mutant cells enhances HIF-1α turnover in ovarian and lung cancer cells. Autophagy and anti-apoptotic processes can be promoted by the overexpression and cytoplasmic translocation of HDAC4 and HIF1-α. Moreover, the phosphorylation and cytoplasmic translocation of HDAC4 activate the transcription factor CREBZF to promote ATG3 transcription. High HDAC4 or CREBZF expression predicted poor overall survival (OS) and/or progression-free survival (PFS) in ovarian cancer patients, whereas high HIF-1α expression was statistically correlated with poor or good OS depending on p53 status. Conclusion: HIF-1α and HDAC4 may mediate the interaction between p53 and RAS signaling to actively control ovarian cancer cisplatin resistance through dysregulation of apoptosis and autophagy. Targeting HDAC4, HIF-1α and CREBZF may be considered in treatment of ovarian cancer with p53 and RAS mutations.
Collapse
|
8
|
Chen F, Wen X, Lin P, Chen H, Wang A, Jin Y. Activation of CREBZF Increases Cell Apoptosis in Mouse Ovarian Granulosa Cells by Regulating the ERK1/2 and mTOR Signaling Pathways. Int J Mol Sci 2018; 19:ijms19113517. [PMID: 30413092 PMCID: PMC6274897 DOI: 10.3390/ijms19113517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
CREBZF, a multifunction transcriptional regulator, participates in the regulation of numerous cellular functions. The aims of the present study were to detect the localization of CREBZF expression in the ovary and explore the role of CREBZF and related mechanisms in the apoptosis of ovarian granulosa cells. We found by immunohistochemistry that CREBZF was mainly located in granulosa cells and oocytes during the estrous cycle. Western blot analysis showed that SMILE was the main isoform of CREBZF in the ovary. The relationship between apoptosis and CREBZF was assessed via CREBZF overexpression and knockdown. Flow cytometry analysis showed that CREBZF induced cell apoptosis in granulosa cells. Western bolt analysis showed that overexpression of CREBZF upregulated BAX and cleaved Caspase-3, while it downregulated BCL-2. Furthermore, overexpression of CREBZF inhibited the ERK1/2 and mTOR signaling pathways through the phosphorylation of intracellular-regulated kinases 1/2 (ERK1/2) and p70 S6 kinase (S6K1). Moreover, we found that CREBZF also activated autophagy by increasing LC3-II. In summary, these results suggest that CREBZF might play a proapoptotic role in cell apoptosis in granulosa cells, possibly by regulating the ERK1/2 and mTOR signaling pathways.
Collapse
Affiliation(s)
- Fenglei Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Xin Wen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Pengfei Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Aihua Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
9
|
Ogunbolude Y, Dai C, Bagu ET, Goel RK, Miah S, MacAusland-Berg J, Ng CY, Chibbar R, Napper S, Raptis L, Vizeacoumar F, Vizeacoumar F, Bonham K, Lukong KE. FRK inhibits breast cancer cell migration and invasion by suppressing epithelial-mesenchymal transition. Oncotarget 2017; 8:113034-113065. [PMID: 29348886 PMCID: PMC5762571 DOI: 10.18632/oncotarget.22958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022] Open
Abstract
The human fyn-related kinase (FRK) is a non-receptor tyrosine kinase known to have tumor suppressor activity in breast cancer cells. However, its mechanism of action has not been fully characterized. We generated FRK-stable MDA-MB-231 breast cancer cell lines and analyzed the effect on cell proliferation, migration, and invasiveness. We also used kinome analysis to identify potential FRK-regulated signaling pathways. We employed both immunoblotting and RT-PCR to identify/validate FRK-regulated targets (proteins and genes) in these cells. Finally, we interrogated the TCGA and GENT gene expression databases to determine the correlation between the expression of FRK and epithelial/mesenchymal markers. We observed that FRK overexpression suppressed cell proliferation, migration, and invasiveness, inhibited various JAK/STAT, MAPK and Akt signaling pathways, and suppressed the expression of some STAT3 target genes. Also, FRK overexpression increased the expression of epithelial markers including E-cadherin mRNA and down-regulated the transcript levels of vimentin, fibronectin, and slug. Finally, we observed an inverse correlation between FRK expression and mesenchymal markers in a large cohort of breast cancer cells. Our data, therefore, suggests that FRK represses cell proliferation, migration and invasiveness by suppressing epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Yetunde Ogunbolude
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Chenlu Dai
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Edward T Bagu
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Canada.,Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Raghuveera Kumar Goel
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Sayem Miah
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Canada.,Departments of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Joshua MacAusland-Berg
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Chi Ying Ng
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Rajni Chibbar
- Department of Pathology Royal University Hospital Saskatchewan, Saskatoon, Canada
| | - Scott Napper
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Canada.,Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | - Leda Raptis
- Departments of Microbiology and Immunology and Pathology, Queen's University, Kingston, Canada
| | - Frederick Vizeacoumar
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Franco Vizeacoumar
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Keith Bonham
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Canada.,Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
10
|
Transcriptome analysis reveals long intergenic non-coding RNAs involved in skeletal muscle growth and development in pig. Sci Rep 2017; 7:8704. [PMID: 28821716 PMCID: PMC5562803 DOI: 10.1038/s41598-017-07998-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/06/2017] [Indexed: 02/06/2023] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) play essential roles in numerous biological processes and are widely studied. The skeletal muscle is an important tissue that plays an essential role in individual movement ability. However, lincRNAs in pig skeletal muscles are largely undiscovered and their biological functions remain elusive. In this study, we assembled transcriptomes using RNA-seq data published in previous studies of our laboratory group and identified 323 lincRNAs in porcine leg muscle. We found that these lincRNAs have shorter transcript length, fewer exons and lower expression level than protein-coding genes. Gene ontology and pathway analyses indicated that many potential target genes (PTGs) of lincRNAs were involved in skeletal-muscle-related processes, such as muscle contraction and muscle system process. Combined our previous studies, we found a potential regulatory mechanism in which the promoter methylation of lincRNAs can negatively regulate lincRNA expression and then positively regulate PTG expression, which can finally result in abnormal phenotypes of cloned piglets through a certain unknown pathway. This work detailed a number of lincRNAs and their target genes involved in skeletal muscle growth and development and can facilitate future studies on their roles in skeletal muscle growth and development.
Collapse
|
11
|
Lack of inflammatory gene expression in bats: a unique role for a transcription repressor. Sci Rep 2017; 7:2232. [PMID: 28533548 PMCID: PMC5440382 DOI: 10.1038/s41598-017-01513-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/29/2017] [Indexed: 12/14/2022] Open
Abstract
In recent years viruses similar to those that appear to cause no overt disease in bats have spilled-over to humans and other species causing serious disease. Since pathology in such diseases is often attributed to an over-active inflammatory response, we tested the hypothesis that bat cells respond to stimulation of their receptors for viral ligands with a strong antiviral response, but unlike in human cells, the inflammatory response is not overtly activated. We compared the response of human and bat cells to poly(I:C), a viral double-stranded RNA surrogate. We measured transcripts for several inflammatory, interferon and interferon stimulated genes using quantitative real-time PCR and observed that human and bat cells both, when stimulated with poly(I:C), contained higher levels of transcripts for interferon beta than unstimulated cells. In contrast, only human cells expressed robust amount of RNA for TNFα, a cell signaling protein involved in systemic inflammation. We examined the bat TNFα promoter and found a potential repressor (c-Rel) binding motif. We demonstrated that c-Rel binds to the putative c-Rel motif in the promoter and knocking down c-Rel transcripts significantly increased basal levels of TNFα transcripts. Our results suggest bats may have a unique mechanism to suppress inflammatory pathology.
Collapse
|
12
|
Franco ML, Melero C, Sarasola E, Acebo P, Luque A, Calatayud-Baselga I, García-Barcina M, Vilar M. Mutations in TrkA Causing Congenital Insensitivity to Pain with Anhidrosis (CIPA) Induce Misfolding, Aggregation, and Mutation-dependent Neurodegeneration by Dysfunction of the Autophagic Flux. J Biol Chem 2016; 291:21363-21374. [PMID: 27551041 DOI: 10.1074/jbc.m116.722587] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/19/2016] [Indexed: 12/21/2022] Open
Abstract
Congenital insensitivity to pain with anhidrosis (CIPA) is a rare autosomal recessive disorder characterized by insensitivity to noxious stimuli and variable intellectual disability (ID) due to mutations in the NTRK1 gene encoding the NGF receptor TrkA. To get an insight in the effect of NTRK1 mutations in the cognitive phenotype we biochemically characterized three TrkA mutations identified in children diagnosed of CIPA with variable ID. These mutations are located in different domains of the protein; L213P in the extracellular domain, Δ736 in the kinase domain, and C300stop in the extracellular domain, a new mutation causing CIPA diagnosed in a Spanish teenager. We found that TrkA mutations induce misfolding, retention in the endoplasmic reticulum (ER), and aggregation in a mutation-dependent manner. The distinct mutations are degraded with a different kinetics by different ER quality control mechanisms; although C300stop is rapidly disposed by autophagy, Δ736 degradation is sensitive to the proteasome and to autophagy inhibitors, and L213P is a long-lived protein refractory to degradation. In addition L213P enhances the formation of autophagic vesicles triggering an increase in the autophagic flux with deleterious consequences. Mouse cortical neurons expressing L213P showed the accumulation of LC3-GFP positive puncta and dystrophic neurites. Our data suggest that TrkA misfolding and aggregation induced by some CIPA mutations disrupt the autophagy homeostasis causing neurodegeneration. We propose that distinct disease-causing mutations of TrkA generate different levels of cell toxicity, which may provide an explanation of the variable intellectual disability observed in CIPA patients.
Collapse
Affiliation(s)
- María Luisa Franco
- From the Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València, IBV-CSIC, c/o Jaume Roig 11, 46010 València,
| | - Cristina Melero
- From the Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València, IBV-CSIC, c/o Jaume Roig 11, 46010 València,
| | - Esther Sarasola
- the Department of Genetics, Basurto University Hospital (osakidetza/Servicio Vasco de Salud), Bilbao, and
| | | | - Alfonso Luque
- Rare Disease Centers, ISCIII, Crta. Majadahonda a Pozuelo km.2 Majadahonda, Madrid 28220, Spain
| | - Isabel Calatayud-Baselga
- From the Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València, IBV-CSIC, c/o Jaume Roig 11, 46010 València,
| | - María García-Barcina
- the Department of Genetics, Basurto University Hospital (osakidetza/Servicio Vasco de Salud), Bilbao, and
| | - Marçal Vilar
- From the Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València, IBV-CSIC, c/o Jaume Roig 11, 46010 València,,
| |
Collapse
|
13
|
Chen F, Lin PF, Li X, Sun J, Zhang Z, Du E, Wang A, Jin YP. Construction and expression of lentiviral vectors encoding recombinant mouse CREBZF in NIH 3T3 cells. Plasmid 2014; 76:24-31. [PMID: 25195838 DOI: 10.1016/j.plasmid.2014.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 12/27/2022]
Abstract
CREBZF, also known as Zhangfei or SMILE, is a member of the CREB/ATF protein family. CREBZF has mainly been considered as a basic region-leucine zipper transcription factor that functions in coordination with other transcription factors and plays a role in latent HSV-1 infection, apoptosis and the mammalian endoplasmic reticulum stress and unfolded protein response. In this study, we constructed recombinant lentiviral vectors for CREBZF short hairpin RNA (shRNA) expression and over-expression to improve understanding of the mechanisms regulating CREBZF. The CREBZF ORF sequence was cloned into the lentiviral shuttle plasmid pCD513B-1, and various shRNA oligonucleotides and one negative control (shN) were cloned into the pCD513B-U6 expression vector. The recombinant lentivirus was packaged and transduced into NIH 3T3 cells. CREBZF mRNA and protein expression were examined using real-time reverse transcription-polymerase chain reaction (RT-qPCR) and western blotting, respectively. The over-expression vector and the most effective shRNA vector significantly affected the expression of CREBZF mRNA and protein. Both of the CREBZF recombinant lentiviral vectors were successfully constructed. The over-expression vector significantly increased the expression of exogenous CREBZF and inhibited the growth of NIH 3T3 cells compared to controls. The most effective shRNA lentiviral vector, pCD513B-U6-CREBZF-shRNA-3, was transformed, leading to significant knockdown of the CREBZF gene. We conclude that CREBZF the recombinant lentiviral vectors are promising tools for regulating the expression of CREBZF in NIH 3T3 cells.
Collapse
Affiliation(s)
- Fenglei Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Fei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin Sun
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhe Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Enqi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ya Ping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Lin P, Chen F, Wang N, Wang X, Li X, Zhou J, Jin Y, Wang A. CREBZF expression and hormonal regulation in the mouse uterus. Reprod Biol Endocrinol 2013; 11:110. [PMID: 24325733 PMCID: PMC3878900 DOI: 10.1186/1477-7827-11-110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/02/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND CREBZF is a member of the mammalian ATF/CREB family of the basic region-leucine zipper (bZIP) transcription factors. Two isoforms of CREBZF have been identified from the alternative usage of initiation codons, SMILE (long isoform of CREBZF) and Zhangfei (short isoform of CREBZF). Until recently, the physiological function of CREBZF in mammalian reproductions has not been reported. METHODS Multiple techniques were performed to investigate the spatiotemporal expression and hormonal regulation of the CREBZF gene in the mouse uterus and its role in embryo implantation. RESULTS Zhangfei was not detected in the mouse uterus. SMILE immunostaining was mainly expressed in the uterine luminal and glandular epithelium, and the expression levels of both SMILE mRNA and protein gradually decreased from days 1-3 of pregnancy, peaked on day 4, and then declined again on day 6. On day 5 of pregnancy, SMILE protein expression was detected only in the luminal epithelium at implantation sites compared with the expression at inter-implantation sites. SMILE protein was not detected in decidual cells from days 6-8 of pregnancy or artificial decidualisation. Furthermore, SMILE protein was not detected in the mouse uterus on days 3-6 of pseudopregnancy, and SMILE expression was also induced in the delayed-implantation uterus, indicating that the presence of an active blastocyst was required for SMILE expression at the implantation site. Oestrogen significantly stimulated SMILE expression in the ovariectomised mouse uterus. In addition, in cycling mice, high levels of SMILE protein and mRNA expression were also observed in proestrus and oestrus uteri. CONCLUSIONS Taken together, these results suggested that SMILE expression was closely related to mouse implantation and up-regulated by oestrogen.
Collapse
Affiliation(s)
- Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fenglei Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nan Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangguo Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinhua Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
15
|
Trost B, Kindrachuk J, Scruten E, Griebel P, Kusalik A, Napper S. Kinotypes: stable species- and individual-specific profiles of cellular kinase activity. BMC Genomics 2013; 14:854. [PMID: 24314169 PMCID: PMC3924188 DOI: 10.1186/1471-2164-14-854] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/29/2013] [Indexed: 12/31/2022] Open
Abstract
Background Recently, questions have been raised regarding the ability of animal models to recapitulate human disease at the molecular level. It has also been demonstrated that cellular kinases, individually or as a collective unit (the kinome), play critical roles in regulating complex biology. Despite the intimate relationship between kinases and health, little is known about the variability, consistency and stability of kinome profiles across species and individuals. Results As a preliminary investigation of the existence of species- and individual-specific kinotypes (kinome signatures), peptide arrays were employed for the analysis of peripheral blood mononuclear cells collected weekly from human and porcine subjects (n = 6) over a one month period. The data revealed strong evidence for species-specific signalling profiles. Both humans and pigs also exhibited evidence for individual-specific kinome profiles that were independent of natural changes in blood cell populations. Conclusions Species-specific kinotypes could have applications in disease research by facilitating the selection of appropriate animal models or by revealing a baseline kinomic signature to which treatment-induced profiles could be compared. Similarly, individual-specific kinotypes could have implications in personalized medicine, where the identification of molecular patterns or signatures within the kinome may depend on both the levels of kinome diversity and temporal stability across individuals.
Collapse
Affiliation(s)
| | | | | | | | | | - Scott Napper
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
16
|
Zhang R, Misra V. Effects of cyclic AMP response element binding protein-Zhangfei (CREBZF) on the unfolded protein response and cell growth are exerted through the tumor suppressor p53. Cell Cycle 2013; 13:279-92. [PMID: 24200963 DOI: 10.4161/cc.27053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Zhangfei/CREBZF, a basic region-leucine zipper (bLZip) transcription factor, is a potent suppressor of growth and the unfolded protein response (UPR) in some cancer cell lines, including the canine osteosarcoma cell line, D-17. However, the effects of Zhangfei are not universal, and it has no obvious effects on untransformed cells and some cancer cell lines, suggesting that Zhangfei may act through an intermediary that is either not induced or is defective in cells that it does not affect. Here we identify the tumor suppressor protein p53 as this intermediary. We show the following: in cells ectopically expressing Zhangfei, the protein stabilizes p53 and co-localizes with it in cellular nuclei; the bLZip domain of Zhangfei is required for its profound effects on cell growth and interaction with p53. Suppression of p53 by siRNA at least partially inhibits the effects of Zhangfei on the UPR and cell growth. The effects of Zhangfei on D-17 cells is mirrored by its effects on the p53-expressing human osteosarcoma cell line U2OS, while Zhangfei has no effect on the p53-null osteosarcoma cell line MG63. In U2OS cells, Zhangfei displaces the E3 ubiquitin ligase mouse double minute homolog 2 (Mdm2) from its association with p53, suggesting a mechanism for the effects of Zhangfei on p53.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Microbiology; Western College of Veterinary Medicine; University of Saskatchewan; Saskatoon, Saskatchewan, Canada
| | - Vikram Misra
- Department of Microbiology; Western College of Veterinary Medicine; University of Saskatchewan; Saskatoon, Saskatchewan, Canada
| |
Collapse
|
17
|
Zhangfei/CREB-ZF - a potential regulator of the unfolded protein response. PLoS One 2013; 8:e77256. [PMID: 24155933 PMCID: PMC3796484 DOI: 10.1371/journal.pone.0077256] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/02/2013] [Indexed: 12/27/2022] Open
Abstract
Cells respond to perturbations in the microenvironment of the endoplasmic reticulum (ER), and to the overloading of its capacity to process secretory and membrane-associate proteins, by activating the Unfolded Protein Response (UPR). Genes that mediate the UPR are regulated by three basic leucine-zipper (bLZip) motif-containing transcription factors – Xbp1s, ATF4 and ATF6. A failure of the UPR to achieve homeostasis and its continued stimulation leads to apoptosis. Mechanisms must therefore exist to turn off the UPR if it successfully restores normalcy. The bLZip protein Zhangfei/CREBZF/SMILE is known to suppress the ability of several, seemingly structurally unrelated, transcription factors. These targets include Luman/CREB3 and CREBH, ER-resident bLZip proteins known to activate the UPR in some cell types. Here we show that Zhangfei had a suppressive effect on most UPR genes activated by the calcium ionophore thapsigargin. This effect was at least partially due to the interaction of Zhangfei with Xbp1s. The leucine zipper of Zhangfei was required for this interaction, which led to the subsequent proteasomal degradation of Xbp1s. Zhangfei suppressed the ability of Xbp1s to activate transcription from a promoter containing unfolded protein response elements and significantly reduced the ability to Xbp1s to activate the UPR as measured by RNA and protein levels of UPR-related genes. Finally, specific suppression of endogenous Zhangfei in thapsigargin-treated primary rat sensory neurons with siRNA directed to Zhangfei transcripts, led to a significant increase in transcripts and proteins of UPR genes, suggesting a potential role for Zhangfei in modulating the UPR.
Collapse
|