1
|
Robertson FC, Nahed BV, Barkhoudarian G, Veeravagu A, Berg D, Kalkanis S, Olson JJ, Germano IM. American Association of Neurological Surgeons/Congress of the Neurological Surgeons Section on Tumors Guidelines: Assessing Their Impact on Brain Tumor Clinical Practice. Neurosurgery 2025; 96:e43-e51. [PMID: 39028201 DOI: 10.1227/neu.0000000000003125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Clinical guidelines direct healthcare professionals toward evidence-based practices. Evaluating guideline impact can elucidate information penetration, relevance, effectiveness, and alignment with evolving medical knowledge and technological advancements. As the American Association of Neurological Surgeons/Congress of Neurological Surgeons Section on Tumors marks its 40th anniversary in 2024, this article reflects on the tumor guidelines established by the Section over the past decade and explores their impact on other publications, patents, and information dissemination. Six tumor guideline categories were reviewed: low-grade glioma, newly diagnosed glioblastoma, progressive glioblastoma, metastatic brain tumors, vestibular schwannoma, and pituitary adenomas. Citation data were collected from Google Scholar and PubMed. Further online statistics, such as social media reach, and features in policy, news, and patents were sourced from Altmetric. Online engagement was assessed through website and CNS+ mobile application visits. Data were normalized to time since publication. Metastatic Tumor guidelines (2019) had the highest PubMed citation rate at 26.1 per year and webpage visits (29 100 page views 1/1/2019-9/30/2023). Notably, this guideline had two endorsement publications by partner societies, the Society of Neuro-Oncology and American Society of Clinical Oncology, concerning antiepileptic prophylaxis and steroid use, and the greatest reach on X (19.7 mentions/y). Citation rates on Google Scholar were led by Vestibular Schwannoma (2018). Non-Functioning Pituitary Adenoma led Mendeley reads. News, patent, or policy publications were led by low-grade glioma at 1.5/year. Our study shows that the American Association of Neurological Surgeons/Congress of Neurological Surgeons Section on Tumors guidelines go beyond citations in peer-reviewed publications to include patents, online engagement, and information dissemination to the public.
Collapse
Affiliation(s)
- Faith C Robertson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - Garni Barkhoudarian
- Neurosurgery Division, Pacific Neuroscience Institute, Santa Monica , California , USA
| | - Anand Veeravagu
- Department of Neurosurgery, Stanford University, Stanford , California , USA
| | - David Berg
- Congress of Neurological Surgeons, Chicago , Illinois , USA
| | - Steven Kalkanis
- Department of Neurosurgery, Henry Ford Medical System, Detroit , Michigan , USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta , Georgia , USA
| | - Isabelle M Germano
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York , New York , USA
| |
Collapse
|
2
|
Veikutis V, Brazdziunas M, Keleras E, Basevicius A, Grib A, Skaudickas D, Lukosevicius S. Diagnostic Approaches to Adult-Type Diffuse Glial Tumors: Comparative Literature and Clinical Practice Study. Curr Oncol 2023; 30:7818-7835. [PMID: 37754483 PMCID: PMC10528153 DOI: 10.3390/curroncol30090568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
Gliomas are the most frequent intrinsic central nervous system tumors. The new 2021 WHO Classification of Central Nervous System Tumors brought significant changes into the classification of gliomas, that underline the role of molecular diagnostics, with the adult-type diffuse glial tumors now identified primarily by their biomarkers rather than histology. The status of the isocitrate dehydrogenase (IDH) 1 or 2 describes tumors at their molecular level and together with the presence or absence of 1p/19q codeletion are the most important biomarkers used for the classification of adult-type diffuse glial tumors. In recent years terminology has also changed. IDH-mutant, as previously known, is diagnostically used as astrocytoma and IDH-wildtype is used as glioblastoma. A comprehensive understanding of these tumors not only gives patients a more proper treatment and better prognosis but also highlights new difficulties. MR imaging is of the utmost importance for diagnosing and supervising the response to treatment. By monitoring the tumor on followup exams better results can be achieved. Correlations are seen between tumor diagnostic and clinical manifestation and surgical administration, followup care, oncologic treatment, and outcomes. Minimal resection site use of functional imaging (fMRI) and diffusion tensor imaging (DTI) have become indispensable tools in invasive treatment. Perfusion imaging provides insightful information about the vascularity of the tumor, spectroscopy shows metabolic activity, and nuclear medicine imaging displays tumor metabolism. To accommodate better treatment the differentiation of pseudoprogression, pseudoresponse, or radiation necrosis is needed. In this report, we present a literature review of diagnostics of gliomas, the differences in their imaging features, and our radiology's departments accumulated experience concerning gliomas.
Collapse
Affiliation(s)
- Vincentas Veikutis
- Medical Academy, Lithuanian University of Health Sciences, LT50161 Kaunas, Lithuania; (M.B.); (E.K.); (A.B.); (D.S.); (S.L.)
| | - Mindaugas Brazdziunas
- Medical Academy, Lithuanian University of Health Sciences, LT50161 Kaunas, Lithuania; (M.B.); (E.K.); (A.B.); (D.S.); (S.L.)
- Faculty of Medicine, Kaunas University of Applied Sciences, LT44162 Kaunas, Lithuania
| | - Evaldas Keleras
- Medical Academy, Lithuanian University of Health Sciences, LT50161 Kaunas, Lithuania; (M.B.); (E.K.); (A.B.); (D.S.); (S.L.)
| | - Algidas Basevicius
- Medical Academy, Lithuanian University of Health Sciences, LT50161 Kaunas, Lithuania; (M.B.); (E.K.); (A.B.); (D.S.); (S.L.)
| | - Andrei Grib
- Department of Internal Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, MD2004 Chisinau, Moldova;
| | - Darijus Skaudickas
- Medical Academy, Lithuanian University of Health Sciences, LT50161 Kaunas, Lithuania; (M.B.); (E.K.); (A.B.); (D.S.); (S.L.)
| | - Saulius Lukosevicius
- Medical Academy, Lithuanian University of Health Sciences, LT50161 Kaunas, Lithuania; (M.B.); (E.K.); (A.B.); (D.S.); (S.L.)
| |
Collapse
|
3
|
van den Elshout R, Scheenen TWJ, Driessen CML, Smeenk RJ, Meijer FJA, Henssen D. Diffusion imaging could aid to differentiate between glioma progression and treatment-related abnormalities: a meta-analysis. Insights Imaging 2022; 13:158. [PMID: 36194373 PMCID: PMC9532499 DOI: 10.1186/s13244-022-01295-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background In a considerable subgroup of glioma patients treated with (chemo) radiation new lesions develop either representing tumor progression (TP) or treatment-related abnormalities (TRA). Quantitative diffusion imaging metrics such as the Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA) have been reported as potential metrics to noninvasively differentiate between these two phenomena. Variability in performance scores of these metrics and absence of a critical overview of the literature contribute to the lack of clinical implementation. This meta-analysis therefore critically reviewed the literature and meta-analyzed the performance scores. Methods Systematic searching was carried out in PubMed, EMBASE and The Cochrane Library. Using predefined criteria, papers were reviewed. Diagnostic accuracy values of suitable papers were meta-analyzed quantitatively. Results Of 1252 identified papers, 10 ADC papers, totaling 414 patients, and 4 FA papers, with 154 patients were eligible for meta-analysis. Mean ADC values of the patients in the TP/TRA groups were 1.13 × 10−3mm2/s (95% CI 0.912 × 10–3–1.32 × 10−3mm2/s) and 1.38 × 10−3mm2/s (95% CI 1.33 × 10–3–1.45 × 10−3mm2/s, respectively. Mean FA values of TP/TRA was 0.19 (95% CI 0.189–0.194) and 0.14 (95% CI 0.137–0.143) respectively. A significant mean difference between ADC and FA values in TP versus TRA was observed (p = 0.005). Conclusions Quantitative ADC and FA values could be useful for distinguishing TP from TRA on a meta-level. Further studies using serial imaging of individual patients are warranted to determine the role of diffusion imaging in glioma patients.
Collapse
Affiliation(s)
- Rik van den Elshout
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Chantal M L Driessen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert J Smeenk
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frederick J A Meijer
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Dylan Henssen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Winograd E, Germano I, Wen P, Olson JJ, Ormond DR. Congress of Neurological Surgeons systematic review and evidence-based guidelines update on the role of targeted therapies and immunotherapies in the management of progressive glioblastoma. J Neurooncol 2022; 158:265-321. [PMID: 34694567 PMCID: PMC8543777 DOI: 10.1007/s11060-021-03876-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022]
Abstract
The following questions and recommendations are pertinent to the following: TARGET POPULATION: These recommendations apply to adults with progressive GBM who have undergone standard primary treatment with surgery and/or chemoradiation. QUESTION 1: In adults with progressive glioblastoma is the use of bevacizumab as monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION Level III: Treatment with bevacizumab is suggested in the treatment of progressive GBM, as it provides improved disease control compared to historical controls as measured by best imaging response and progression free survival at 6 months, while not providing evidence for improvement in overall survival. QUESTION 2: In adults with progressive glioblastoma is the use of bevacizumab as combination therapy with cytotoxic agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION Level III: There is insufficient evidence to show benefit or harm of bevacizumab in combination with cytotoxic therapies in progressive glioblastoma due to a lack of evidence supporting a clearly defined benefit without significant toxicity. QUESTION 3: In adults with progressive glioblastoma is the use of bevacizumab as a combination therapy with targeted agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 4: In adults with progressive glioblastoma is the use of targeted agents as monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 5: In adults with progressive glioblastoma is the use of targeted agents in combination with cytotoxic therapies superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 6: In adults with progressive glioblastoma is the use of immunotherapy monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 7: In adults with progressive glioblastoma is the use of immunotherapy in combination with targeted agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 8: In adults with progressive glioblastoma is the use of immunotherapy in combination with bevacizumab superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question.
Collapse
Affiliation(s)
- Evan Winograd
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Isabelle Germano
- Department of Neurosurgery, The Mount Sinai Hospital, New York, NY, USA
| | - Patrick Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12631 E. 17th Ave., Mail Stop C307, Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
Johnson DR, Glenn CA, Javan R, Olson JJ. Congress of Neurological Surgeons systematic review and evidence-based guidelines update on the role of imaging in the management of progressive glioblastoma in adults. J Neurooncol 2022; 158:139-165. [PMID: 34694565 DOI: 10.1007/s11060-021-03853-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022]
Abstract
TARGET POPULATION These recommendations apply to adults with glioblastoma who have been previously treated with first-line radiation or chemoradiotherapy and who are suspected of experiencing tumor progression. QUESTION In patients with previously treated glioblastoma, is standard contrast-enhanced magnetic resonance imaging including diffusion weighted imaging useful for diagnosing tumor progression and differentiating progression from treatment-related changes? LEVEL II Magnetic resonance imaging with and without gadolinium enhancement including diffusion weighted imaging is recommended as the imaging surveillance method to detect the progression of previously diagnosed glioblastoma. QUESTION In patients with previously treated glioblastoma, does magnetic resonance spectroscopy add useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL II Magnetic resonance spectroscopy is recommended as a diagnostic method to differentiate true tumor progression from treatment-related imaging changes or pseudo-progression in patients with suspected progressive glioblastoma. QUESTION In patients with previously treated glioblastoma, does magnetic resonance perfusion add useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL III Magnetic resonance perfusion is suggested as a diagnostic method to differentiate true tumor progression from treatment-related imaging changes or pseudo-progression in patients with suspected progressive glioblastoma. QUESTION In patients with previously treated glioblastoma, does the addition of single-photon emission computed tomography (SPECT) provide additional useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL III Single-photon emission computed tomography imaging is suggested as a diagnostic method to differentiate true tumor progression from treatment-related imaging changes or pseudo-progression in patients with suspected progressive glioblastoma. QUESTION In patients with previously treated glioblastoma, does 18F-fluorodeoxyglucose positron emission tomography add useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL III The routine use of 18F-fluorodeoxyglucose positron emission tomography to identify progression of glioblastoma is not recommended. QUESTION In patients with previously treated glioblastoma, does positron emission tomography with amino acid agents add useful information for diagnosing tumor progression and differentiating progression from treatment-related changes beyond that derived from standard magnetic resonance imaging with and without gadolinium enhancement? LEVEL III It is suggested that amino acid positron emission tomography be considered to assist in the differentiation of progressive glioblastoma from treatment related changes.
Collapse
Affiliation(s)
- Derek Richard Johnson
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Chad Allan Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ramin Javan
- Department of Neuroradiology, George Washington University Hospital, Washington, DC, USA
| | - Jeffrey James Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
6
|
Germano IM, Johnson DR, Patrick HH, Goodman AL, Ziu M, Ormond DR, Olson JJ. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Management of Progressive Glioblastoma in Adults: Update of the 2014 Guidelines. Neurosurgery 2022; 90:e112-e115. [PMID: 35426875 DOI: 10.1227/neu.0000000000001903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Institute of Medicine best practice recommendation to review guidelines every 5 years is followed by the Congress of Neurological Surgeons Guidelines Committee. The aim of this work was to provide an updated literature review and evidence-based recommendations on the topic of diagnosis and treatment of patients with progressive glioblastoma (pGBM). OBJECTIVE To review the literature published since the last guidelines on pGBM dated 2014, with literature search ending in June 2012. METHODS PubMed, Embase, and Cochrane were searched for the period July 1, 2012, to March 31, 2019, using search terms and search strategies to identify pertinent abstracts. These were then screened using published exclusion/inclusion criteria to identify full-text review articles. Evidence tables were constructed using data derived from full-text reviews and recommendations made from the evidence derived. RESULTS From the total 8786 abstracts identified by the search, 237 full-text articles met inclusion/exclusion criteria and were included in this update. Two new level II recommendations derived from this work. For the diagnosis of patients with GBM, the use of diffusion-weighted images is recommended to be included in the magnetic resonance images with and without contrast used for surveillance to detect pGBM. For the treatment of patients with pGBM, repeat cytoreductive surgery is recommended to improve overall survival. An additional 21 level III recommendations were provided. CONCLUSION Recent published literature provides new recommendations for the diagnosis and treatment of pGBM. The Central Nervous System Guidelines Committee will continue to pursue timely updates to further improve the care of patients with diagnosis.https://www.cns.org/guidelines/browse-guidelines-detail/guidelines-management-of-progressive-glioblastoma.
Collapse
Affiliation(s)
- Isabelle M Germano
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Derek R Johnson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hayes H Patrick
- Department of Neurological Surgery, George Washington University, Washington, District of Columbia, USA
| | - Abigail L Goodman
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, Georgia, USA
| | - Mateo Ziu
- Department of Neurosurgery, Inova Neuroscience and Spine Institute Fairfax, Virginia, USA
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Pseudoprogression prediction in high grade primary CNS tumors by use of radiomics. Sci Rep 2022; 12:5915. [PMID: 35396525 PMCID: PMC8993885 DOI: 10.1038/s41598-022-09945-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Abstract
Our aim is to define the capabilities of radiomics and machine learning in predicting pseudoprogression development from pre-treatment MR images in a patient cohort diagnosed with high grade gliomas. In this retrospective analysis, we analysed 131 patients with high grade gliomas. Segmentation of the contrast enhancing parts of the tumor before administration of radio-chemotherapy was semi-automatically performed using the 3D Slicer open-source software platform (version 4.10) on T1 post contrast MR images. Imaging data was split into training data, test data and an independent validation sample at random. We extracted a total of 107 radiomic features by hand-delineated regions of interest (ROI). Feature selection and model construction were performed using Generalized Boosted Regression Models (GBM). 131 patients were included, of which 64 patients had a histopathologically proven progressive disease and 67 were diagnosed with mixed or pure pseudoprogression after initial treatment. Our Radiomics approach is able to predict the occurrence of pseudoprogression with an AUC, mean sensitivity, mean specificity and mean accuracy of 91.49% [86.27%, 95.89%], 79.92% [73.08%, 87.55%], 88.61% [85.19%, 94.44%] and 84.35% [80.19%, 90.57%] in the full development group, 78.51% [75.27%, 82.46%], 66.26% [57.95%, 73.02%], 78.31% [70.48%, 84.19%] and 72.40% [68.06%, 76.85%] in the testing group and finally 72.87% [70.18%, 76.28%], 71.75% [62.29%, 75.00%], 80.00% [69.23%, 84.62%] and 76.04% [69.90%, 80.00%] in the independent validation sample, respectively. Our results indicate that radiomics is a promising tool to predict pseudo-progression, thus potentially allowing to reduce the use of biopsies and invasive histopathology.
Collapse
|
8
|
Henriksen OM, del Mar Álvarez-Torres M, Figueiredo P, Hangel G, Keil VC, Nechifor RE, Riemer F, Schmainda KM, Warnert EAH, Wiegers EC, Booth TC. High-Grade Glioma Treatment Response Monitoring Biomarkers: A Position Statement on the Evidence Supporting the Use of Advanced MRI Techniques in the Clinic, and the Latest Bench-to-Bedside Developments. Part 1: Perfusion and Diffusion Techniques. Front Oncol 2022; 12:810263. [PMID: 35359414 PMCID: PMC8961422 DOI: 10.3389/fonc.2022.810263] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023] Open
Abstract
Objective Summarize evidence for use of advanced MRI techniques as monitoring biomarkers in the clinic, and highlight the latest bench-to-bedside developments. Methods Experts in advanced MRI techniques applied to high-grade glioma treatment response assessment convened through a European framework. Current evidence regarding the potential for monitoring biomarkers in adult high-grade glioma is reviewed, and individual modalities of perfusion, permeability, and microstructure imaging are discussed (in Part 1 of two). In Part 2, we discuss modalities related to metabolism and/or chemical composition, appraise the clinic readiness of the individual modalities, and consider post-processing methodologies involving the combination of MRI approaches (multiparametric imaging) or machine learning (radiomics). Results High-grade glioma vasculature exhibits increased perfusion, blood volume, and permeability compared with normal brain tissue. Measures of cerebral blood volume derived from dynamic susceptibility contrast-enhanced MRI have consistently provided information about brain tumor growth and response to treatment; it is the most clinically validated advanced technique. Clinical studies have proven the potential of dynamic contrast-enhanced MRI for distinguishing post-treatment related effects from recurrence, but the optimal acquisition protocol, mode of analysis, parameter of highest diagnostic value, and optimal cut-off points remain to be established. Arterial spin labeling techniques do not require the injection of a contrast agent, and repeated measurements of cerebral blood flow can be performed. The absence of potential gadolinium deposition effects allows widespread use in pediatric patients and those with impaired renal function. More data are necessary to establish clinical validity as monitoring biomarkers. Diffusion-weighted imaging, apparent diffusion coefficient analysis, diffusion tensor or kurtosis imaging, intravoxel incoherent motion, and other microstructural modeling approaches also allow treatment response assessment; more robust data are required to validate these alone or when applied to post-processing methodologies. Conclusion Considerable progress has been made in the development of these monitoring biomarkers. Many techniques are in their infancy, whereas others have generated a larger body of evidence for clinical application.
Collapse
Affiliation(s)
- Otto M. Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Patricia Figueiredo
- Department of Bioengineering and Institute for Systems and Robotics-Lisboa, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Gilbert Hangel
- Department of Neurosurgery, Medical University, Vienna, Austria
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University, Vienna, Austria
| | - Vera C. Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Ruben E. Nechifor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Department of Clinical Psychology and Psychotherapy, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Kathleen M. Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Evita C. Wiegers
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thomas C. Booth
-
School of Biomedical Engineering and Imaging Sciences, St. Thomas’ Hospital, King’s College London, London, United Kingdom
- Department of Neuroradiology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
9
|
Walsh JJ, Hyder F. Extracellular pH Mapping as Therapeutic Readout of Drug Delivery in Glioblastoma. Methods Mol Biol 2022; 2394:515-536. [PMID: 35094344 DOI: 10.1007/978-1-0716-1811-0_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An acidic extracellular space is a hallmark of the tumor microenvironment. Acidosis has been postulated to promote the aggressive and invasive characteristics of tumors and also inhibit the therapeutic response, particularly in the context of novel immunotherapies. Therefore, methods to quantitatively measure the extracellular pH (pHe) are needed. Here we describe a magnetic resonance spectroscopic imaging (MRSI) technique termed Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), which uses the pH-dependent chemical shifts of nonexchangeable protons of lanthanide-based contrast agents to generate quantitative spatial pHe maps. We assess this method in the context of evaluating the acidic pHe and therapeutic response in glioblastoma in rodents, where normalization of the pHe upon therapy can serve as a quantitative readout of successful drug delivery to the tumor.
Collapse
Affiliation(s)
- John J Walsh
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
| |
Collapse
|
10
|
Olson JJ. Congress of Neurological Surgeons systematic review and evidence-based guidelines for the treatment of adults with progressive glioblastoma update: introduction and methods. J Neurooncol 2021; 158:133-137. [PMID: 34694566 DOI: 10.1007/s11060-021-03850-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The management of glioblastoma at the time of progression is an important facet of all physicians involved in neuro-oncology. This is an update of the evidence-based guidelines for management of progressive glioblastoma published by the Congress of Neurological Surgeons and American Association of Neurological Surgeons in 2014. METHODS The medical literature from July 1, 2012 through March 31, 2019 was searched in MEDLINE® and Embase® and the Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Registry, and Cochrane Database of Abstracts of Reviews of Effects to determine if information was available to update, modify or create new recommendations related to imaging, cytoreductive surgery, neuropathology, radiotherapy, cytotoxic chemotherapy, targeted therapy, and immunotherapy. RESULTS The writing group utilized the information from the updated literature search to formulate recommendations that were exclusively evidence based and not founded on potentially biased consensus or expert opinion. CONCLUSION The series of guideline documents provides an update of the information and recommendations that could be derived in the 2014 version. It sets a benchmark as to what we really know about the management of this difficult disease. It also provides clues to key investigations that are necessary to move us toward truly effective disease control.
Collapse
Affiliation(s)
- Jeffrey J Olson
- Department of Neurosurgery, School of Medicine, Emory University, 1365 Clifton Road Northeast, Bldg. B, Fl 2, Ste 2200, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Billings C, Langley M, Warrington G, Mashali F, Johnson JA. Magnetic Particle Imaging: Current and Future Applications, Magnetic Nanoparticle Synthesis Methods and Safety Measures. Int J Mol Sci 2021; 22:ijms22147651. [PMID: 34299271 PMCID: PMC8306580 DOI: 10.3390/ijms22147651] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have a wide range of applications; an area of particular interest is magnetic particle imaging (MPI). MPI is an imaging modality that utilizes superparamagnetic iron oxide particles (SPIONs) as tracer particles to produce highly sensitive and specific images in a broad range of applications, including cardiovascular, neuroimaging, tumor imaging, magnetic hyperthermia and cellular tracking. While there are hurdles to overcome, including accessibility of products, and an understanding of safety and toxicity profiles, MPI has the potential to revolutionize research and clinical biomedical imaging. This review will explore a brief history of MPI, MNP synthesis methods, current and future applications, and safety concerns associated with this newly emerging imaging modality.
Collapse
Affiliation(s)
- Caroline Billings
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - Mitchell Langley
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; (M.L.); (G.W.); (F.M.)
| | - Gavin Warrington
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; (M.L.); (G.W.); (F.M.)
| | - Farzin Mashali
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; (M.L.); (G.W.); (F.M.)
| | - Jacqueline Anne Johnson
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388, USA
- Correspondence:
| |
Collapse
|
12
|
Efendioğlu M, Şanli E, Türkoğlu C, Balak N. Reduced Serum sRANKL and sTREM2 Levels in High-Grade Gliomas: Association with Prognosis. Noro Psikiyatr Ars 2021; 58:133-136. [PMID: 34188596 PMCID: PMC8214753 DOI: 10.29399/npa.27536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION High-grade gliomas (HGG), including Glioblastoma multiforme (GBM), account for the majority of primary brain tumors. Nevertheless, prognostic and diagnostic biomarkers are quite limited for HGG. The objective of this study was to investigate the prognostic value of sRANKL and sTREM2 levels in HGG patients. METHODS Twelve consecutive patients with HGG, 14 patients with non-glial tumors (non-GT) and 20 age and gender-matched healthy controls were recruited. Overall survival duration of the patients was recorded. Pre-operative serum levels of sRANKL and sTREM2 were measured by ELISA. Tumors of HGG patients were analyzed by immunohistochemical staining for p53 and Ki67 and percentage scores were calculated. RESULTS Patients with HGG and non-GT showed lower serum sRANKL and sTREM2 levels than healthy individuals. Levels of sRANKL were inversely correlated with the overall survival of patients (p=0.002, R=0.787), while sTREM2 levels were inversely correlated with p53 score (p=0.018, R=-0.666) but not survival. CONCLUSION Brain tumor patients show suppressed levels of glial activity biomarkers in the peripheral circulation. Serum sRANKL levels may serve as a potential prognostic biomarker for HGG.
Collapse
Affiliation(s)
- Mustafa Efendioğlu
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Elif Şanli
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | | | - Naci Balak
- Department of Neurosurgery, Istanbul Medeniyet University, Göztepe Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
13
|
Menze B, Isensee F, Wiest R, Wiestler B, Maier-Hein K, Reyes M, Bakas S. Analyzing magnetic resonance imaging data from glioma patients using deep learning. Comput Med Imaging Graph 2021; 88:101828. [PMID: 33571780 PMCID: PMC8040671 DOI: 10.1016/j.compmedimag.2020.101828] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022]
Abstract
The quantitative analysis of images acquired in the diagnosis and treatment of patients with brain tumors has seen a significant rise in the clinical use of computational tools. The underlying technology to the vast majority of these tools are machine learning methods and, in particular, deep learning algorithms. This review offers clinical background information of key diagnostic biomarkers in the diagnosis of glioma, the most common primary brain tumor. It offers an overview of publicly available resources and datasets for developing new computational tools and image biomarkers, with emphasis on those related to the Multimodal Brain Tumor Segmentation (BraTS) Challenge. We further offer an overview of the state-of-the-art methods in glioma image segmentation, again with an emphasis on publicly available tools and deep learning algorithms that emerged in the context of the BraTS challenge.
Collapse
Affiliation(s)
- Bjoern Menze
- Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.
| | | | - Roland Wiest
- Support Center for Advanced Neuroimaging, Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland.
| | | | | | | | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Strauss SB, Meng A, Ebani EJ, Chiang GC. Imaging Glioblastoma Posttreatment: Progression, Pseudoprogression, Pseudoresponse, Radiation Necrosis. Neuroimaging Clin N Am 2021; 31:103-120. [PMID: 33220823 DOI: 10.1016/j.nic.2020.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Radiographic monitoring of posttreatment glioblastoma is important for clinical trials and determining next steps in management. Evaluation for tumor progression is confounded by the presence of treatment-related radiographic changes, making a definitive determination less straight-forward. The purpose of this article was to describe imaging tools available for assessing treatment response in glioblastoma, as well as to highlight the definitions, pathophysiology, and imaging features typical of true progression, pseudoprogression, pseudoresponse, and radiation necrosis.
Collapse
Affiliation(s)
- Sara B Strauss
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Alicia Meng
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Edward J Ebani
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Gloria C Chiang
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA.
| |
Collapse
|
15
|
Winter SF, Loebel F, Loeffler J, Batchelor TT, Martinez-Lage M, Vajkoczy P, Dietrich J. Treatment-induced brain tissue necrosis: a clinical challenge in neuro-oncology. Neuro Oncol 2020; 21:1118-1130. [PMID: 30828724 DOI: 10.1093/neuonc/noz048] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/04/2018] [Accepted: 02/25/2019] [Indexed: 12/29/2022] Open
Abstract
Cancer therapy-induced adverse effects on the brain are a major challenge in neuro-oncology. Brain tissue necrosis (treatment necrosis [TN]) as a consequence of brain directed cancer therapy remains an insufficiently characterized condition with diagnostic and therapeutic difficulties and is frequently associated with significant patient morbidity. A better understanding of the underlying mechanisms, improvement of diagnostic tools, development of preventive strategies, and implementation of evidence-based therapeutic practices are pivotal to improve patient management. In this comprehensive review, we address existing challenges associated with current TN-related clinical and research practices and highlight unanswered questions and areas in need of further research with the ultimate goal to improve management of patients affected by this important neuro-oncological condition.
Collapse
Affiliation(s)
- Sebastian F Winter
- MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Charité‒Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Franziska Loebel
- Department of Neurosurgery, Charité‒Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jay Loeffler
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tracy T Batchelor
- MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Martinez-Lage
- C S Kubik Laboratory for Neuropathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité‒Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jorg Dietrich
- MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Sun Z, Wang L, Wu S, Pan Y, Dong Y, Zhu S, Yang J, Yin Y, Li G. An Electrochemical Biosensor Designed by Using Zr-Based Metal-Organic Frameworks for the Detection of Glioblastoma-Derived Exosomes with Practical Application. Anal Chem 2020; 92:3819-3826. [PMID: 32024367 DOI: 10.1021/acs.analchem.9b05241] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is one of the most fatal tumors in the brain, and its early diagnosis remains technically challenging due to the complex repertoires of oncogenic alterations and blood-brain barrier (BBB). GBM-derived specific exosomes can cross the BBB and circulate in body fluids, so they can be noninvasive biomarkers for the early diagnosis of GBM. Herein, we propose a sensitive and label-free electrochemical biosensor designed by using Zr-based metal-organic frameworks (Zr-MOFs) for the detection of GBM-derived exosomes with practical application. In the design, a peptide ligand can specifically bind with human epidermal growth factor receptor (EGFR) and EGFR variant (v) III mutation (EGFRvIII), which are overexpressed on the GBM-derived exosomes. Meanwhile, Zr-MOFs encapsulated with methylene blue can absorb on the surface of the exosomes due to the interaction between Zr4+ and the intrinsic phosphate groups outside of exosomes. Consequently, the concentration of exosomes can be directly quantified by monitoring the electroactive molecules inside MOFs, ranging from 9.5 × 103 to 1.9 × 107 particles/μL with the detection of limit of 7.83 × 103 particles/μL. Furthermore, this proposed biosensor can distinguish GBM patients from healthy groups, demonstrating the great prospect for early clinical diagnosis.
Collapse
Affiliation(s)
- Zhaowei Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Lei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Shuai Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yanhong Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yu Dong
- Department of Neurosurgery, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, P. R. China
| | - Sha Zhu
- Department of Oncology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214000, P. R. China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.,Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
17
|
Gallaher JA, Massey SC, Hawkins-Daarud A, Noticewala SS, Rockne RC, Johnston SK, Gonzalez-Cuyar L, Juliano J, Gil O, Swanson KR, Canoll P, Anderson ARA. From cells to tissue: How cell scale heterogeneity impacts glioblastoma growth and treatment response. PLoS Comput Biol 2020; 16:e1007672. [PMID: 32101537 PMCID: PMC7062288 DOI: 10.1371/journal.pcbi.1007672] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/09/2020] [Accepted: 01/21/2020] [Indexed: 11/18/2022] Open
Abstract
Glioblastomas are aggressive primary brain tumors known for their inter- and intratumor heterogeneity. This disease is uniformly fatal, with intratumor heterogeneity the major reason for treatment failure and recurrence. Just like the nature vs nurture debate, heterogeneity can arise from intrinsic or environmental influences. Whilst it is impossible to clinically separate observed behavior of cells from their environmental context, using a mathematical framework combined with multiscale data gives us insight into the relative roles of variation from different sources. To better understand the implications of intratumor heterogeneity on therapeutic outcomes, we created a hybrid agent-based mathematical model that captures both the overall tumor kinetics and the individual cellular behavior. We track single cells as agents, cell density on a coarser scale, and growth factor diffusion and dynamics on a finer scale over time and space. Our model parameters were fit utilizing serial MRI imaging and cell tracking data from ex vivo tissue slices acquired from a growth-factor driven glioblastoma murine model. When fitting our model to serial imaging only, there was a spectrum of equally-good parameter fits corresponding to a wide range of phenotypic behaviors. When fitting our model using imaging and cell scale data, we determined that environmental heterogeneity alone is insufficient to match the single cell data, and intrinsic heterogeneity is required to fully capture the migration behavior. The wide spectrum of in silico tumors also had a wide variety of responses to an application of an anti-proliferative treatment. Recurrent tumors were generally less proliferative than pre-treatment tumors as measured via the model simulations and validated from human GBM patient histology. Further, we found that all tumors continued to grow with an anti-migratory treatment alone, but the anti-proliferative/anti-migratory combination generally showed improvement over an anti-proliferative treatment alone. Together our results emphasize the need to better understand the underlying phenotypes and tumor heterogeneity present in a tumor when designing therapeutic regimens.
Collapse
Affiliation(s)
- Jill A. Gallaher
- Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Susan C. Massey
- Precision NeuroTherapeutics Innovation Program, Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurological Surgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Andrea Hawkins-Daarud
- Precision NeuroTherapeutics Innovation Program, Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurological Surgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Sonal S. Noticewala
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Russell C. Rockne
- Division of Mathematical Oncology, City of Hope National Medical Center, Duarte, California, United States of America
| | - Sandra K. Johnston
- Precision NeuroTherapeutics Innovation Program, Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurological Surgery, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Luis Gonzalez-Cuyar
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Joseph Juliano
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Orlando Gil
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
- Department of Biology, Hunter College, City University of New York, New York, New York, United States of America
| | - Kristin R. Swanson
- Precision NeuroTherapeutics Innovation Program, Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurological Surgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Alexander R. A. Anderson
- Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida, United States of America
| |
Collapse
|
18
|
Calmon R, Puget S, Varlet P, Dangouloff-Ros V, Blauwblomme T, Beccaria K, Grevent D, Sainte-Rose C, Castel D, Debily MA, Dufour C, Bolle S, Dhermain F, Saitovitch A, Zilbovicius M, Brunelle F, Grill J, Boddaert N. Cerebral blood flow changes after radiation therapy identifies pseudoprogression in diffuse intrinsic pontine gliomas. Neuro Oncol 2019; 20:994-1002. [PMID: 29244086 DOI: 10.1093/neuonc/nox227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background The interval between progression and death in diffuse intrinsic pontine glioma (DIPG) is usually <6 months. However, reports of longer patient survival following radiotherapy, in the presence of radiological signs of progression, suggest that these cases may be comparable to pseudoprogression observed in adult glioblastoma. Our aim was to identify such cases and compare their multimodal MRI features with those of patients who did not present the same evolution. Methods Multimodal MRIs of 43 children treated for DIPG were retrospectively selected at 4 timepoints: baseline, after radiotherapy, during true progression, and at the last visit. The patients were divided into 2 groups depending on whether they presented conventional MRI changes that mimicked progression. The apparent diffusion coefficient, arterial spin labeling cerebral blood flow (ASL-CBF), and dynamic susceptibility contrast perfusion relative cerebral blood volume (DSCrCBV) and flow (DSCrCBF) values were recorded for each tumor voxel, avoiding necrotic areas. Results After radiotherapy, 19 patients (44%) showed radiological signs that mimicked progression: 16 survived >6 months following so-called pseudoprogression, with a median of 8.9 months and a maximum of 35.6 months. All 43 patients exhibited increased blood volume and flow after radiotherapy, but the 90th percentile of those with signs of pseudoprogression had a greater increase of ASL-CBF (P < 0.001). Survival between the 2 groups did not differ significantly. During true progression, DSCrCBF and DSCrCBV values increased only in patients who had not experienced pseudoprogression. Conclusions Pseudoprogression is a frequent phenomenon in DIPG patients. This condition needs to be recognized before considering treatment discontinuation. In this study, the larger increase of the ASL-CBF ratio after radiotherapy accurately distinguished pseudoprogression from true progression.
Collapse
Affiliation(s)
- Raphael Calmon
- Hôpital Necker Enfants Malades, Pediatric Radiology Department, Paris, France.,Imagine: Institut de Maladies Génétiques, Paris, France.,INSERM, Paris, France.,Université Paris Descartes, ComUE Sorbonne Paris Cité, Paris, France
| | - Stephanie Puget
- Hôpital Necker Enfants Malades, Pediatric Neurosurgery Department, Paris, France
| | - Pascale Varlet
- INSERM, Paris, France.,Centre Hospitalier Sainte-Anne, Laboratoire de Neuropathologie, Paris, France
| | - Volodia Dangouloff-Ros
- Hôpital Necker Enfants Malades, Pediatric Radiology Department, Paris, France.,Imagine: Institut de Maladies Génétiques, Paris, France.,INSERM, Paris, France.,Université Paris Descartes, ComUE Sorbonne Paris Cité, Paris, France
| | - Thomas Blauwblomme
- Hôpital Necker Enfants Malades, Pediatric Neurosurgery Department, Paris, France
| | - Kevin Beccaria
- Hôpital Necker Enfants Malades, Pediatric Neurosurgery Department, Paris, France
| | - David Grevent
- Hôpital Necker Enfants Malades, Pediatric Radiology Department, Paris, France.,Imagine: Institut de Maladies Génétiques, Paris, France.,INSERM, Paris, France.,Université Paris Descartes, ComUE Sorbonne Paris Cité, Paris, France
| | | | - David Castel
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8203 et Universite Paris Saclay, Villejuif, France
| | - Marie-Anne Debily
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8203 et Universite Paris Saclay, Villejuif, France.,Université Evry Val-d'Essonne, Département de Biologie, Evry, France
| | - Christelle Dufour
- Gustave Roussy, Département de Cancerologie de l'Enfant et de l'Adolescent, Villejuif, France
| | - Stéphanie Bolle
- Gustave Roussy, Département de Radiothérapie, Villejuif, France
| | - Frederic Dhermain
- Gustave Roussy, Département de Cancerologie de l'Enfant et de l'Adolescent, Villejuif, France.,Gustave Roussy, Département de Radiothérapie, Villejuif, France
| | - Ana Saitovitch
- Imagine: Institut de Maladies Génétiques, Paris, France.,INSERM, Paris, France
| | | | - Francis Brunelle
- Hôpital Necker Enfants Malades, Pediatric Radiology Department, Paris, France.,Imagine: Institut de Maladies Génétiques, Paris, France.,INSERM, Paris, France.,Université Paris Descartes, ComUE Sorbonne Paris Cité, Paris, France
| | - Jacques Grill
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8203 et Universite Paris Saclay, Villejuif, France.,Gustave Roussy, Département de Cancerologie de l'Enfant et de l'Adolescent, Villejuif, France
| | - Nathalie Boddaert
- Hôpital Necker Enfants Malades, Pediatric Radiology Department, Paris, France.,Imagine: Institut de Maladies Génétiques, Paris, France.,INSERM, Paris, France.,Université Paris Descartes, ComUE Sorbonne Paris Cité, Paris, France
| |
Collapse
|
19
|
Strauss SB, Meng A, Ebani EJ, Chiang GC. Imaging Glioblastoma Posttreatment: Progression, Pseudoprogression, Pseudoresponse, Radiation Necrosis. Radiol Clin North Am 2019; 57:1199-1216. [PMID: 31582045 DOI: 10.1016/j.rcl.2019.07.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Radiographic monitoring of posttreatment glioblastoma is important for clinical trials and determining next steps in management. Evaluation for tumor progression is confounded by the presence of treatment-related radiographic changes, making a definitive determination less straight-forward. The purpose of this article was to describe imaging tools available for assessing treatment response in glioblastoma, as well as to highlight the definitions, pathophysiology, and imaging features typical of true progression, pseudoprogression, pseudoresponse, and radiation necrosis.
Collapse
Affiliation(s)
- Sara B Strauss
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Alicia Meng
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Edward J Ebani
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA
| | - Gloria C Chiang
- Department of Radiology, Weill Cornell Medical Center, 525 East 68th Street, Box 141, New York, NY 10065, USA.
| |
Collapse
|
20
|
Batsios G, Viswanath P, Subramani E, Najac C, Gillespie AM, Santos RD, Molloy AR, Pieper RO, Ronen SM. PI3K/mTOR inhibition of IDH1 mutant glioma leads to reduced 2HG production that is associated with increased survival. Sci Rep 2019; 9:10521. [PMID: 31324855 PMCID: PMC6642106 DOI: 10.1038/s41598-019-47021-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/09/2019] [Indexed: 02/08/2023] Open
Abstract
70-90% of low-grade gliomas and secondary glioblastomas are characterized by mutations in isocitrate dehydrogenase 1 (IDHmut). IDHmut produces the oncometabolite 2-hydroxyglutarate (2HG), which drives tumorigenesis in these tumors. The phosphoinositide-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway represents an attractive therapeutic target for IDHmut gliomas, but noninvasive indicators of drug target modulation are lacking. The goal of this study was therefore to identify magnetic resonance spectroscopy (MRS)-detectable metabolic biomarkers associated with IDHmut glioma response to the dual PI3K/(mTOR) inhibitor XL765. 1H-MRS of two cell lines genetically modified to express IDHmut showed that XL765 induced a significant reduction in several intracellular metabolites including 2HG. Importantly, examination of an orthotopic IDHmut tumor model showed that enhanced animal survival following XL765 treatment was associated with a significant in vivo 1H-MRS detectable reduction in 2HG but not with significant inhibition in tumor growth. Further validation is required, but our results indicate that 2HG could serve as a potential noninvasive MRS-detectable metabolic biomarker of IDHmut glioma response to PI3K/mTOR inhibition.
Collapse
Affiliation(s)
- Georgios Batsios
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Elavarasan Subramani
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Chloe Najac
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Abigail R Molloy
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Russell O Pieper
- Department of Neurological Surgery, Helen Diller Research Center, 1450 3rd Street, University of California, 94143, San Francisco, CA, United States
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States. .,Brain Tumor Research Center, Helen Diller Family Cancer Research Building, 1450 3rd Street, University of California, 94158, San Francisco, CA, United States.
| |
Collapse
|
21
|
Romeo V, Stanzione A, Ugga L, Cuocolo R, Cocozza S, Ioannidou E, Brunetti A, Bisdas S. A Critical Appraisal of the Quality of Glioma Imaging Guidelines Using the AGREE II Tool: A EuroAIM Initiative. Front Oncol 2019; 9:472. [PMID: 31231610 PMCID: PMC6566105 DOI: 10.3389/fonc.2019.00472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/16/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Following the EuroAIM initiative to assess the quality of medical imaging guidelines by using the Appraisal of Guidelines for Research and Evaluation (AGREE) II instrument, we aimed to evaluate the quality of the current imaging guidelines in patients with gliomas. Methods: A literature search was conducted to identify eligible imaging guidelines considered in the management of adult patients with gliomas. The selected guidelines were evaluated using the AGREE II instrument by four independent appraisers. The agreement among the four appraisers was estimated using the intraclass correlation coefficient (ICC) analysis. Results: Seven guidelines were selected for the appraisal. Six out of the seven guidelines showed an average level of quality with only one showing a low quality. The highest scores were found in Domain 1 “Scope and purpose” (mean score = 81.2%) and Domain 4 “Clarity of presentation” (mean score = 77.6%). The remaining domains showed a low level of quality and, in particular, Domain 5 “Applicability” was the most critical with a mean score of 41.7%, mainly related to a minor attention to barriers and facilitators as well as costs and resources implications of applying the guidelines. The ICC analysis showed a very good agreement among the four appraisers with ICC values ranging from 0.907 to 0.993. Conclusions: The available guidelines on glioma imaging emerged as of average quality according to the AGREE II tool analysis. Based on these results, further efforts should be made in order to involve different professional bodies and stakeholders and increase patient and public involvement in any future guideline drafting as well as to improve the applicability of these guidelines into the clinical practice.
Collapse
Affiliation(s)
- Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Renato Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Evangelia Ioannidou
- Medical School, University of Ioannina, Ioannina, Greece.,Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Sotirios Bisdas
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom.,Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
22
|
|
23
|
Chambers G, Frood R, Patel C, Scarsbrook A. 18F-FDG PET-CT in paediatric oncology: established and emerging applications. Br J Radiol 2019; 92:20180584. [PMID: 30383441 PMCID: PMC6404840 DOI: 10.1259/bjr.20180584] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/01/2018] [Accepted: 10/27/2018] [Indexed: 12/11/2022] Open
Abstract
Accurate staging and response assessment is vital in the management of childhood malignancies. Fluorine-18 fluorodeoxyglucose positron emission tomography/CT (FDG PET-CT) provides complimentary anatomical and functional information. Oncological applications of FDG PET-CT are not as well-established within the paediatric population compared to adults. This article will comprehensively review established oncological PET-CT applications in paediatric oncology and provide an overview of emerging and future developments in this domain.
Collapse
Affiliation(s)
- Greg Chambers
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Russell Frood
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Chirag Patel
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | |
Collapse
|
24
|
Wu LC, Zhang Y, Steinberg G, Qu H, Huang S, Cheng M, Bliss T, Du F, Rao J, Song G, Pisani L, Doyle T, Conolly S, Krishnan K, Grant G, Wintermark M. A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging. AJNR Am J Neuroradiol 2019; 40:206-212. [PMID: 30655254 DOI: 10.3174/ajnr.a5896] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
Magnetic particle imaging is an emerging tomographic technique with the potential for simultaneous high-resolution, high-sensitivity, and real-time imaging. Magnetic particle imaging is based on the unique behavior of superparamagnetic iron oxide nanoparticles modeled by the Langevin theory, with the ability to track and quantify nanoparticle concentrations without tissue background noise. It is a promising new imaging technique for multiple applications, including vascular and perfusion imaging, oncology imaging, cell tracking, inflammation imaging, and trauma imaging. In particular, many neuroimaging applications may be enabled and enhanced with magnetic particle imaging. In this review, we will provide an overview of magnetic particle imaging principles and implementation, current applications, promising neuroimaging applications, and practical considerations.
Collapse
Affiliation(s)
- L C Wu
- From the Departments of Bioengineering (L.C.W.)
| | - Y Zhang
- Radiology (Y.Z., H.Q., S.H., M.W.)
| | - G Steinberg
- Neurosurgery (G.S., M.C., T.B., F.D., G.G.).,Neuroradiology Section, Radiology (J.R., G.S., L.P.)
| | - H Qu
- Radiology (Y.Z., H.Q., S.H., M.W.)
| | - S Huang
- Radiology (Y.Z., H.Q., S.H., M.W.).,Chongqing Medical University (S.H.), Traditional Chinese Medicine College, Chongqing, China
| | - M Cheng
- Neurosurgery (G.S., M.C., T.B., F.D., G.G.)
| | - T Bliss
- Neurosurgery (G.S., M.C., T.B., F.D., G.G.)
| | - F Du
- Neurosurgery (G.S., M.C., T.B., F.D., G.G.)
| | - J Rao
- Neuroradiology Section, Radiology (J.R., G.S., L.P.)
| | - G Song
- From the Departments of Bioengineering (L.C.W.)
| | - L Pisani
- Neuroradiology Section, Radiology (J.R., G.S., L.P.)
| | - T Doyle
- Pediatrics (T.D.), Stanford University, Stanford, California
| | - S Conolly
- Department of Electrical Engineering and Computer Sciences (S.C.), University of California Berkeley, Berkeley, California
| | - K Krishnan
- Departments of Materials Sciences and Engineering and Physics (K.K.), University of Washington, Seattle, Washington
| | - G Grant
- Neurosurgery (G.S., M.C., T.B., F.D., G.G.)
| | | |
Collapse
|
25
|
Wang F, Zheng Z, Guan J, Qi D, Zhou S, Shen X, Wang F, Wenkert D, Kirmani B, Solouki T, Fonkem E, Wong ET, Huang JH, Wu E. Identification of a panel of genes as a prognostic biomarker for glioblastoma. EBioMedicine 2018; 37:68-77. [PMID: 30341039 PMCID: PMC6284420 DOI: 10.1016/j.ebiom.2018.10.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is a fatal disease without effective therapy. Identification of new biomarkers for prognosis would enable more rational selections of strategies to cure patients with GBM and prevent disease relapse. Methods Seven datasets derived from GBM patients using microarray or next generation sequencing in R2 online database (http://r2.amc.nl) were extracted and then analyzed using JMP software. The survival distribution was calculated according to the Kaplan-Meier method and the significance was determined using log-rank statistics. The sensitivity of a panel of GBM cell lines in response to temozolomide (TMZ), salinomycin, celastrol, and triptolide treatments was evaluated using MTS and tumor-sphere formation assay. Findings We identified that CD44, ATP binding cassette subfamily C member 3 (ABCC3), and tumor necrosis factor receptor subfamily member 1A (TNFRSF1A) as highly expressed genes in GBMs are associated with patients' poor outcomes and therapy resistance. Furthermore, these three markers combined with MGMT, a conventional GBM marker, can classify GBM patients into five new subtypes with different overall survival time in response to treatment. The four-gene signature and the therapy response of GBMs to a panel of therapeutic compounds were confirmed in a panel of GBM cell lines. Interpretation The data indicate that the four-gene panel can be used as a therapy response index for GBM patients and potential therapeutic targets. These results provide important new insights into the early diagnosis and the prognosis for GBM patients and introduce potential targets for GBM therapeutics. Fund Baylor Scott & White Health Startup Fund (E.W.); Collaborative Faculty Research Investment Program (CFRIP) of Baylor University, Baylor Scott & White Health, and Baylor College of Medicine (E.W., T.S., J.H.H.); NIH R01 NS067435 (J.H.H.); Scott & White Plummer Foundation Grant (J.H.H.); National Natural Science Foundation of China 816280007 (J.H.H. and Fu.W.).
Collapse
Affiliation(s)
- Fengfei Wang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Neurology, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Surgery, Texas A & M Health Science Center, College of Medicine, Temple, TX 76508, USA.
| | - Zheng Zheng
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Psychology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jitian Guan
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
| | - Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
| | - Shuang Zhou
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
| | - Xin Shen
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Anesthesiology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Fushun Wang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Psychology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14643, USA
| | - David Wenkert
- Department of Medicine, Division of Endocrinology, Baylor Scott & White Health, Temple, TX 76508, USA; Department of Medicine, Texas A & M Health Science Center, College of Medicine, Temple, TX 76508, USA
| | - Batool Kirmani
- Department of Neurology, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Neurology, Texas A & M Health Science Center, College of Medicine, Temple, TX 76508, USA
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706, USA
| | - Ekokobe Fonkem
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Neurology, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Surgery, Texas A & M Health Science Center, College of Medicine, Temple, TX 76508, USA; LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Eric T Wong
- Brain Tumor Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Surgery, Texas A & M Health Science Center, College of Medicine, Temple, TX 76508, USA.
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Surgery, Texas A & M Health Science Center, College of Medicine, Temple, TX 76508, USA; LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutical Sciences, Texas A & M Health Science Center, College of Pharmacy, College Station, TX 77843, USA.
| |
Collapse
|
26
|
Voxel-wise analysis of dynamic 18F-FET PET: a novel approach for non-invasive glioma characterisation. EJNMMI Res 2018; 8:91. [PMID: 30203138 PMCID: PMC6131687 DOI: 10.1186/s13550-018-0444-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/26/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Glioma grading with dynamic 18F-FET PET (0-40 min p.i.) is typically performed by analysing the mean time-activity curve of the entire tumour or a suspicious area within a heterogeneous tumour. This work aimed to ensure a reader-independent glioma characterisation and identification of aggressive sub-volumes by performing a voxel-based analysis with diagnostically relevant kinetic and static 18F-FET PET parameters. One hundred sixty-two patients with a newly diagnosed glioma classified according to histologic and molecular genetic properties were evaluated. The biological tumour volume (BTV) was segmented in static 20-40 min p.i. 18F-FET PET images using the established threshold of 1.6 × background activity. For each enclosed voxel, the time-to-peak (TTP), the late slope (Slope15-40), and the tumour-to-background ratios (TBR5-15, TBR20-40) obtained from 5 to 15 min p.i. and 20 to 40 min p.i. images were determined. The percentage portion of these values within the BTV was evaluated with percentage volume fractions (PVFs) and cumulated percentage volume histograms (PVHs). The ability to differentiate histologic and molecular genetic classes was assessed and compared to volume-of-interest (VOI)-based parameters. RESULTS Aggressive WHO grades III and IV and IDH-wildtype gliomas were dominated by a high proportion of voxels with an early peak, negative slope, and high TBR, whereby the PVHs with TTP < 20 min p.i., Slope15-40 < 0 SUV/h, and TBR5-15 and TBR20-40 > 2 yielded the most significant differences between glioma grades. We found significant differences of the parameters between WHO grades and IDH mutation status, where the effect size was predominantly higher for voxel-based PVHs compared to the corresponding VOI-based parameters. A low overlap of BTV sub-volumes defined by TTP < 20 min p.i. and negative Slope15-40 with TBR5-15 > 2- and TBR20-40 > 2-defined hotspots was observed. CONCLUSIONS The presented approach applying voxel-wise analysis of dynamic 18F-FET PET enables an enhanced characterisation of gliomas and might potentially provide a fast identification of aggressive sub-volumes within the BTV. Parametric 3D 18F-FET PET information as investigated in this study has the potential to guide individual therapy instrumentation and may be included in future biopsy studies.
Collapse
|
27
|
Eijgelaar RS, Bruynzeel AME, Lagerwaard FJ, Müller DMJ, Teunissen FR, Barkhof F, van Herk M, De Witt Hamer PC, Witte MG. Earliest radiological progression in glioblastoma by multidisciplinary consensus review. J Neurooncol 2018; 139:591-598. [PMID: 29777418 PMCID: PMC6132963 DOI: 10.1007/s11060-018-2896-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/02/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND Detection of glioblastoma progression is important for clinical decision-making on cessation or initiation of therapy, for enrollment in clinical trials, and for response measurement in time and location. The RANO-criteria are considered standard for the timing of progression. To evaluate local treatment, we aim to find the most accurate progression location. We determined the differences in progression free survival (PFS) and in tumor volumes at progression (Vprog) by three definitions of progression. METHODS In a consecutive cohort of 73 patients with newly-diagnosed glioblastoma between 1/1/2012 and 31/12/2013, progression was established according to three definitions. We determined (1) earliest radiological progression (ERP) by retrospective multidisciplinary consensus review using all available imaging and follow-up, (2) clinical practice progression (CPP) from multidisciplinary tumor board conclusions, and (3) progression by the RANO-criteria. RESULTS ERP was established in 63 (86%), CPP in 64 (88%), RANO progression in 42 (58%). Of the 63 patients who had died, 37 (59%) did with prior RANO-progression, compared to 57 (90%) for both ERP and CPP. The median overall survival was 15.3 months. The median PFS was 8.8 months for ERP, 9.5 months for CPP, and 11.8 months for RANO. The PFS by ERP was shorter than CPP (HR 0.57, 95% CI 0.38-0.84, p = 0.004) and RANO-progression (HR 0.29, 95% CI 0.19-0.43, p < 0.001). The Vprog were significantly smaller for ERP (median 8.8 mL), than for CPP (17 mL) and RANO (22 mL). CONCLUSION PFS and Vprog vary considerably between progression definitions. Earliest radiological progression by retrospective consensus review should be considered to accurately localize progression and to address confounding of lead time bias in clinical trial enrollment.
Collapse
Affiliation(s)
- Roelant S Eijgelaar
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anna M E Bruynzeel
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Frank J Lagerwaard
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Domenique M J Müller
- Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Freek R Teunissen
- Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
- Institutes of Neurology & Healthcare Engineering, University College London, London, UK
| | - Marcel van Herk
- Division of Cancer Sciences, Faculty of Biology, Medicine & Health, University of Manchester and Christie NHS Trust, Manchester, UK
| | - Philip C De Witt Hamer
- Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Marnix G Witte
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Shen B, Sun D. Natural Diterpenoid Isoferritin A (IsoA) Inhibits Glioma Cell Growth and Metastasis via Regulating of TGFβ-Induced EMT Signal Pathway. Med Sci Monit 2018; 24:3815-3823. [PMID: 29873321 PMCID: PMC6018373 DOI: 10.12659/msm.910102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Malignant glioma is intractable primary brain carcinoma that has a poor survival rate. Natural diterpenoid isoferritin A (IsoA) presents antitumor effects by regulating signal pathways in tumor cells. In the present study we investigated the inhibitory effects of IsoA on glioma cells. Material/Methods The potential molecular mechanism of IsoA-mediated glioma cell growth and metastasis were investigated using Western blot, gene knockdown, immunofluorescence, and immunohistochemistry. Results Results showed that IsoA significantly inhibits growth and metastasis of glioma cells in multiple preclinical settings. In vitro assay showed that IsoA (4 mg/ml) treatment significantly induced apoptosis of glioma cells. Mechanism analysis demonstrated that IsoA (4 mg/ml) treatment decreased TGFβ and regulated EMT markers expression in glioma cells. Reduced expression of TGFβ in glioma cells was closely correlated with inhibitory effects of IsoA on growth and metastasis of glioma cells. TGFβ overexpression promoted glioma cell growth and invasion. Results also showed that IsoA treatment significantly decreased Fibronectin and Vimentin and increased E-cadherin, while TGFβ overexpression abolished the regulation mediated by IsoA in glioma cells. In vivo assay showed that IsoA treatment inhibited tumor growth in a glioma-bearing mouse model. Conclusions Results indicate that IsoA could be regarded as a potential anti-cancer agent by regulating TGFβ-induced EMT signal pathway.
Collapse
Affiliation(s)
- Bin Shen
- Department of Neurosurgery, Dezhou People's Hospital, Dezhou, Shandong, China (mainland)
| | - Dezhou Sun
- Department of Neurosurgery, Dezhou People's Hospital, Dezhou, Shandong, China (mainland)
| |
Collapse
|
29
|
Thust SC, van den Bent MJ, Smits M. Pseudoprogression of brain tumors. J Magn Reson Imaging 2018; 48:571-589. [PMID: 29734497 PMCID: PMC6175399 DOI: 10.1002/jmri.26171] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/07/2018] [Indexed: 12/11/2022] Open
Abstract
This review describes the definition, incidence, clinical implications, and magnetic resonance imaging (MRI) findings of pseudoprogression of brain tumors, in particular, but not limited to, high-grade glioma. Pseudoprogression is an important clinical problem after brain tumor treatment, interfering not only with day-to-day patient care but also the execution and interpretation of clinical trials. Radiologically, pseudoprogression is defined as a new or enlarging area(s) of contrast agent enhancement, in the absence of true tumor growth, which subsides or stabilizes without a change in therapy. The clinical definitions of pseudoprogression have been quite variable, which may explain some of the differences in reported incidences, which range from 9-30%. Conventional structural MRI is insufficient for distinguishing pseudoprogression from true progressive disease, and advanced imaging is needed to obtain higher levels of diagnostic certainty. Perfusion MRI is the most widely used imaging technique to diagnose pseudoprogression and has high reported diagnostic accuracy. Diagnostic performance of MR spectroscopy (MRS) appears to be somewhat higher, but MRS is less suitable for the routine and universal application in brain tumor follow-up. The combination of MRS and diffusion-weighted imaging and/or perfusion MRI seems to be particularly powerful, with diagnostic accuracy reaching up to or even greater than 90%. While diagnostic performance can be high with appropriate implementation and interpretation, even a combination of techniques, however, does not provide 100% accuracy. It should also be noted that most studies to date are small, heterogeneous, and retrospective in nature. Future improvements in diagnostic accuracy can be expected with harmonization of acquisition and postprocessing, quantitative MRI and computer-aided diagnostic technology, and meticulous evaluation with clinical and pathological data. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018.
Collapse
Affiliation(s)
- Stefanie C. Thust
- Lysholm Neuroradiology DepartmentNational Hospital for Neurology and NeurosurgeryLondonUK
- Department of Brain Rehabilitation and RepairUCL Institute of NeurologyLondonUK
- Imaging DepartmentUniversity College London HospitalLondonUK
| | - Martin J. van den Bent
- Department of NeurologyThe Brain Tumor Centre at Erasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MCUniversity Medical Centre RotterdamRotterdamThe Netherlands
| |
Collapse
|
30
|
|
31
|
Mehrabian H, Lam WW, Myrehaug S, Sahgal A, Stanisz GJ. Glioblastoma (GBM) effects on quantitative MRI of contralateral normal appearing white matter. J Neurooncol 2018; 139:97-106. [PMID: 29594656 DOI: 10.1007/s11060-018-2846-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE The objective was to investigate (with quantitative MRI) whether the normal appearing white matter (NAWM) of glioblastoma (GBM) patients on the contralateral side (cNAWM) was different from NAWM of healthy controls. METHODS Thirteen patients with newly diagnosed GBM and nine healthy age-matched controls were MRI-scanned with quantitative magnetization transfer (qMT), chemical exchange saturation transfer (CEST), and transverse relaxation time (T2)-mapping. MRI scans were performed after surgery and before chemo-radiation treatment. Comprehensive qMT, CEST, T2 data were acquired. A two-pool MT model was fit to qMT data in transient state, to calculate MT model parameters [Formula: see text]. CEST signal was isolated by removing the contributions from the MT and direct water saturation, and CEST signal was calculated for Amide (CESTAmide), Amine (CESTAmine) and nuclear overhauser effect, NOE (CESTNOE). RESULTS There was no difference between GBM patients and normal controls in the qMT properties of the macromolecular pool [Formula: see text]. However, their free water pool spectrum was different (1/RaT2a,patient = 28.1 ± 3.9, 1/RaT2a,control = 25.0 ± 1.1, p = 0.03). This difference could be attributed to the difference in their T2 time ([Formula: see text] = 83 ± 4, [Formula: see text] = 88 ± 1, p = 0.004). CEST signals were statistically significantly different with the CESTAmide having the largest difference between the two cohorts (CESTAmide,patient = 2.8 ± 0.4, CESTAmide,control = 3.4 ± 0.5, p = 0.009). CONCLUSIONS CEST in cNAWM of GBM patients was lower than healthy controls which could be caused by modified brain metabolism due to tumor cell infiltration. There was no difference in MT properties of the patients and controls, however, the differences in free water pool properties were mainly due to reduced T2 in cNAWM of the patients (resulting from structural changes and increased cellularity).
Collapse
Affiliation(s)
- Hatef Mehrabian
- Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), 1700 - 4th St., Suite BH 201, San Francisco, CA, 94158, USA.
| | - Wilfred W Lam
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Sten Myrehaug
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Arjun Sahgal
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Greg J Stanisz
- Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin, Poland
| |
Collapse
|
32
|
Mehrabian H, Myrehaug S, Soliman H, Sahgal A, Stanisz GJ. Quantitative Magnetization Transfer in Monitoring Glioblastoma (GBM) Response to Therapy. Sci Rep 2018; 8:2475. [PMID: 29410469 PMCID: PMC5802834 DOI: 10.1038/s41598-018-20624-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/22/2018] [Indexed: 11/09/2022] Open
Abstract
Quantitative magnetization transfer (qMT) was used as a biomarker to monitor glioblastoma (GBM) response to chemo-radiation and identify the earliest time-point qMT could differentiate progressors from non-progressors. Nineteen GBM patients were recruited and MRI-scanned before (Day0), two weeks (Day14), and four weeks (Day28) into the treatment, and one month after the end of the treatment (Day70). Comprehensive qMT data was acquired, and a two-pool MT model was fit to the data. Response was determined at 3-8 months following the end of chemo-radiation. The amount of magnetization transfer ([Formula: see text]) was significantly lower in GBM compared to normal appearing white matter (p < 0.001). Statistically significant difference was observed in [Formula: see text] at Day0 between non-progressors (1.06 ± 0.24) and progressors (1.64 ± 0.48), with p = 0.006. Changes in several qMT parameters between Day14 and Day0 were able to differentiate the two cohorts with [Formula: see text] providing the best separation (relative [Formula: see text] = 1.34 ± 0.21, relative [Formula: see text] = 1.07 ± 0.08, p = 0.031). Thus, qMT characteristics of GBM are more sensitive to treatment effects compared to clinically used metrics. qMT could assess tumor aggressiveness and identify early progressors even before the treatment. Changes in qMT parameters within the first 14 days of the treatment were capable of separating early progressors from non-progressors, making qMT a promising biomarker to guide adaptive radiotherapy for GBM.
Collapse
Affiliation(s)
- Hatef Mehrabian
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.
| | - Sten Myrehaug
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Hany Soliman
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Greg J Stanisz
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin, Poland
| |
Collapse
|
33
|
Miletich RS. Positron Emission Tomography and Single-Photon Emission Computed Tomography in Neurology. Continuum (Minneap Minn) 2018; 22:1636-1654. [PMID: 27740992 DOI: 10.1212/con.0000000000000389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are now available for routine clinical applications in neurology. This article discusses their diagnostic use in dementia, brain tumors, epilepsy, parkinsonism, cerebrovascular disease, and traumatic brain injury. RECENT FINDINGS Neuromolecular imaging, also known as nuclear neurology, involves clinical imaging of both basal regional physiology (perfusion, metabolism, and transport mechanisms) and specific neurochemical physiology (currently, only the dopamine transporter). This article serves as an introduction to neuromolecular imaging, reviewing the literature supplemented by the author's experience. SUMMARY Neurologic PET and SPECT are no longer restricted to the research realm. These modalities have high diagnostic accuracy.
Collapse
|
34
|
Martínez-Garcia M, Álvarez-Linera J, Carrato C, Ley L, Luque R, Maldonado X, Martínez-Aguillo M, Navarro LM, Vaz-Salgado MA, Gil-Gil M. SEOM clinical guidelines for diagnosis and treatment of glioblastoma (2017). Clin Transl Oncol 2018; 20:22-28. [PMID: 29086250 PMCID: PMC5785619 DOI: 10.1007/s12094-017-1763-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 11/08/2022]
Abstract
Glioblastoma (GB) is the most common brain malignancy and accounts for over 50% of all high-grade gliomas. Radiotherapy (RT) with concomitant and adjuvant temozolomide (TMZ) chemotherapy is the current standard of care for patients with newly diagnosed GB up to age 70. Recently, a new standard of care has been adopted for elderly patients (≥ 65 years) based on short course of RT and TMZ. Several clinically relevant molecular markers that assist in diagnosis and prognosis have recently been identified. The treatment for recurrent GB is not well defined, and decision-making is usually based on prior strategies as well as several clinical and radiological factors. The presence of neurologic deficits and seizures can significantly impact quality of life.
Collapse
Affiliation(s)
| | | | - C. Carrato
- Anatomía Patológica, Hospital Universitari Germans Trias i Pujol de Badalona, Barcelona, Spain
| | - L. Ley
- Neurocirugía, Hospital Ramón y Cajal, Madrid, Spain
| | - R. Luque
- Oncología Médica, Complejo Hospitalario Universitario de Granada Virgen de las Nieves, Granada, Spain
| | - X. Maldonado
- Oncología Radioterápica, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | | | - L. M. Navarro
- Oncología Médica, Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | | | - M. Gil-Gil
- Unidad de Neuro-oncologia. Oncología Médica Institut Català d’Oncologia (ICO)-Hospital Universitari de Bellvitge IDIBELL L’Hospitalet, C/de la Feixa Llarga, s/n, Hospitalet de Llobregat, 08907 Barcelona, Spain
| |
Collapse
|
35
|
MR Molecular Imaging of Brain Cancer Metabolism Using Hyperpolarized 13C Magnetic Resonance Spectroscopy. Top Magn Reson Imaging 2017; 25:187-196. [PMID: 27748711 DOI: 10.1097/rmr.0000000000000104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolic reprogramming is an important hallmark of cancer. Alterations in many metabolic pathways support the requirement for cellular building blocks that are essential for cancer cell proliferation. This metabolic reprogramming can be imaged using magnetic resonance spectroscopy (MRS). H MRS can inform on alterations in the steady-state levels of cellular metabolites, but the emergence of hyperpolarized C MRS has now also enabled imaging of metabolic fluxes in real-time, providing a new method for tumor detection and monitoring of therapeutic response. In the case of glioma, preclinical cell and animal studies have shown that the hyperpolarized C MRS metabolic imaging signature is specific to tumor type and can distinguish between mutant IDH1 glioma and primary glioblastoma. Here, we review these findings, first describing the main metabolic pathways that are altered in the different glioma subtypes, and then reporting on the use of hyperpolarized C MRS and MR spectroscopic imaging (MRSI) to probe these pathways. We show that the future translation of this hyperpolarized C MRS molecular metabolic imaging method to the clinic promises to improve the noninvasive detection, characterization, and response-monitoring of brain tumors resulting in improved patient diagnosis and clinical management.
Collapse
|
36
|
Abstract
Despite the fact that MRI has evolved to become the standard method for diagnosis and monitoring of patients with brain tumours, conventional MRI sequences have two key limitations: the inability to show the full extent of the tumour and the inability to differentiate neoplastic tissue from nonspecific, treatment-related changes after surgery, radiotherapy, chemotherapy or immunotherapy. In the past decade, PET involving the use of radiolabelled amino acids has developed into an important diagnostic tool to overcome some of the shortcomings of conventional MRI. The Response Assessment in Neuro-Oncology working group - an international effort to develop new standardized response criteria for clinical trials in brain tumours - has recommended the additional use of amino acid PET imaging for brain tumour management. Concurrently, a number of advanced MRI techniques such as magnetic resonance spectroscopic imaging and perfusion weighted imaging are under clinical evaluation to target the same diagnostic problems. This Review summarizes the clinical role of amino acid PET in relation to advanced MRI techniques for differential diagnosis of brain tumours; delineation of tumour extent for treatment planning and biopsy guidance; post-treatment differentiation between tumour progression or recurrence versus treatment-related changes; and monitoring response to therapy. An outlook for future developments in PET and MRI techniques is also presented.
Collapse
Affiliation(s)
- Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4) Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany.,Departments of Nuclear Medicine and Neurology, RWTH Aachen University Clinic, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4) Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany.,Department of Neurology, University of Cologne, Kerpener Strasse 62, D-50937 Cologne, Germany.,Center for Integrated Oncology, Josef-Stelzmann-Strasse 9, D-50937 Cologne, Germany
| | - Elke Hattingen
- Department of Neuroradiology and Center for Integrated Oncology, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Nadim Jon Shah
- Institute of Neuroscience and Medicine (INM-3, INM-4) Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany.,Departments of Nuclear Medicine and Neurology, RWTH Aachen University Clinic, Pauwelsstrasse 30, D-52074 Aachen, Germany.,Monash Institute of Medical Engineering, Department of Electrical and Computer Systems Engineering, and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, 18 Innovation Walk, Clayton Campus, Wellington Road, Melbourne, Victoria 3800, Australia
| |
Collapse
|
37
|
Rapalino O, Ratai EM. Multiparametric Imaging Analysis: Magnetic Resonance Spectroscopy. Magn Reson Imaging Clin N Am 2016; 24:671-686. [PMID: 27742109 DOI: 10.1016/j.mric.2016.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is a magnetic resonance-based imaging modality that allows noninvasive sampling of metabolic changes in normal and abnormal brain parenchyma. MRS is particularly useful in the differentiation of developmental or non-neoplastic disorders from neoplastic processes. MRS is also useful during routine imaging follow-up after radiation treatment or during antiangiogenic treatment and for predicting outcomes and treatment response. The objective of this article is to provide a concise but thorough review of the basic physical principles, important applications of MRS in brain tumor imaging, and future directions.
Collapse
Affiliation(s)
- O Rapalino
- Neuroradiology Division, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - E M Ratai
- Neuroradiology Division, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Building 149, 13th Street, Room 2301, Charlestown, MA 02129, USA.
| |
Collapse
|
38
|
Integrative analysis of diffusion-weighted MRI and genomic data to inform treatment of glioblastoma. J Neurooncol 2016; 129:289-300. [PMID: 27393347 DOI: 10.1007/s11060-016-2174-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 06/04/2016] [Indexed: 12/15/2022]
Abstract
Gene expression profiling from glioblastoma (GBM) patients enables characterization of cancer into subtypes that can be predictive of response to therapy. An integrative analysis of imaging and gene expression data can potentially be used to obtain novel biomarkers that are closely associated with the genetic subtype and gene signatures and thus provide a noninvasive approach to stratify GBM patients. In this retrospective study, we analyzed the expression of 12,042 genes for 558 patients from The Cancer Genome Atlas (TCGA). Among these patients, 50 patients had magnetic resonance imaging (MRI) studies including diffusion weighted (DW) MRI in The Cancer Imaging Archive (TCIA). We identified the contrast enhancing region of the tumors using the pre- and post-contrast T1-weighted MRI images and computed the apparent diffusion coefficient (ADC) histograms from the DW-MRI images. Using the gene expression data, we classified patients into four molecular subtypes, determined the number and composition of genes modules using the gap statistic, and computed gene signature scores. We used logistic regression to find significant predictors of GBM subtypes. We compared the predictors for different subtypes using Mann-Whitney U tests. We assessed detection power using area under the receiver operating characteristic (ROC) analysis. We computed Spearman correlations to determine the associations between ADC and each of the gene signatures. We performed gene enrichment analysis using Ingenuity Pathway Analysis (IPA). We adjusted all p values using the Benjamini and Hochberg method. The mean ADC was a significant predictor for the neural subtype. Neural tumors had a significantly lower mean ADC compared to non-neural tumors ([Formula: see text]), with mean ADC of [Formula: see text] and [Formula: see text] for neural and non-neural tumors, respectively. Mean ADC showed an area under the ROC of 0.75 for detecting neural tumors. We found eight gene modules in the GBM cohort. The mean ADC was significantly correlated with the gene signature related with dendritic cell maturation ([Formula: see text], [Formula: see text]). Mean ADC could be used as a biomarker of a gene signature associated with dendritic cell maturation and to assist in identifying patients with neural GBMs, known to be resistant to aggressive standard of care.
Collapse
|
39
|
Chaumeil MM, Radoul M, Najac C, Eriksson P, Viswanath P, Blough MD, Chesnelong C, Luchman HA, Cairncross JG, Ronen SM. Hyperpolarized (13)C MR imaging detects no lactate production in mutant IDH1 gliomas: Implications for diagnosis and response monitoring. Neuroimage Clin 2016; 12:180-9. [PMID: 27437179 PMCID: PMC4939422 DOI: 10.1016/j.nicl.2016.06.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 10/26/2022]
Abstract
Metabolic imaging of brain tumors using (13)C Magnetic Resonance Spectroscopy (MRS) of hyperpolarized [1-(13)C] pyruvate is a promising neuroimaging strategy which, after a decade of preclinical success in glioblastoma (GBM) models, is now entering clinical trials in multiple centers. Typically, the presence of GBM has been associated with elevated hyperpolarized [1-(13)C] lactate produced from [1-(13)C] pyruvate, and response to therapy has been associated with a drop in hyperpolarized [1-(13)C] lactate. However, to date, lower grade gliomas had not been investigated using this approach. The most prevalent mutation in lower grade gliomas is the isocitrate dehydrogenase 1 (IDH1) mutation, which, in addition to initiating tumor development, also induces metabolic reprogramming. In particular, mutant IDH1 gliomas are associated with low levels of lactate dehydrogenase A (LDHA) and monocarboxylate transporters 1 and 4 (MCT1, MCT4), three proteins involved in pyruvate metabolism to lactate. We therefore investigated the potential of (13)C MRS of hyperpolarized [1-(13)C] pyruvate for detection of mutant IDH1 gliomas and for monitoring of their therapeutic response. We studied patient-derived mutant IDH1 glioma cells that underexpress LDHA, MCT1 and MCT4, and wild-type IDH1 GBM cells that express high levels of these proteins. Mutant IDH1 cells and tumors produced significantly less hyperpolarized [1-(13)C] lactate compared to GBM, consistent with their metabolic reprogramming. Furthermore, hyperpolarized [1-(13)C] lactate production was not affected by chemotherapeutic treatment with temozolomide (TMZ) in mutant IDH1 tumors, in contrast to previous reports in GBM. Our results demonstrate the unusual metabolic imaging profile of mutant IDH1 gliomas, which, when combined with other clinically available imaging methods, could be used to detect the presence of the IDH1 mutation in vivo.
Collapse
Key Words
- 2-HG, 2-hydroxyglutarate
- AIF, arterial input function
- AUC, area under the curve
- DNP, dynamic nuclear polarization
- DNP-MR, dynamic nuclear polarization magnetic resonance
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- FA, flip angle
- FGF, fibroblast growth factor
- FLAIR, fluid attenuated inversion recovery
- FOV, field of view
- GBM, glioblastoma
- Glioma
- Hyperpolarized 13C Magnetic Resonance Spectroscopy (MRS)
- IDH1, isocitrate dehydrogenase 1
- Isocitrate dehydrogenase 1 (IDH1) mutation
- LDHA, lactate dehydrogenase A
- MCT1, monocarboxylate transporter 1
- MCT4, monocarboxylate transporter 4
- MR, magnetic resonance
- MRI, magnetic resonance imaging
- MRS, magnetic resonance spectroscopic imaging
- MRS, magnetic resonance spectroscopy
- Metabolic reprogramming
- NA, number of averages
- NT, number of transients
- PBS, phosphate-buffer saline
- PDGF, platelet-derived growth factor
- PET, positron emission tomography
- PI3K, phosphoinositide 3-kinase
- PTEN, phosphatase and tensin homolog
- RB1, retinoblastoma protein 1
- SLC16A1, solute carrier family 16 member 1
- SLC16A3, solute carrier family 16 member 3
- SNR, signal-to-noise ratio
- SW, spectral width
- TCGA, The Cancer Genome Atlas
- TE, echo time
- TMZ, temozolomide
- TP53, tumor protein p53
- TR, repetition time
- Tacq, acquisition time
- VOI, voxel of interest
- mTOR, mammalian target of rapamycin
- α-KG, α-ketoglutarate
Collapse
Affiliation(s)
- Myriam M. Chaumeil
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158 San Francisco, CA, United States
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158 San Francisco, CA, United States
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158 San Francisco, CA, United States
| | - Pia Eriksson
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158 San Francisco, CA, United States
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158 San Francisco, CA, United States
| | - Michael D. Blough
- Department of Clinical Neurosciences, Foothills Hospital, 1403 29 St NW, Calgary, AB T2N 2T9, Canada
| | - Charles Chesnelong
- Department of Clinical Neurosciences, Foothills Hospital, 1403 29 St NW, Calgary, AB T2N 2T9, Canada
| | - H. Artee Luchman
- Department of Clinical Neurosciences, Foothills Hospital, 1403 29 St NW, Calgary, AB T2N 2T9, Canada
| | - J. Gregory Cairncross
- Department of Clinical Neurosciences, Foothills Hospital, 1403 29 St NW, Calgary, AB T2N 2T9, Canada
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158 San Francisco, CA, United States
- Brain Tumor Research Center, Helen Diller Family Cancer Research Building, 1450 3rd Street, University of California, 94158 San Francisco, CA, United States
| |
Collapse
|
40
|
|
41
|
Leitzen C, Wilhelm-Buchstab T, Schmeel LC, Garbe S, Greschus S, Müdder T, Oberste-Beulmann S, Simon B, Schild HH, Schüller H. MRI during radiotherapy of glioblastoma : Does MRI allow for prognostic stratification? Strahlenther Onkol 2016; 192:481-8. [PMID: 27259515 DOI: 10.1007/s00066-016-0983-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
AIM To evaluate the role of magnetic resonance imaging (MRI) as a predictor for the clinical course in patients with glioblastoma. PATIENTS AND METHODS In 64 patients with glioblastoma undergoing (chemo)radiotherapy MRI studies were obtained before radiation, after 30 gray (Gy), after 60 Gy and during follow-up. MRI findings were assigned to categories: definite progression, questionable progression, no change. Patients were followed clinically. RESULTS At 30 Gy, 23 of 64 patients (36 %) demonstrated definite (dp; n = 15) or questionable (qp; n = 8) progression; in 41/64 (64 %) no change was found compared with preradiation MRI. After radiotherapy at 60 Gy, 26 of 64 (41 %) patients showed dp (n = 18) or qp (n = 8). In 2 cases with qp at the 30 Gy MRI, progress was unquestionable in the 60 Gy MRI study. In the 64 patients, 5 of the 60 Gy MRIs showed dp/qp after being classified as no change at the 30 Gy MRI, 2 of the 30 Gy MRIs showed qp, while the 60 Gy MRI showed tumour regression and 3 fulfilled the criteria for pseudoprogression during ongoing radiotherapy. The 30 Gy study allowed for prognostic stratification: dp/qp compared to stable patients showed median survival of 10.5 versus 20 months. CONCLUSION MR follow-up after 30 Gy in patients undergoing (chemo)radiotherapy for glioblastoma allows prognostic appraisal. Pseudoprogression has to be taken into account, though rare in our setting. Based on these findings, early discussion of treatment modification is possible.
Collapse
Affiliation(s)
- C Leitzen
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| | - T Wilhelm-Buchstab
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - L C Schmeel
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - S Garbe
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - S Greschus
- Radiologische Klinik, Universitätsklinik Bonn, Bonn, Germany
| | - T Müdder
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - S Oberste-Beulmann
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - B Simon
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - H H Schild
- Radiologische Klinik, Universitätsklinik Bonn, Bonn, Germany
| | - H Schüller
- Radiologische Klinik, FE Strahlentherapie, Universitätsklinik Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| |
Collapse
|
42
|
Abstract
Primary CNS tumors consist of a diverse group of neoplasms originating from various cell types in the CNS. Brain tumors are the most common solid malignancy in children under the age of 15 years and the second leading cause of cancer death after leukemia. The most common brain neoplasms in children differ consistently from those in older age groups. Pediatric brain tumors demonstrate distinct patterns of occurrence and biologic behavior according to sex, age, and race. This chapter highlights the imaging features of the most common tumors that affect the child's CNS (brain and spinal cord).
Collapse
Affiliation(s)
- Andre D Furtado
- Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| | - Ashok Panigrahy
- Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Charles R Fitz
- Department of Radiology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
43
|
Chaumeil MM, Lupo JM, Ronen SM. Magnetic Resonance (MR) Metabolic Imaging in Glioma. Brain Pathol 2015; 25:769-80. [PMID: 26526945 PMCID: PMC8029127 DOI: 10.1111/bpa.12310] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/25/2022] Open
Abstract
This review is focused on describing the use of magnetic resonance (MR) spectroscopy for metabolic imaging of brain tumors. We will first review the MR metabolic imaging findings generated from preclinical models, focusing primarily on in vivo studies, and will then describe the use of metabolic imaging in the clinical setting. We will address relatively well-established (1) H MRS approaches, as well as (31) P MRS, (13) C MRS and emerging hyperpolarized (13) C MRS methodologies, and will describe the use of metabolic imaging for understanding the basic biology of glioma as well as for improving the characterization and monitoring of brain tumors in the clinic.
Collapse
Affiliation(s)
| | - Janine M. Lupo
- Department of Radiology and Biomedical ImagingMission Bay Campus
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical ImagingMission Bay Campus
- Brain Tumor Research CenterUniversity of CaliforniaSan FranciscoCA
| |
Collapse
|
44
|
Atallah V, Gariel F, Gillon P, Crombé A, Mazeron JJ. [Radiotherapy for gliomas in adults: What are the stakes of the follow-up?]. Cancer Radiother 2015; 19:603-9. [PMID: 26278986 DOI: 10.1016/j.canrad.2015.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 05/19/2015] [Indexed: 11/19/2022]
Abstract
Linked to the difference of prognosis, the terms and conditions of the follow-up of low-grade and high-grade gliomas treated by irradiation differ highly. Patients treated for a low-grade glioma have prolonged survival. In this case, monitoring of toxicities linked to the treatment is a major objective. Opportunistic infections and depression are corticosteroids side effects widely underestimated. Radionecrosis search and differentiation with recurrent disease are done by MRI. Perfusion and spectroscopy showing a choline/creatine ratio increase are in favour of disease recurrence. Cognitive status and quality of life must be evaluated during the follow-up. They have to be evaluated by adapted scales. Cognitive rehabilitation improves interestingly the post-treatment cognitive status. Pseudoprogression rates for high-grade gliomas are near 20%. MRI is the benchmark imaging for its diagnosis. Diffusion weight imaging and spectroscopy are actually the most interesting techniques.
Collapse
Affiliation(s)
- V Atallah
- Service de radiothérapie, institut Bergonié, 226, cours de l'Argonne, 33076 Bordeaux cedex, France.
| | - F Gariel
- Service de neuro-imagerie diagnostique et thérapeutique, hôpital Pellegrin, CHU de Bordeaux, place Amélie-Raba-Léon, 33076 Bordeaux, France
| | - P Gillon
- Service de radiothérapie, institut Bergonié, 226, cours de l'Argonne, 33076 Bordeaux cedex, France
| | - A Crombé
- Service de neuro-imagerie diagnostique et thérapeutique, hôpital Pellegrin, CHU de Bordeaux, place Amélie-Raba-Léon, 33076 Bordeaux, France
| | - J-J Mazeron
- Service de radiothérapie oncologique, groupe hospitalier Pitié-Salpêtrière, AP-HP, université Pierre-et-Marie-Curie Paris VI, 47, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| |
Collapse
|
45
|
Xie K, Liu CY, Hasso AN, Crow RW. Visual field changes as an early indicator of glioblastoma multiforme progression: two cases of functional vision changes before MRI detection. Clin Ophthalmol 2015; 9:1041-7. [PMID: 26089636 PMCID: PMC4468993 DOI: 10.2147/opth.s79723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma multiforme is an aggressive tumor associated with a high rate of recurrence even after maximal therapy. In a disease with poor prognosis and rapid deterioration, early detection of tumor progression is necessary to make timely treatment decisions or to initiate end of life care. We identify two cases where Humphrey visual field testing predated magnetic resonance imaging and positron emission tomography findings of tumor progression by months in glioblastoma multiforme. New or worsening visual field defects may indicate signs of tumor progression in glioblastoma multiforme and should prompt further investigation.
Collapse
Affiliation(s)
- Kate Xie
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, USA
| | - Catherine Y Liu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, USA
| | - Anton N Hasso
- Department of Radiological Sciences, University of California Irvine Medical Center, Orange, CA, USA
| | - Robert Wade Crow
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
46
|
Evaluation of RANO response criteria compared to clinician evaluation in WHO grade III anaplastic astrocytoma: implications for clinical trial reporting and patterns of failure. J Neurooncol 2015; 122:197-203. [PMID: 25577400 DOI: 10.1007/s11060-014-1703-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/20/2014] [Indexed: 10/24/2022]
Abstract
The utility of current response criteria has not been established in anaplastic astrocytoma (AA). We retrospectively reviewed MR images for 20 patients with AA and compared RANO-based approaches to clinician impression described as follow: (1) standard RANO-based criteria met by growth of or development of new enhancing lesion (RANO-C), (2) RANO criteria for progression based on significant FLAIR increase (RANO-F) and (3) clinical progression usually resulting in change of treatment (Clinical). Patterns of failure (POF) were analyzed utilizing all proposed progression MRIs fused with the patients' radiotherapy treatment plan. With an overall median survival of 24.3 months, development of new enhancing lesion was the most common determinant of progression (70 % of patients). Median time to RANO-C, RANO-F and Clinical progression was 9.2, 9.2 and 11.76 months respectively. RANO-C and RANO-F preceded Clinical in 70 and 55 % of patients, respectively. In six patients (30 %) Clinical was concurrent with RANO-F; four of six also met RANO-C. POF for FLAIR component differed based on time point used to determine progression. FLAIR POF was more often marginal or distant when progression was defined clinically compared to either RANO-C or RANO-F criteria. Central POF based on FLAIR at Clinical determination of progression was associated with significantly poorer OS (9.8 vs. 34.4 months). Clinical progression occurs later than progression determined by RANO-based criteria. Evaluation of POF based on FLAIR signal abnormality at the time of clinical progression suggests central recurrences are associated with worse survival.
Collapse
|
47
|
23Na-MRI of recurrent glioblastoma multiforme after intraoperative radiotherapy: technical note. Neuroradiology 2014; 57:321-6. [DOI: 10.1007/s00234-014-1468-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/17/2014] [Indexed: 11/25/2022]
|
48
|
Feng L, Svarer C, Thomsen G, de Nijs R, Larsen VA, Jensen P, Adamsen D, Dyssegaard A, Fischer W, Meden P, Krieger D, Møller K, Knudsen GM, Pinborg LH. In Vivo Quantification of Cerebral Translocator Protein Binding in Humans Using 6-Chloro-2-(4′-123I-Iodophenyl)-3-(N,N-Diethyl)-Imidazo[1,2-a]Pyridine-3-Acetamide SPECT. J Nucl Med 2014; 55:1966-72. [DOI: 10.2967/jnumed.114.143727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
49
|
Booth TC, Waldman AD, Jefferies S, Jäger R. Comment on "The role of imaging in the management of progressive glioblastoma. A systematic review and evidence-based clinical practice guideline" [J Neurooncol 2014; 118:435-460]. J Neurooncol 2014; 121:423-4. [PMID: 25366364 DOI: 10.1007/s11060-014-1649-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 10/27/2014] [Indexed: 11/28/2022]
|
50
|
Pietschmann S, von Bueren AO, Henke G, Kerber MJ, Kortmann RD, Müller K. An individual patient data meta-analysis on characteristics, treatments and outcomes of the glioblastoma/gliosarcoma patients with central nervous system metastases reported in literature until 2013. J Neurooncol 2014; 120:451-7. [PMID: 25160993 DOI: 10.1007/s11060-014-1596-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 08/17/2014] [Indexed: 10/24/2022]
Abstract
Dissemination of high-grade gliomas (WHO IV) has been investigated poorly so far. We conducted an extensive analysis of the characteristics, treatments and outcomes of the glioblastoma multiforme (GBM)/gliosarcoma (GS) patients with central nervous system (CNS) metastases reported in literature until April 2013. PubMed and Web of Science searches for peer-reviewed articles pertaining to GBM/GS patients with metastatic disease were conducted using predefined keywords. Additionally, we performed hand search following the references from the selected papers. Cases in which the metastases exclusively occurred outside the CNS were excluded. 110 publications reporting on 189 patients were eligible. There was a significant increase in the number of reported cases over the last decades. We calculated a median overall survival from diagnosis of metastasis (from initial diagnosis of GBM/GS) of 3.0 ± 0.3 (11 ± 0.7) months. On univariate analyses, gender, age, the histological subtype, the time interval between initial diagnosis and the occurrence of metastases and the location of CNS metastasis (intracranial versus spinal and parenchymal versus leptomeningeal, respectively) did not influence survival after diagnosis of metastasis. There was no substantial treatment progress over the recent decades. GBM/GS with CNS metastasis are associated with a dismal prognosis. Crucial treatment progress is not evident. A central registry should be considered to consecutively gain more information about the ideal therapeutic approach.
Collapse
Affiliation(s)
- Sophie Pietschmann
- Department for Radiation Oncology, University of Leipzig Medical Center, Stephanstraße 9a, 04103, Leipzig, Germany,
| | | | | | | | | | | |
Collapse
|