1
|
Al-Rubaiey S, Senger C, Bukatz J, Krantchev K, Janas A, Eitner C, Nieminen-Kelhä M, Brandenburg S, Zips D, Vajkoczy P, Acker G. Determinants of cerebral radionecrosis in animal models: A systematic review. Radiother Oncol 2024; 199:110444. [PMID: 39067705 DOI: 10.1016/j.radonc.2024.110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/13/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Radionecrosis is a common complication in radiation oncology, while mechanisms and risk factors have yet to be fully explored. We therefore conducted a systematic review to understand the pathogenesis and identify factors that significantly affect the development. METHODS We performed a systematic literature search based on the PRISMA guidelines using PubMed, Ovid, and Web of Science databases. The complete search strategy can be found as a preregistered protocol on PROSPERO (CRD42023361662). RESULTS We included 83 studies, most involving healthy animals (n = 72, 86.75 %). High doses of hemispherical irradiation of 30 Gy in rats and 50 Gy in mice led repeatedly to radionecrosis among different studies and set-ups. Higher dose and larger irradiated volume were associated with earlier onset. Fractionated schedules showed limited effectiveness in the prevention of radionecrosis. Distinct anatomical brain structures respond to irradiation in various ways. White matter appears to be more vulnerable than gray matter. Younger age, more evolved animal species, and genetic background were also significant factors, whereas sex was irrelevant. Only 13.25 % of the studies were performed on primary brain tumor bearing animals, no studies on brain metastases are currently available. CONCLUSION This systematic review identified various factors that significantly affect the induction of radionecrosis. The current state of research neglects the utilization of animal models of brain tumors, even though patients with brain malignancies constitute the largest group receiving brain irradiation. This latter aspect should be primarily addressed when developing an experimental radionecrosis model for translational implementation.
Collapse
Affiliation(s)
- Sanaria Al-Rubaiey
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany; Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| | - Carolin Senger
- Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| | - Jan Bukatz
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany; Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| | - Kiril Krantchev
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Anastasia Janas
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Chiara Eitner
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Susan Brandenburg
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Daniel Zips
- Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Güliz Acker
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1 10117, Berlin, Germany; Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| |
Collapse
|
2
|
Kronfeld A, Rose P, Baumgart J, Brockmann C, Othman AE, Schweizer B, Brockmann MA. Quantitative multi-energy micro-CT: A simulation and phantom study for simultaneous imaging of four different contrast materials using an energy integrating detector. Heliyon 2024; 10:e23013. [PMID: 38148814 PMCID: PMC10750148 DOI: 10.1016/j.heliyon.2023.e23013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023] Open
Abstract
Emerging from the development of single-energy Computed Tomography (CT) and Dual-Energy Computed Tomography, Multi-Energy Computed Tomography (MECT) is a promising tool allowing advanced material and tissue decomposition and thereby enabling the use of multiple contrast materials in preclinical research. The scope of this work was to evaluate whether a usual preclinical micro-CT system is applicable for the decomposition of different materials using MECT together with a matrix-inversion method and how different changes of the measurement-environment affect the results. A matrix-inversion based algorithm to differentiate up to five materials (iodine, iron, barium, gadolinium, residual material) by applying four different acceleration voltages/energy levels was established. We carried out simulations using different ratios and concentrations (given in fractions of volume units, VU) of the four different materials (plus residual material) at different noise-levels for 30 keV, 40 keV, 50 keV, 60 keV, 80 keV and 100 keV (monochromatic). Our simulation results were then confirmed by using region of interest-based measurements in a phantom-study at corresponding acceleration voltages. Therefore, different mixtures of contrast materials were scanned using a micro-CT. Voxel wise evaluation of the phantom imaging data was conducted to confirm its usability for future imaging applications and to estimate the influence of varying noise-levels, scattering, artifacts and concentrations. The analysis of our simulations showed the smallest deviation of 0.01 (0.003-0.15) VU between given and calculated concentrations of the different contrast materials when using an energy-combination of 30 keV, 40 keV, 50 keV and 100 keV for MECT. Subsequent MECT phantom measurements, however, revealed a combination of acceleration voltages of 30 kV, 40 kV, 60 kV and 100 kV as most effective for performing material decomposition with a deviation of 0.28 (0-1.07) mg/ml. The feasibility of our voxelwise analyses using the proposed algorithm was then confirmed by the generation of phantom parameter-maps that matched the known contrast material concentrations. The results were mostly influenced by the noise-level and the concentrations used in the phantoms. MECT using a standard micro-CT combined with a matrix inversion method is feasible at four different imaging energies and allows the differentiation of mixtures of up to four contrast materials plus an additional residual material.
Collapse
Affiliation(s)
- Andrea Kronfeld
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neuroradiology, Langenbeck 1, 55131, Mainz, Germany
| | - Patrick Rose
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neuroradiology, Langenbeck 1, 55131, Mainz, Germany
- RheinMain University of Applied Sciences, Faculty of Engineering, Am Brückweg 26, 65428, Rüsselsheim am Main, Germany
| | - Jan Baumgart
- University Medical Center of the Johannes Gutenberg University Mainz, Translational Animal Research Center, Hanns-Dieter-Hüsch-Weg 19, 55128, Mainz, Germany
| | - Carolin Brockmann
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neuroradiology, Langenbeck 1, 55131, Mainz, Germany
| | - Ahmed E. Othman
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neuroradiology, Langenbeck 1, 55131, Mainz, Germany
| | - Bernd Schweizer
- RheinMain University of Applied Sciences, Faculty of Engineering, Am Brückweg 26, 65428, Rüsselsheim am Main, Germany
| | - Marc Alexander Brockmann
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neuroradiology, Langenbeck 1, 55131, Mainz, Germany
| |
Collapse
|
3
|
Panek D, Leszczyński B, Wojtysiak D, Drąg-Kozak E, Stępień E. Micro-computed tomography for analysis of heavy metal accumulation in the opercula. Micron 2022; 160:103327. [PMID: 35853367 DOI: 10.1016/j.micron.2022.103327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/28/2022]
Abstract
Micro-computed tomography (micro-CT) provides numerous opportunities in biomedical research. It allows the examination of samples in a non-destructive manner and visualization of the inner structures of various biological and nonbiological objects. This study was conducted to evaluate the potential of micro-CT scanner in the assessment of heavy metal accumulation in the opercula. The samples were taken from Prussian carp (Carassius gibelio) exposed to waterborne Cd (4.0 mg/L), Zn (4.0 mg/L), and the mixture of these two metals (4.0 mg Cd/L and 4.0 mg Zn/L) for 28 days. Heavy metal concentrations were determined using atomic absorption spectrometry. The results demonstrated higher concentrations of Cd and Zn in the treatment group opercula samples compared with the control group opercula samples. A simple micro-CT scan was performed to verify whether heavy metal accumulation could be determined in the reconstructed images. The results showed that micro-CT is potentially a powerful tool for metal accumulation detection. Moreover, it allowed visualization of the examined samples, revealing regions of heavy metal accumulation and providing the opportunity to compare samples exposed to different types of heavy metals.
Collapse
Affiliation(s)
- Dominik Panek
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Bartosz Leszczyński
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Dorota Wojtysiak
- Department of Genetics, Animal Breeding and Ethology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Ewa Drąg-Kozak
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Adama Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Ewa Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
4
|
Keklikoglou K, Arvanitidis C, Chatzigeorgiou G, Chatzinikolaou E, Karagiannidis E, Koletsa T, Magoulas A, Makris K, Mavrothalassitis G, Papanagnou ED, Papazoglou AS, Pavloudi C, Trougakos IP, Vasileiadou K, Vogiatzi A. Micro-CT for Biological and Biomedical Studies: A Comparison of Imaging Techniques. J Imaging 2021; 7:jimaging7090172. [PMID: 34564098 PMCID: PMC8470083 DOI: 10.3390/jimaging7090172] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Several imaging techniques are used in biological and biomedical studies. Micro-computed tomography (micro-CT) is a non-destructive imaging technique that allows the rapid digitisation of internal and external structures of a sample in three dimensions and with great resolution. In this review, the strengths and weaknesses of some common imaging techniques applied in biological and biomedical fields, such as optical microscopy, confocal laser scanning microscopy, and scanning electron microscopy, are presented and compared with the micro-CT technique through five use cases. Finally, the ability of micro-CT to create non-destructively 3D anatomical and morphological data in sub-micron resolution and the necessity to develop complementary methods with other imaging techniques, in order to overcome limitations caused by each technique, is emphasised.
Collapse
Affiliation(s)
- Kleoniki Keklikoglou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
- Biology Department, University of Crete, 70013 Heraklion, Crete, Greece
- Correspondence:
| | - Christos Arvanitidis
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
- LifeWatch ERIC, 41071 Seville, Spain
| | - Georgios Chatzigeorgiou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Eva Chatzinikolaou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.S.P.)
| | - Triantafyllia Koletsa
- Department of Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Antonios Magoulas
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Konstantinos Makris
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece; (K.M.); (G.M.); (A.V.)
| | - George Mavrothalassitis
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece; (K.M.); (G.M.); (A.V.)
- IMBB, FORTH, 70013 Heraklion, Crete, Greece
| | - Eleni-Dimitra Papanagnou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (E.-D.P.); (I.P.T.)
| | - Andreas S. Papazoglou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.S.P.)
| | - Christina Pavloudi
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (E.-D.P.); (I.P.T.)
| | - Katerina Vasileiadou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Angeliki Vogiatzi
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece; (K.M.); (G.M.); (A.V.)
| |
Collapse
|
5
|
Hicks WH, Bird CE, Traylor JI, Shi DD, El Ahmadieh TY, Richardson TE, McBrayer SK, Abdullah KG. Contemporary Mouse Models in Glioma Research. Cells 2021; 10:cells10030712. [PMID: 33806933 PMCID: PMC8004772 DOI: 10.3390/cells10030712] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Despite advances in understanding of the molecular pathogenesis of glioma, outcomes remain dismal. Developing successful treatments for glioma requires faithful in vivo disease modeling and rigorous preclinical testing. Murine models, including xenograft, syngeneic, and genetically engineered models, are used to study glioma-genesis, identify methods of tumor progression, and test novel treatment strategies. Since the discovery of highly recurrent isocitrate dehydrogenase (IDH) mutations in lower-grade gliomas, there is increasing emphasis on effective modeling of IDH mutant brain tumors. Improvements in preclinical models that capture the phenotypic and molecular heterogeneity of gliomas are critical for the development of effective new therapies. Herein, we explore the current status, advancements, and challenges with contemporary murine glioma models.
Collapse
Affiliation(s)
- William H. Hicks
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Cylaina E. Bird
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Jeffrey I. Traylor
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Diana D. Shi
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| | - Tarek Y. El Ahmadieh
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Timothy E. Richardson
- Department of Pathology, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX 75229, USA;
| | - Samuel K. McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harrold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Correspondence: (S.K.M.); (K.G.A.)
| | - Kalil G. Abdullah
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
- Harrold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Correspondence: (S.K.M.); (K.G.A.)
| |
Collapse
|
6
|
Use of a Luciferase-Expressing Orthotopic Rat Brain Tumor Model to Optimize a Targeted Irradiation Strategy for Efficacy Testing with Temozolomide. Cancers (Basel) 2020; 12:cancers12061585. [PMID: 32549357 PMCID: PMC7352586 DOI: 10.3390/cancers12061585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/29/2020] [Accepted: 06/11/2020] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a common and aggressive malignant brain cancer with a mean survival time of approximately 15 months after initial diagnosis. Currently, the standard-of-care (SOC) treatment for this disease consists of radiotherapy (RT) with concomitant and adjuvant temozolomide (TMZ). We sought to develop an orthotopic preclinical model of GBM and to optimize a protocol for non-invasive monitoring of tumor growth, allowing for determination of the efficacy of SOC therapy using a targeted RT strategy combined with TMZ. A strong correlation (r = 0.80) was observed between contrast-enhanced (CE)-CT-based volume quantification and bioluminescent (BLI)-integrated image intensity when monitoring tumor growth, allowing for BLI imaging as a substitute for CE-CT. An optimized parallel-opposed single-angle RT beam plan delivered on average 96% of the expected RT dose (20, 30 or 60 Gy) to the tumor. Normal tissue on the ipsilateral and contralateral sides of the brain were spared 84% and 99% of the expected dose, respectively. An increase in median survival time was demonstrated for all SOC regimens compared to untreated controls (average 5.2 days, p < 0.05), but treatment was not curative, suggesting the need for novel treatment options to increase therapeutic efficacy.
Collapse
|
7
|
Stegen B, Nieto A, Albrecht V, Maas J, Orth M, Neumaier K, Reinhardt S, Weick-Kleemann M, Goetz W, Reinhart M, Parodi K, Belka C, Niyazi M, Lauber K. Contrast-enhanced, conebeam CT-based, fractionated radiotherapy and follow-up monitoring of orthotopic mouse glioblastoma: a proof-of-concept study. Radiat Oncol 2020; 15:19. [PMID: 31969174 PMCID: PMC6977274 DOI: 10.1186/s13014-020-1470-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022] Open
Abstract
Background Despite aggressive treatment regimens comprising surgery and radiochemotherapy, glioblastoma (GBM) remains a cancer entity with very poor prognosis. The development of novel, combined modality approaches necessitates adequate preclinical model systems and therapy regimens that closely reflect the clinical situation. So far, image-guided, fractionated radiotherapy of orthotopic GBM models represents a major limitation in this regard. Methods GL261 mouse GBM cells were inoculated into the right hemispheres of C57BL/6 mice. Tumor growth was monitored by contrast-enhanced conebeam CT (CBCT) scans. When reaching an average volume of approximately 7 mm3, GBM tumors were irradiated with daily fractions of 2 Gy up to a cumulative dose of 20 Gy in different beam collimation settings. For treatment planning and tumor volume follow-up, contrast-enhanced CBCT scans were performed twice per week. Daily repositioning of animals was achieved by alignment of bony structures in native CBCT scans. When showing neurological symptoms, mice were sacrificed by cardiac perfusion. Brains, livers, and kidneys were processed into histologic sections. Potential toxic effects of contrast agent administration were assessed by measurement of liver enzyme and creatinine serum levels and by histologic examination. Results Tumors were successfully visualized by contrast-enhanced CBCT scans with a detection limit of approximately 2 mm3, and treatment planning could be performed. For daily repositioning of the animals, alignment of bony structures in native CT scans was well feasible. Fractionated irradiation caused a significant delay in tumor growth translating into significantly prolonged survival in clear dependence of the beam collimation setting and margin size. Brain sections revealed tumors of similar appearance and volume on the day of euthanasia. Importantly, the repeated contrast agent injections were well tolerated, as liver enzyme and creatinine serum levels were only subclinically elevated, and liver and kidney sections displayed normal histomorphology. Conclusions Contrast-enhanced, CT-based, fractionated radiation of orthotopic mouse GBM represents a versatile preclinical technique for the development and evaluation of multimodal radiotherapeutic approaches in combination with novel therapeutic agents in order to accelerate translation into clinical testing.
Collapse
Affiliation(s)
- Benjamin Stegen
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK) partnersite Munich, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Nieto
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Valerie Albrecht
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Jessica Maas
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK) partnersite Munich, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klement Neumaier
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Sabine Reinhardt
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Moritz Weick-Kleemann
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK) partnersite Munich, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK) partnersite Munich, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany. .,German Cancer Consortium (DKTK) partnersite Munich, Munich, Germany. .,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.
| |
Collapse
|
8
|
Jung D, Heiss R, Kramer V, Thoma OM, Regensburger AP, Rascher W, Uder M, Neurath MF, Knieling F, Waldner MJ. Contrast-Enhanced µCT for Visualizing and Evaluating Murine Intestinal Inflammation. Am J Cancer Res 2018; 8:6357-6366. [PMID: 30613304 PMCID: PMC6299705 DOI: 10.7150/thno.26013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022] Open
Abstract
Rationale: To develop a simple and fast protocol for the assessment of acute and chronic experimental intestinal inflammation using contrast-enhanced µCT. Methods: For the imaging studies, an acute 2% and 3% dextran sodium sulfate (n = 15, female, 8-12 weeks) and a chronic adoptive transfer colitis model (n = 10, female, 8-9 weeks) were established over 9 days or 6 weeks, respectively. Throughout the experiments, longitudinal measurement of murine intestinal wall thickness and time dependent perfusion was performed on a small animal µCT system (90 kV, 160 μA, FOV: 60 mm, scan time: 17 s, image size: 512x512, layer thickness: 118 µm) between 0.5 and 30 min after intravenous bolus injection of an iodine contrast agent. Weight development, small animal endoscopy, and histological ex vivo analysis were compared to contrast-enhanced µCT imaging findings. Results: Murine intestinal wall thickness was significantly increased in inflamed colons of acute colitis at day 9 in comparison to pre-inflamed state. Perfusion analysis revealed a late contrast enhancement in acute inflamed colons and the renal medulla at day 9 compared to control mice. An increasing intestinal wall thickness was monitored 3, 5 and 6 weeks after on-set of chronic colitis in comparison to controls. A good correlation with endoscopic (r = 0.75, p < 0.0001) and histologic degree of inflammation (r = 0.83, p = 0.04) was found. Conclusion: Contrast-enhanced µCT is a simple and fast method to assess acute intestinal inflammation and to monitor disease progression in experimental models of chronic colitis. According to our findings, one single contrast-enhanced µCT-scan is a valid non-invasive modality to quantify the degree of inflammation in the entire digestive tract in murine inflammatory models.
Collapse
|
9
|
Sosa Iglesias V, van Hoof SJ, Vaniqui A, Schyns LE, Lieuwes N, Yaromina A, Spiegelberg L, Groot AJ, Verhaegen F, Theys J, Dubois L, Vooijs M. An orthotopic non-small cell lung cancer model for image-guided small animal radiotherapy platforms. Br J Radiol 2018; 92:20180476. [PMID: 30465693 DOI: 10.1259/bjr.20180476] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
METHODS: An orthotopic non-small cell lung cancer model in NMRI-nude mice was established to investigate the complementary information acquired from 80 kVp microcone-beam CT (micro-CBCT) and bioluminescence imaging (BLI) using different angles and filter settings. Different micro-CBCT-based radiation-delivery plans were evaluated based on their dose-volume histogram metrics of tumor and organs at risk to select the optimal treatment plan. RESULTS: H1299 cell suspensions injected directly into the lung render exponentially growing single tumor nodules whose CBCT-based volume quantification strongly correlated with BLI-integrated intensity. Parallel-opposed single angle beam plans through a single lung are preferred for smaller tumors, whereas for larger tumors, plans that spread the radiation dose across healthy tissues are favored. CONCLUSIONS: Closely mimicking a clinical setting for lung cancer with highly advanced preclinical radiation treatment planning is possible in mice developing orthotopic lung tumors. ADVANCES IN KNOWLEDGE: BLI and CBCT imaging of orthotopic lung tumors provide complementary information in a temporal manner. The optimal radiotherapy plan is tumor volume-dependent.
Collapse
Affiliation(s)
- Venus Sosa Iglesias
- 1 Department of Radiotherapy, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre , Maastricht , The Netherlands
| | | | - Ana Vaniqui
- 1 Department of Radiotherapy, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Lotte Ejr Schyns
- 1 Department of Radiotherapy, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Natasja Lieuwes
- 1 Department of Radiotherapy, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Ala Yaromina
- 1 Department of Radiotherapy, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Linda Spiegelberg
- 1 Department of Radiotherapy, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Arjan J Groot
- 1 Department of Radiotherapy, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Frank Verhaegen
- 1 Department of Radiotherapy, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Jan Theys
- 1 Department of Radiotherapy, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Ludwig Dubois
- 1 Department of Radiotherapy, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Marc Vooijs
- 1 Department of Radiotherapy, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre , Maastricht , The Netherlands
| |
Collapse
|
10
|
Luo Q, Li Y, Luo L, Diao W. Comparisons of the accuracy of radiation diagnostic modalities in brain tumor: A nonrandomized, nonexperimental, cross-sectional trial. Medicine (Baltimore) 2018; 97:e11256. [PMID: 30075495 PMCID: PMC6081153 DOI: 10.1097/md.0000000000011256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Tumor morphology improved sensitivity, accuracy, and specificity of the diagnosis, but all diagnostic techniques have attenuation correction issues.To compare computed tomographic (CT), positron emission tomographic (PET), and magnetic resonance imaging (MRI) characteristics of patients with brain tumor in a Chinese setting.A nonrandomized, nonexperimental, cross-sectional trial.Jining No. 1 People's Hospital, China.In total, 127 patients who had clinically confirmed a brain tumor were included in the cross-sectional study. Patients were subjected to brain CT, MRI, and PET. The tumors resected after brain surgery were subjected to morphological diagnosis. Statistical analysis of data of surgically removed tumor and that of different methods of diagnosis was performed using Wilcoxon test following Tukey-Kramer test. Spearmen correlation was performed between diagnostic modalities and in vivo morphology. Results were considered significant at 99% of confidence level.The data of diameter and volume of tumor derived from CT (Spearman r = 0.9845 and 0.9706), and MRI (Spearman r = 0.955 and 0.2378) were failed to correlate with that of that of the surgically removed tumor. However, prediction of diameter and volume of the tumor by PET (Spearman r = 0.9922 and 0.9921) were correlated with that of the surgically removed tumor. CT and MRI were failed to quantified pituitary adenomas.The study was recommended PET for assessment of brain tumor.
Collapse
Affiliation(s)
| | | | - Lan Luo
- Department of Gynecology, Jining No. 1 People's Hospital, Jining, Shandong, China
| | | |
Collapse
|
11
|
Scarfe L, Brillant N, Kumar JD, Ali N, Alrumayh A, Amali M, Barbellion S, Jones V, Niemeijer M, Potdevin S, Roussignol G, Vaganov A, Barbaric I, Barrow M, Burton NC, Connell J, Dazzi F, Edsbagge J, French NS, Holder J, Hutchinson C, Jones DR, Kalber T, Lovatt C, Lythgoe MF, Patel S, Patrick PS, Piner J, Reinhardt J, Ricci E, Sidaway J, Stacey GN, Starkey Lewis PJ, Sullivan G, Taylor A, Wilm B, Poptani H, Murray P, Goldring CEP, Park BK. Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies. NPJ Regen Med 2017; 2:28. [PMID: 29302362 PMCID: PMC5677988 DOI: 10.1038/s41536-017-0029-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/30/2017] [Accepted: 07/24/2017] [Indexed: 02/08/2023] Open
Abstract
Regenerative medicine therapies hold enormous potential for a variety of currently incurable conditions with high unmet clinical need. Most progress in this field to date has been achieved with cell-based regenerative medicine therapies, with over a thousand clinical trials performed up to 2015. However, lack of adequate safety and efficacy data is currently limiting wider uptake of these therapies. To facilitate clinical translation, non-invasive in vivo imaging technologies that enable careful evaluation and characterisation of the administered cells and their effects on host tissues are critically required to evaluate their safety and efficacy in relevant preclinical models. This article reviews the most common imaging technologies available and how they can be applied to regenerative medicine research. We cover details of how each technology works, which cell labels are most appropriate for different applications, and the value of multi-modal imaging approaches to gain a comprehensive understanding of the responses to cell therapy in vivo.
Collapse
Affiliation(s)
- Lauren Scarfe
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Nathalie Brillant
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - J. Dinesh Kumar
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Noura Ali
- College of Health Science, University of Duhok, Duhok, Iraq
| | - Ahmed Alrumayh
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Mohammed Amali
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Stephane Barbellion
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Vendula Jones
- GlaxoSmithKline, David Jack Centre for Research and Development, Ware, UK
| | - Marije Niemeijer
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Sophie Potdevin
- SANOFI Research and Development, Disposition, Safety and Animal Research, Alfortville, France
| | - Gautier Roussignol
- SANOFI Research and Development, Disposition, Safety and Animal Research, Alfortville, France
| | - Anatoly Vaganov
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ivana Barbaric
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Michael Barrow
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | | | - John Connell
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Francesco Dazzi
- Department of Haemato-Oncology, King’s College London, London, UK
| | | | - Neil S. French
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Julie Holder
- Roslin Cells, University of Cambridge, Cambridge, UK
| | - Claire Hutchinson
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - David R. Jones
- Medicines and Healthcare Products Regulatory Agency, London, UK
| | - Tammy Kalber
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Cerys Lovatt
- GlaxoSmithKline, David Jack Centre for Research and Development, Ware, UK
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Sara Patel
- ReNeuron Ltd, Pencoed Business Park, Pencoed, Bridgend, UK
| | - P. Stephen Patrick
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Jacqueline Piner
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, UK
| | | | - Emanuelle Ricci
- Institute of Veterinary Science, University of Liverpool, Liverpool, UK
| | | | - Glyn N. Stacey
- UK Stem Cell Bank, Division of Advanced Therapies, National Institute for Biological Standards Control, Medicines and Healthcare Products Regulatory Agency, London, UK
| | - Philip J. Starkey Lewis
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Gareth Sullivan
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Norwegian Center for Stem Cell Research, Blindern, Oslo, Norway
- Institute of Immunology, Oslo University Hospital-Rikshospitalet, Nydalen, Oslo, Norway
- Hybrid Technology Hub—Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Arthur Taylor
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Harish Poptani
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- Medical Research Council Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
12
|
Eweida A, Frisch O, Giordano FA, Fleckenstein J, Wenz F, Brockmann MA, Schulte M, Schmidt VJ, Kneser U, Harhaus L. Axially vascularized tissue-engineered bone constructs retain their in vivo angiogenic and osteogenic capacity after high-dose irradiation. J Tissue Eng Regen Med 2017; 12:e657-e668. [PMID: 27696709 DOI: 10.1002/term.2336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/28/2016] [Accepted: 09/26/2016] [Indexed: 11/07/2022]
Abstract
In order to introduce bone tissue engineering to the field of oncological reconstruction, we are investigating for the first time the effect of various doses of ionizing irradiation on axially vascularized bone constructs. Synthetic bone constructs were created and implanted in 32 Lewis rats. Each construct was axially vascularized through an arteriovenous loop made by direct anastomosis of the saphenous vessels. After 2 weeks, the animals received ionizing irradiation of 9 Gy, 12 Gy and 15 Gy, and were accordingly classified to groups I, II and III, respectively. Group IV was not irradiated and acted as a control. Tissue generation, vascularity, cellular proliferation and apoptosis were investigated either 2 or 5 weeks after irradiation through micro-computed tomography, histomorphometry and real-time polymerase chain reaction (PCR). At 2 weeks after irradiation, tissue generation and central vascularity were significantly lower and apoptosis was significantly higher in groups II and III than group IV, but without signs of necrosis. Cellular proliferation was significantly lower in groups I and II. After 5 weeks, the irradiated groups showed improvement in all parameters in relation to the control group, indicating a retained capacity for angiogenesis after irradiation. PCR results confirmed the expression of osteogenesis-related genes in all irradiated groups. Dense collagen was detected 5 weeks after irradiation, and one construct showed discrete islands of bone indicating a retained osteogenic capacity after irradiation. This demonstrates for the first time that axial vascularization was capable of supporting a synthetic bone construct after a high dose of irradiation that is comparable to adjuvant radiotherapy. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ahmad Eweida
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany.,Department of Head, Neck and Endocrine Surgery, Faculty of Medicine, University of Alexandria, Egypt
| | - Oliver Frisch
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Fleckenstein
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
| | - Matthias Schulte
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Volker J Schmidt
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Leila Harhaus
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| |
Collapse
|
13
|
Laviña B. Brain Vascular Imaging Techniques. Int J Mol Sci 2016; 18:ijms18010070. [PMID: 28042833 PMCID: PMC5297705 DOI: 10.3390/ijms18010070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/13/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022] Open
Abstract
Recent major improvements in a number of imaging techniques now allow for the study of the brain in ways that could not be considered previously. Researchers today have well-developed tools to specifically examine the dynamic nature of the blood vessels in the brain during development and adulthood; as well as to observe the vascular responses in disease situations in vivo. This review offers a concise summary and brief historical reference of different imaging techniques and how these tools can be applied to study the brain vasculature and the blood-brain barrier integrity in both healthy and disease states. Moreover, it offers an overview on available transgenic animal models to study vascular biology and a description of useful online brain atlases.
Collapse
Affiliation(s)
- Bàrbara Laviña
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden.
| |
Collapse
|
14
|
Kirschner S, Mürle B, Felix M, Arns A, Groden C, Wenz F, Hug A, Glatting G, Kramer M, Giordano FA, Brockmann MA. Imaging of Orthotopic Glioblastoma Xenografts in Mice Using a Clinical CT Scanner: Comparison with Micro-CT and Histology. PLoS One 2016; 11:e0165994. [PMID: 27829015 PMCID: PMC5102379 DOI: 10.1371/journal.pone.0165994] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/23/2016] [Indexed: 01/24/2023] Open
Abstract
Purpose There is an increasing need for small animal in vivo imaging in murine orthotopic glioma models. Because dedicated small animal scanners are not available ubiquitously, the applicability of a clinical CT scanner for visualization and measurement of intracerebrally growing glioma xenografts in living mice was validated. Materials and Methods 2.5x106 U87MG cells were orthotopically implanted in NOD/SCID/ᵞc-/- mice (n = 9). Mice underwent contrast-enhanced (300 μl Iomeprol i.v.) imaging using a micro-CT (80 kV, 75 μAs, 360° rotation, 1,000 projections, scan time 33 s, resolution 40 x 40 x 53 μm) and a clinical CT scanner (4-row multislice detector; 120 kV, 150 mAs, slice thickness 0.5 mm, feed rotation 0.5 mm, resolution 98 x 98 x 500 μm). Mice were sacrificed and the brain was worked up histologically. In all modalities tumor volume was measured by two independent readers. Contrast-to-noise ratio (CNR) and Signal-to-noise ratio (SNR) were measured from reconstructed CT-scans (0.5 mm slice thickness; n = 18). Results Tumor volumes (mean±SD mm3) were similar between both CT-modalities (micro-CT: 19.8±19.0, clinical CT: 19.8±18.8; Wilcoxon signed-rank test p = 0.813). Moreover, between reader analyses for each modality showed excellent agreement as demonstrated by correlation analysis (Spearman-Rho >0.9; p<0.01 for all correlations). Histologically measured tumor volumes (11.0±11.2) were significantly smaller due to shrinkage artifacts (p<0.05). CNR and SNR were 2.1±1.0 and 1.1±0.04 for micro-CT and 23.1±24.0 and 1.9±0.7 for the clinical CTscanner, respectively. Conclusion Clinical CT scanners may reliably be used for in vivo imaging and volumetric analysis of brain tumor growth in mice.
Collapse
Affiliation(s)
- Stefanie Kirschner
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Bettina Mürle
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Manuela Felix
- Medical Radiation Physics/Radiation Protection, Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Anna Arns
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Christoph Groden
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Andreas Hug
- Spinal Cord Injury Center, University Hospital Heidelberg, Schlierbacher Landstr. 200a, 69118, Heidelberg, Germany
| | - Gerhard Glatting
- Medical Radiation Physics/Radiation Protection, Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Martin Kramer
- Department of Veterinary Clinical Sciences, Small Animal Clinic, Justus-Liebig-University, 35392, Giessen, Germany
| | - Frank A. Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Marc A. Brockmann
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
- * E-mail:
| |
Collapse
|
15
|
Figueiredo G, Fiebig T, Kirschner S, Nikoubashman O, Kabelitz L, Othman A, Nonn A, Kramer M, Brockmann MA. Minimally Invasive Monitoring of Chronic Central Venous Catheter Patency in Mice Using Digital Subtraction Angiography (DSA). PLoS One 2015; 10:e0130661. [PMID: 26098622 PMCID: PMC4476576 DOI: 10.1371/journal.pone.0130661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/24/2015] [Indexed: 11/18/2022] Open
Abstract
Background Repetitive administration of medication or contrast agents is frequently performed in mice. The introduction of vascular access mini-ports (VAMP) for mice allows long-term vascular catheterization, hereby eliminating the need for repeated vessel puncture. With catheter occlusion being the most commonly reported complication of chronic jugular vein catheterization, we tested whether digital subtraction angiography (DSA) can be utilized to evaluate VAMP patency in mice. Methods Twenty-three mice underwent catheterization of the jugular vein and subcutaneous implantation of a VAMP. The VAMP was flushed every second day with 50 μL of heparinized saline solution (25 IU/ml). DSA was performed during injection of 100 μL of an iodine based contrast agent using an industrial X-ray inspection system intraoperatively, as well as 7±2 and 14±2 days post implantation. Results DSA allowed localization of catheter tip position, to rule out dislocation, kinking or occlusion of a microcatheter, and to evaluate parent vessel patency. In addition, we observed different ante- and retrograde collateral flow patterns in case of jugular vein occlusion. More exactly, 30% of animals showed parent vessel occlusion after 7±2 days in our setting. At this time point, nevertheless, all VAMPs verified intravascular contrast administration. After 14±2 days, intravascular contrast injection was verified in 70% of the implanted VAMPs, whereas at this point of time 5 animals had died or were sacrificed and in 2 mice parent vessel occlusion hampered intravascular contrast injection. Notably, no occlusion of the catheter itself was observed. Conclusion From our observations we conclude DSA to be a fast and valuable minimally invasive tool for investigation of catheter and parent vessel patency and for anatomical studies of collateral blood flow in animals as small as mice.
Collapse
Affiliation(s)
- Giovanna Figueiredo
- Department of Diagnostic and Interventional Neuroradiology, University Hospital of the RWTH Aachen, Aachen, Germany
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Teresa Fiebig
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefanie Kirschner
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Omid Nikoubashman
- Department of Diagnostic and Interventional Neuroradiology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Lisa Kabelitz
- Department of Diagnostic and Interventional Neuroradiology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Ahmed Othman
- Department of Diagnostic and Interventional Neuroradiology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Andrea Nonn
- Department of Diagnostic and Interventional Neuroradiology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Martin Kramer
- Department of Veterinary Clinical Sciences, Small Animal Clinic, Justus-Liebig-University, Giessen, Germany
| | - Marc A. Brockmann
- Department of Diagnostic and Interventional Neuroradiology, University Hospital of the RWTH Aachen, Aachen, Germany
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| |
Collapse
|
16
|
SmART-ER imaging and treatment of glioblastoma. J Neurooncol 2015; 123:319-20. [PMID: 25952254 DOI: 10.1007/s11060-015-1801-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|