1
|
Gong G, Jiang L, Zhou J, Su Y. Advancements in targeted and immunotherapy strategies for glioma: toward precision treatment. Front Immunol 2025; 15:1537013. [PMID: 39877359 PMCID: PMC11772277 DOI: 10.3389/fimmu.2024.1537013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
In recent years, significant breakthroughs have been made in cancer therapy, particularly with the development of molecular targeted therapies and immunotherapies, owing to advances in tumor molecular biology and molecular immunology. High-grade gliomas (HGGs), characterized by their high malignancy, remain challenging to treat despite standard treatment regimens, including surgery, radiotherapy, chemotherapy, and tumor treating fields (TTF). These therapies provide limited efficacy, highlighting the need for novel treatment strategies. Molecular targeted therapies and immunotherapy have emerged as promising avenues for improving treatment outcomes in high-grade gliomas. This review explores the current status and recent advancements in targeted and immunotherapeutic approaches for high-grade gliomas.
Collapse
Affiliation(s)
- Guangyuan Gong
- Department of Intensive Care Medicine, Jiangsu Provincial People’s Hospital Chongqing Hospital (Qijiang District People’s Hospital), Chongqing, China
| | - Lang Jiang
- Department of Intensive Care Medicine, Jiangsu Provincial People’s Hospital Chongqing Hospital (Qijiang District People’s Hospital), Chongqing, China
| | - Jing Zhou
- Department of Thoracic Surgery, Jiangsu Provincial People’s Hospital Chongqing Hospital (Qijiang District People’s Hospital), Chongqing, China
| | - Yuanchao Su
- Department of Emergency Medicine, Jiangsu Provincial People’s Hospital Chongqing Hospital (Qijiang District People’s Hospital), Chongqing, China
| |
Collapse
|
2
|
Huang C, Chai X, Han Y, Lai K, Ye Y, Xu S. Ascites production and prognosis after ventriculoperitoneal shunt for diffuse midline gliomas in children: A case series. Medicine (Baltimore) 2024; 103:e39977. [PMID: 39465699 PMCID: PMC11460877 DOI: 10.1097/md.0000000000039977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 10/29/2024] Open
Abstract
RATIONALE DMG is a highly invasive and lethal type of brain tumor. As these tumors progress, they often compromise the CSF circulation, leading to hydrocephalus. Ventriculoperitoneal shunt (VPS) is commonly employed to manage hydrocephalus; however, the complication of VPS-induced ascites, particularly in the presence of tumor cells, is a significant concern that merits attention. PATIENT CONCERNS This case series details 3 pediatric patients diagnosed with brainstem DMG harboring the H3 K27M mutation. Each developed hydrocephalus underwent VPS insertion. Post-operatively, all patients developed carcinomatous ascites with tumor cells detected within the ascitic fluid. DIAGNOSES All 3 patients were diagnosed with intra-abdominal metastasis of DMG H3K27M mutant cancer cells, each presenting with distinct complications. INTERVENTIONS Initially, the patients' primary head tumors responded to treatment, and their hydrocephalus resolved. However, some time after discharge, each patient developed malignant ascites and received palliative chemotherapy to control symptoms and improve quality of life. OUTCOMES Despite the interventions, all 3 patients died within 1 month of developing malignant ascites, with central respiratory failure being the direct cause of death. LESSONS These cases underscore the importance of continuous monitoring of both the CSF and ascitic fluid in patients with gliomas. Regular assessments of biochemical composition, cytology, and other diagnostic tests are crucial for early detection of disease progression. This proactive approach facilitates timely clinical judgment and intervention, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Chunxia Huang
- Department of Clinical Laboratory, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Xubin Chai
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Yunpeng Han
- Department of Clinical Laboratory, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Keyuan Lai
- Department of Clinical Laboratory, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Yuanyang Ye
- Department of Clinical Laboratory, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Shaoqiang Xu
- Department of Clinical Laboratory, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| |
Collapse
|
3
|
Akdemir EY, Odia Y, Hall MD, Mehta MP, Kotecha R. An Update on H3K27M-altered Diffuse Midline Glioma: Diagnostic and Therapeutic Challenges in Clinical Practice. Pract Radiat Oncol 2024; 14:443-451. [PMID: 38704025 DOI: 10.1016/j.prro.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
H3K27-altered diffuse midline glioma (DMG H3K27-altered) is a relatively newly-designated WHO entity which primarily affects the midline structures of the central nervous system (CNS), including the brainstem (predominantly pontine region), thalamus, midbrain, or spinal cord, and primarily affects children and young adults. Despite the proximity of these tumors to eloquent areas in the CNS, novel stereotactic approaches have facilitated the ability to obtain tissue diagnoses without significant morbidity, providing molecular diagnostic information in more than half of patients. Conventionally fractionated radiation therapy to a total dose of 54-60 Gy in 27-30 fractions and 24 Gy in 12 fractions play a crucial role in the definitive treatment of these tumors in the primary and salvage settings, respectively. Hypofractionated regimens may allow for accelerated treatment courses in selected patients without jeopardizing disease control or survival. The decision to add concurrent or adjuvant systemic therapy mainly relies on the physicians' experience without solid evidence in the literature in favor of any particular regimen. Recently, novel agents, such as ONC201 have demonstrated promising oncologic outcomes in progressive/recurrent tumors and are currently under investigation in ongoing randomized trials. Given the scarcity of data and well-established guidelines due to the rare nature of the disease, we provide a contemporary overview on the molecular underpinnings of this disease entity, describe the role of radiotherapy and systemic therapy, and present practice management principles based on the published literature.
Collapse
Affiliation(s)
- Eyub Yasar Akdemir
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Yazmin Odia
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida; Department of Neuro-Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Matthew D Hall
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida.
| |
Collapse
|
4
|
Xu F, Hua X, Wang M, Cao W, Wang S, Xu C, Chen J, Gao Y, Chen L, Ni W. Racial and social-economic inequalities in systemic chemotherapy use among adult glioblastoma patients following surgery and radiotherapy. Sci Rep 2024; 14:19079. [PMID: 39154028 PMCID: PMC11330508 DOI: 10.1038/s41598-024-68962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024] Open
Abstract
Not all patients with glioblastoma multiforme (GBM) eligible for systemic chemotherapy after upfront surgery and radiotherapy finally receive it. The information on patients with GBM was retrieved from the surveillance, epidemiology, and end results database. Patients who underwent upfront surgery or biopsy and external beam radiotherapy between 2010 and 2019 were eligible for systemic chemotherapy. The available patient and tumor characteristics were assessed using multivariable logistic regression and chi-squared test. Out of the 16,682 patients eligible, 92.1% underwent systemic chemotherapy. The characteristics linked to the lowest systemic chemotherapy utilization included tumors of the brain stem/cerebellum (P = 0.01), former years of diagnosis (P = 0.001), ≥ 80 years of age (P < 0.001), Hispanic, Non-Hispanic Asian, Pacific Islander, or Black race (P < 0.001), non-partnered status (P < 0.001), and low median household income (P = 0.006). Primary tumor site, year of diagnosis, age, race, partnered status, and median household income correlated with the omission of systemic chemotherapy in GBM in adult patients.
Collapse
Affiliation(s)
- Fei Xu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Xin Hua
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Mengdi Wang
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Weiguo Cao
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Shubei Wang
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Cheng Xu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yunsheng Gao
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China.
| | - Linlin Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China.
| | - Weiqiong Ni
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China.
| |
Collapse
|
5
|
Özkan A, Yağcı Küpeli B, Küpeli S, Sezgin G, Bayram İ. Nimotuzumab-vinorelbine combination therapy versus other regimens in the treatment of pediatric diffuse intrinsic pontine glioma. Childs Nerv Syst 2024; 40:1671-1680. [PMID: 38478066 DOI: 10.1007/s00381-024-06329-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/21/2024] [Indexed: 05/23/2024]
Abstract
PURPOSE Pediatric diffuse intrinsic pontine glioma (DIPG) is a fatal disease associated with a median survival of < 1 year despite aggressive treatments. This retrospective study analyzed the treatment outcomes of patients aged < 18 years who were diagnosed with DIPG between 2012 and 2022 and who received different chemotherapy regimens. METHODS After radiotherapy, patients with DIPG received nimotuzumab-vinorelbine combination or temozolomide-containing therapy. When nimotuzumab was unavailable, it was replaced by vincristine, etoposide, and carboplatin/cyclophosphamide (VECC). Temozolomide was administered as a single agent or a part of the combination chemotherapy comprising temozolomide, irinotecan, and bevacizumab. Furthermore, 1- and 3-year overall survival (OS), progression-free survival (PFS), and median OS and PFS were analyzed. RESULTS The median age of 40 patients with DIPG was 97 ± 46.93 (23-213) months; the median follow-up time was 12 months. One and 3-year OS were 35.0% and 7.5%, respectively. Median OS was 12 months in all patients (n = 40), and it was 16, 10, and 11 months in those who received first-line nimotuzumab-vinorelbine combination (n = 13), temozolomide-based (n = 14), and VECC (n = 6) chemotherapy regimens, respectively (p = 0.360). One patient who received gefitinib survived for 16 months. Conversely, patients who never received radiotherapy and any antineoplastic medicamentous therapy (n = 6) had a median OS of 4 months. CONCLUSION Nimotuzumab-vinorelbine combination therapy prolonged OS by 6 months compared with temozolomide-containing chemotherapy, although the difference was not statistically significant.
Collapse
Affiliation(s)
- Ayşe Özkan
- Department of Pediatric Oncology and Pediatric Bone Marrow Transplantation Unit, Faculty of Medicine, Balcali Hospital, Çukurova University, Adana, Turkey.
| | - Begül Yağcı Küpeli
- Department of Pediatric Hematology and Oncology, Adana City Training and Research Hospital, University of Health Sciences, Adana, Turkey
| | - Serhan Küpeli
- Department of Pediatric Oncology and Pediatric Bone Marrow Transplantation Unit, Faculty of Medicine, Balcali Hospital, Çukurova University, Adana, Turkey
| | - Gülay Sezgin
- Department of Pediatric Oncology and Pediatric Bone Marrow Transplantation Unit, Faculty of Medicine, Balcali Hospital, Çukurova University, Adana, Turkey
| | - İbrahim Bayram
- Department of Pediatric Oncology and Pediatric Bone Marrow Transplantation Unit, Faculty of Medicine, Balcali Hospital, Çukurova University, Adana, Turkey
| |
Collapse
|
6
|
Lin C, Smith C, Rutka J. Current immunotherapeutic approaches to diffuse intrinsic pontine glioma. Front Genet 2024; 15:1349612. [PMID: 38774284 PMCID: PMC11106442 DOI: 10.3389/fgene.2024.1349612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an aggressive brain tumour that occurs in the pons of the brainstem and accounts for over 80% of all brainstem gliomas. The median age at diagnosis is 6-7 years old, with less than 10% overall survival 2 years after diagnosis and less than 1% after 5 years. DIPGs are surgically inaccessible, and radiation therapy provides only transient benefit, with death ensuing from relentless local tumour infiltration. DIPGs are now the leading cause of brain tumour deaths in children, with a societal cancer burden in years of life lost (YLL) of more than 67 per individual, versus approximately 14 and 16 YLL for lung and breast cancer respectively. More than 95 clinical drug trials have been conducted on children with DIPGs, and all have failed to improve survival. No single or combination chemotherapeutic strategy has been successful to date because of our inability to identify targeted drugs for this disease and to deliver these drugs across an intact blood-brain barrier (BBB). Accordingly, there has been an increased focus on immunotherapy research in DIPG, with explorations into treatments such as chimeric antigen receptor T (CAR-T) cells, immune checkpoint blockades, cancer vaccines, and autologous cell transfer therapy. Here, we review the most recent advances in identifying genetic factors influencing the development of immunotherapy for DIPG. Additionally, we explore emerging technologies such as Magnetic Resonance-guided Focused Ultrasound (MRgFUS) in potential combinatorial approaches to treat DIPG.
Collapse
Affiliation(s)
- Catherine Lin
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Christian Smith
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - James Rutka
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
van den Bent M, Saratsis AM, Geurts M, Franceschi E. H3 K27M-altered glioma and diffuse intrinsic pontine glioma: Semi-systematic review of treatment landscape and future directions. Neuro Oncol 2024; 26:S110-S124. [PMID: 38102230 PMCID: PMC11066941 DOI: 10.1093/neuonc/noad220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 12/17/2023] Open
Abstract
H3 K27M-mutant diffuse glioma is a recently identified brain tumor associated with poor prognosis. As of 2016, it is classified by the World Health Organization as a distinct form of grade IV glioma. Despite recognition as an important prognostic and diagnostic feature in diffuse glioma, radiation remains the sole standard of care and no effective systemic therapies are available for H3K27M mutant tumors. This review will detail treatment interventions applied to diffuse midline glioma and diffuse intrinsic pontine glioma (DIPG) prior to the identification of the H3 K27M mutation, the current standard-of-care for H3 K27M-mutant diffuse glioma treatment, and ongoing clinical trials listed on www.clinicaltrials.gov evaluating novel therapeutics in this population. Current clinical trials were identified using clinicaltrials.gov, and studies qualifying for this analysis were active or ongoing interventional trials that evaluated a therapy in at least 1 treatment arm or cohort comprised exclusively of patients with DIPG and H3 K27M-mutant glioma. Forty-one studies met these criteria, including trials evaluating H3 K27M vaccination, chimeric antigen receptor T-cell therapy, and small molecule inhibitors. Ongoing evaluation of novel therapeutics is necessary to identify safe and effective interventions in this underserved patient population.
Collapse
Affiliation(s)
- Martin van den Bent
- Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Amanda M Saratsis
- Department of Neurosurgery, Advocate Children’s Hospital, Park Ridge, Illinois, USA
| | - Marjolein Geurts
- Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Enrico Franceschi
- Department of Nervous System Medical Oncology, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
8
|
Liu C, Kuang S, Huang T, Wu J, Zhang L, Gong X. Radiotherapy plus temozolomide with or without anlotinib in H3K27M-mutant diffuse midline glioma: A retrospective cohort study. CNS Neurosci Ther 2024; 30:e14730. [PMID: 38644565 PMCID: PMC11033330 DOI: 10.1111/cns.14730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/16/2024] [Accepted: 03/31/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Besides the hallmark of H3K27M mutation, aberrant amplifications of receptor tyrosine kinases (RTKs) are commonly observed in diffuse midline glioma (DMG), a highly malignant brain tumor with dismal prognosis. Here, we intended to evaluate the efficacy and safety of a multitarget RTK inhibitor anlotinib in patients with H3K27M-DMG. METHODS A total of 40 newly diagnosed H3K27M-DMG patients including 15 with anlotinib and 25 without anlotinib treatment were retrospectively enrolled in this cohort. Progression-free survival (PFS), overall survival (OS), and toxicities were assessed and compared. RESULTS The median PFS and OS of all patients in this cohort were 8.5 months (95% CI, 6.5-11.3) and 15.5 months (95% CI, 12.6-17.1), respectively. According to the Response Assessment in Neuro-Oncology (RANO) criteria, the disease control rate in the anlotinib group [93.3%, 95% confidence interval (CI), 70.2-98.8] was significantly higher than those without anlotinib (64%, 95% CI: 40.5-79.8, p = 0.039). The median PFS of patients with and without anlotinib was 11.6 months (95% CI, 7.8-14.3) and 6.4 months (95% CI, 4.3-10.3), respectively. Both the median PFS and OS of DMG patients treated with anlotinib were longer than those without anlotinib in the infratentorial patients (PFS: 10.3 vs. 5.4 months, p = 0.006; OS: 16.6 vs. 8.7 months, p = 0.016). Multivariate analysis also indicated anlotinib (HR: 0.243, 95% CI: 0.066-0.896, p = 0.034) was an independent prognosticator for longer OS in the infratentorial subgroup. In addition, the adverse events of anlotinib administration were tolerable in the whole cohort. CONCLUSIONS This study first reported that anlotinib combined with Stupp regimen is a safe and feasible regimen for newly diagnosed patients with H3K27M-DMG. Further, anlotinib showed significant efficacy for H3K27M-DMG located in the infratentorial region.
Collapse
Affiliation(s)
- Chao Liu
- Department of OncologyXiangya Hospital, Central South UniversityChangshaChina
| | - Shuwen Kuang
- Department of OncologyXiangya Hospital, Central South UniversityChangshaChina
| | - Tianxiang Huang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Jun Wu
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Longbo Zhang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Xuan Gong
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
9
|
Di Nunno V, Lombardi G, Simonelli M, Minniti G, Mastronuzzi A, Di Ruscio V, Corrà M, Padovan M, Maccari M, Caccese M, Simonetti G, Berlendis A, Farinotti M, Pollo B, Antonelli M, Di Muzio A, Dipasquale A, Asioli S, De Biase D, Tosoni A, Silvani A, Franceschi E. The role of adjuvant chemotherapy in patients with H3K27 altered diffuse midline gliomas: a multicentric retrospective study. J Neurooncol 2024; 167:145-154. [PMID: 38457090 DOI: 10.1007/s11060-024-04589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE Adult Diffuse midline glioma (DMG) is a very rare disease. DMGs are currently treated with radiotherapy and chemotherapy even if only a few retrospective studies assessed the impact on overall survival (OS) of these approaches. METHODS We carried out an Italian multicentric retrospective study of adult patients with H3K27-altered DMG to assess the effective role of systemic therapy in the treatment landscape of this rare tumor type. RESULTS We evaluated 49 patients from 6 Institutions. The median age was 37.3 years (range 20.1-68.3). Most patients received biopsy as primary approach (n = 30, 61.2%) and radiation therapy after surgery (n = 39, 79.6%). 25 (51.0%) of patients received concurrent chemotherapy and 26 (53.1%) patients received adjuvant temozolomide. In univariate analysis, concurrent chemotherapy did not result in OS improvement while adjuvant temozolomide was associated with longer OS (21.2 vs. 9.0 months, HR 0.14, 0.05-0.41, p < 0.001). Multivariate analysis confirmed the role of adjuvant chemotherapy (HR 0.1, 95%CI: 0.03-0.34, p = 0.003). In patients who progressed after radiation and/or chemotherapy the administration of a second-line systemic treatment had a significantly favorable impact on survival (8.0 vs. 3.2 months, HR 0.2, 95%CI 0.1-0.65, p = 0.004). CONCLUSION In our series, adjuvant treatment after radiotherapy can be useful in improving OS of patients with H3K27-altered DMG. When feasible another systemic treatment after treatment progression could be proposed.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, 40139, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Matteo Simonelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milano, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University, Policlinico Umberto I, Rome, Italy
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Angela Mastronuzzi
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina Di Ruscio
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Martina Corrà
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marta Maccari
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Giorgia Simonetti
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Arianna Berlendis
- Unit of Immunotherapy of Brain Tumors, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, 20133, Italy
| | - Mariangela Farinotti
- Unit of Neuroepidemiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Bianca Pollo
- Unit of Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Manila Antonelli
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University, Policlinico Umberto I, Rome, Italy
| | | | | | - Sofia Asioli
- IRCCS-Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM)-Surgical Pathology Section, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, 40139, Italy
| | - Antonio Silvani
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, 40139, Italy.
| |
Collapse
|
10
|
Cacciotti C, Wright KD. Advances in Treatment of Diffuse Midline Gliomas. Curr Neurol Neurosci Rep 2023; 23:849-856. [PMID: 37921944 DOI: 10.1007/s11910-023-01317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/05/2023]
Abstract
PURPOSE OF REVIEW Diffuse midline gliomas (DMGs) generally carry a poor prognosis, occur during childhood, and involve midline structures of the central nervous system, including the thalamus, pons, and spinal cord. RECENT FINDINGS To date, irradiation has been shown to be the only beneficial treatment for DMG. Various genetic modifications have been shown to play a role in the pathogenesis of this disease. Current treatment strategies span targeting epigenetic dysregulation, cell cycle, specific genetic alterations, and the immune microenvironment. Herein, we review the complex features of this disease as it relates to current and past therapeutic approaches.
Collapse
Affiliation(s)
- Chantel Cacciotti
- Children's Hospital London Health Sciences/Western University, London, ON, Canada.
| | - Karen D Wright
- Dana Farber/Boston Children's Cancer and Blood Disorder Center, Boston, MA, USA
| |
Collapse
|
11
|
Rechberger JS, Bouchal SM, Power EA, Nonnenbroich LF, Nesvick CL, Daniels DJ. Bench-to-bedside investigations of H3 K27-altered diffuse midline glioma: drug targets and potential pharmacotherapies. Expert Opin Ther Targets 2023; 27:1071-1086. [PMID: 37897190 PMCID: PMC11079776 DOI: 10.1080/14728222.2023.2277232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2023]
Abstract
INTRODUCTION H3 K27-altered diffuse midline glioma (DMG) is the most common malignant brainstem tumor in the pediatric population. Despite enormous preclinical and clinical efforts, the prognosis remains dismal, with fewer than 10% of patients surviving for two years after diagnosis. Fractionated radiation remains the only standard treatment options for DMG. Developing novel treatments and therapeutic delivery methods is critical to improving outcomes in this devastating disease. AREAS COVERED This review addresses recent advances in molecularly targeted pharmacotherapy and immunotherapy in DMG. The clinical presentation, diagnostic workup, unique pathological challenges, and current clinical trials are highlighted throughout. EXPERT OPINION Promising pharmacotherapies targeting various components of DMG pathology and the application of immunotherapies have the potential to improve patient outcomes. However, novel approaches are needed to truly revolutionize treatment for this tumor. First, combinational therapy should be employed, as DMG can develop resistance to single-agent approaches and many therapies are susceptible to rapid clearance from the brain. Second, drug-tumor residence time, i.e. the time for which a therapeutic is present at efficacious concentrations within the tumor, must be maximized to facilitate a durable treatment response. Engineering extended drug delivery methods with minimal off-tumor toxicity should be a focus of future studies.
Collapse
Affiliation(s)
- Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Samantha M. Bouchal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Erica A. Power
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Cody L. Nesvick
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| |
Collapse
|
12
|
Liu C, Kuang S, Wu L, Cheng Q, Gong X, Wu J, Zhang L. Radiotherapy and radio-sensitization in H3 K27M -mutated diffuse midline gliomas. CNS Neurosci Ther 2023. [PMID: 37157237 DOI: 10.1111/cns.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND H3K27M mutated diffuse midline gliomas (DMGs) are extremely aggressive and the leading cause of cancer-related deaths in pediatric brain tumors with 5-year survival <1%. Radiotherapy is the only established adjuvant treatment of H3K27M DMGs; however, the radio-resistance is commonly observed. METHODS We summarized current understandings of the molecular responses of H3K27M DMGs to radiotherapy and provide crucial insights into current advances in radiosensitivity enhancement. RESULTS Ionizing radiation (IR) can mainly inhibit tumor cell growth by inducing DNA damage regulated by the cell cycle checkpoints and DNA damage repair (DDR) system. In H3K27M DMGs, the aberrant genetic and epigenetic changes, stemness genotype, and epithelial-mesenchymal transition (EMT) disrupt the cell cycle checkpoints and DDR system by altering the associated regulatory signaling pathways, which leads to the development of radio-resistance. CONCLUSIONS The advances in mechanisms of radio-resistance in H3K27M DMGs promote the potential targets to enhance the sensitivity to radiotherapy.
Collapse
Affiliation(s)
- Chao Liu
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Kuang
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Quan Cheng
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Gong
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Wu
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Longbo Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Huang X, Shi S, Wang H, Zhao T, Wang Y, Huang S, Su Y, Zhao C, Yang M. Advances in antibody-based drugs and their delivery through the blood-brain barrier for targeted therapy and immunotherapy of gliomas. Int Immunopharmacol 2023; 117:109990. [PMID: 37012874 DOI: 10.1016/j.intimp.2023.109990] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Gliomas are highly invasive and are the most common type of primary malignant brain tumor. The routine treatments for glioma include surgical resection, radiotherapy, and chemotherapy. However, glioma recurrence and patient survival remain unsatisfactory after employing these traditional treatment approaches. With the rapid development of molecular immunology, significant breakthroughs have been made in targeted glioma therapy and immunotherapy. Antibody-based therapy has excellent advantages in treating gliomas due to its high specificity and sensitivity. This article reviewed various targeted antibody drugs for gliomas, including anti-glioma surface marker antibodies, anti-angiogenesis antibodies, and anti-immunosuppressive signal antibodies. Notably, many antibodies have been validated clinically, such as bevacizumab, cetuximab, panitumumab, and anti-PD-1 antibodies. These antibodies can improve the targeting of glioma therapy, enhance anti-tumor immunity, reduce the proliferation and invasion of glioma, and thus prolong the survival time of patients. However, the existence of the blood-brain barrier (BBB) has caused significant difficulties in drug delivery for gliomas. Therefore, this paper also summarized drug delivery methods through the BBB, including receptor-mediated transportation, nano-based carriers, and some physical and chemical methods for drug delivery. With these exciting advancements, more antibody-based therapies will likely enter clinical practice and allow more successful control of malignant gliomas.
Collapse
Affiliation(s)
- Xin Huang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Shuyou Shi
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Hongrui Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Tiesuo Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yibo Wang
- The College of Clinical College, Jilin University, Changchun, China
| | - Sihua Huang
- The College of Clinical College, Jilin University, Changchun, China
| | - Yingying Su
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Chunyan Zhao
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| | - Ming Yang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
14
|
Farrukh S, Habib S, Rafaqat A, Sarfraz Z, Sarfraz A, Sarfraz M, Robles-Velasco K, Felix M, Cherrez-Ojeda I. Emerging Therapeutic Strategies for Diffuse Intrinsic Pontine Glioma: A Systematic Review. Healthcare (Basel) 2023; 11:healthcare11040559. [PMID: 36833093 PMCID: PMC9956230 DOI: 10.3390/healthcare11040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Of all central nervous systems tumors, 10-20% are located in the brainstem; diffuse intrinsic pontine glioma (DIPG) is diagnosed in 80% of them. With over five decades of clinical trial testing, there are no established therapeutic options for DIPG. This research article aims to collate recent clinical trial data and provide a landscape for the most promising therapies that have emerged in the past five years. METHODS PubMed/MEDLINE, Web of Science, Scopus, and Cochrane were systematically searched using the following keywords: Diffuse intrinsic pontine glioma, Pontine, Glioma, Treatment, Therapy, Therapeutics, curative, and/or Management. Both adult and pediatric patients with newly diagnosed or progressive DIPG were considered in the clinical trial setting. The risk of bias was assessed using the ROBINS-I tool. RESULTS A total of 22 trials were included reporting the efficacy and safety outcomes among patients. First, five trials reported outcomes of blood-brain barrier bypass via single or repeated-dose intra-arterial therapy or convection-enhanced delivery. Second, external beam radiation regimens were assessed for safety and efficacy in three trials. Third, four trials administered intravenous treatment without using chemotherapeutic regimens. Fourth, eight trials reported the combinations of one or more chemotherapeutic agents. Fifth, immunotherapy was reported in two trials in an adjuvant monotherapy in the post-radiotherapy setting. CONCLUSION This research article captures a clinical picture of the last five years of the direction toward which DIPG research is heading. The article finds that re-irradiation may prolong survival in patients with progressive DIPG; it also instills that insofar palliative radiotherapy has been a key prognostic choice.
Collapse
Affiliation(s)
- Shahrukh Farrukh
- Department of Research, Khawaja Muhammad Safdar Medical College, Sialkot 51310, Pakistan
| | - Shagufta Habib
- Department of Research, University Medical and Dental College Faisalabad, Faisalabad 38800, Pakistan
| | - Amna Rafaqat
- Department of Research and Publications, Fatima Jinnah Medical University, Lahore 54000, Pakistan
| | - Zouina Sarfraz
- Department of Research and Publications, Fatima Jinnah Medical University, Lahore 54000, Pakistan
| | - Azza Sarfraz
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi 74000, Pakistan
- Correspondence: (A.S.); (I.C.-O.)
| | | | - Karla Robles-Velasco
- Department of Allergy, Immunology and Pulmonary Medicine, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Miguel Felix
- Department of Internal Medicine, New York City Health + Hospitals, Lincoln, The Bronx, NY 10451, USA
| | - Ivan Cherrez-Ojeda
- Department of Allergy, Immunology and Pulmonary Medicine, Universidad Espíritu Santo, Samborondón 092301, Ecuador
- Correspondence: (A.S.); (I.C.-O.)
| |
Collapse
|
15
|
Perwein T, Giese B, Nussbaumer G, von Bueren AO, van Buiren M, Benesch M, Kramm CM. How I treat recurrent pediatric high-grade glioma (pHGG): a Europe-wide survey study. J Neurooncol 2023; 161:525-538. [PMID: 36720762 PMCID: PMC9992031 DOI: 10.1007/s11060-023-04241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/05/2023] [Indexed: 02/02/2023]
Abstract
PURPOSE As there is no standard of care treatment for recurrent/progressing pediatric high-grade gliomas (pHGG), we aimed to gain an overview of different treatment strategies. METHODS In a web-based questionnaire, members of the SIOPE-BTG and the GPOH were surveyed on therapeutic options in four case scenarios (children/adolescents with recurrent/progressing HGG). RESULTS 139 clinicians with experience in pediatric neuro-oncology from 22 European countries participated in the survey. Most respondents preferred further oncological treatment in three out of four cases and chose palliative care in one case with marked symptoms. Depending on the case, 8-92% would initiate a re-resection (preferably hemispheric pHGG), combined with molecular diagnostics. Throughout all case scenarios, 55-77% recommended (re-)irradiation, preferably local radiotherapy > 20 Gy. Most respondents would participate in clinical trials and use targeted therapy (79-99%), depending on molecular genetic findings (BRAF alterations: BRAF/MEK inhibitor, 64-88%; EGFR overexpression: anti-EGFR treatment, 46%; CDKN2A deletion: CDK inhibitor, 18%; SMARCB1 deletion: EZH2 inhibitor, 12%). 31-72% would administer chemotherapy (CCNU, 17%; PCV, 8%; temozolomide, 19%; oral etoposide/trofosfamide, 8%), and 20-69% proposed immunotherapy (checkpoint inhibitors, 30%; tumor vaccines, 16%). Depending on the individual case, respondents would also include bevacizumab (6-18%), HDAC inhibitors (4-15%), tumor-treating fields (1-26%), and intraventricular chemotherapy (4-24%). CONCLUSION In each case, experts would combine conventional multimodal treatment concepts, including re-irradiation, with targeted therapy based on molecular genetic findings. International cooperative trials combining a (chemo-)therapy backbone with targeted therapy approaches for defined subgroups may help to gain valid clinical data and improve treatment in pediatric patients with recurrent/progressing HGG.
Collapse
Affiliation(s)
- Thomas Perwein
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria.
| | - Barbara Giese
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria
| | - Gunther Nussbaumer
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria
| | - André O von Bueren
- Department of Pediatrics, Obstetrics and Gynecology, Division of Pediatric Hematology and Oncology, University Hospital of Geneva, Geneva, Switzerland
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| | - Miriam van Buiren
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Martin Benesch
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria
| | - Christof Maria Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
Di Nunno V, Franceschi E, Gatto L, Tosoni A, Bartolini S, Brandes AA. How to treat histone 3 altered gliomas: molecular landscape and therapeutic developments. Expert Rev Clin Pharmacol 2023; 16:17-26. [PMID: 36576307 DOI: 10.1080/17512433.2023.2163385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Diffuse midline gliomas (DMG) and diffuse hemispheric glioma (DHG) are both rare tumors characterized and recognized for specific alterations of histone 3 including H3K27 (DMG) and H3G34 (DHG). Despite these tumors arising from alterations of the same gene their clinical, radiological, and molecular behaviors strongly diverge, requiring a personalized therapeutic approach. AREAS COVERED We performed a review on Medline/PudMed aiming to search papers relative to prospective trials, retrospective studies, case series, and case reports of interest in order to investigate current knowledge toward the main clinical and molecular characteristics, radiology, and diagnosis, loco-regional and systemic treatments of these tumors. Moreover, we also evaluated the novel treatments under investigation. EXPERT OPINION Thanks to an increased knowledge of the genomic landscape of these rare tumors, there are novels promising therapeutic targets for these malignancies. However, the majority of available trials allowed enrollment only in DMG, while few studies are focused on or allow the inclusion of DHG patients.
Collapse
Affiliation(s)
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Italy
| | - Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Italy
| |
Collapse
|
17
|
Askr H, Elgeldawi E, Aboul Ella H, Elshaier YAMM, Gomaa MM, Hassanien AE. Deep learning in drug discovery: an integrative review and future challenges. Artif Intell Rev 2022; 56:5975-6037. [PMID: 36415536 PMCID: PMC9669545 DOI: 10.1007/s10462-022-10306-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
Recently, using artificial intelligence (AI) in drug discovery has received much attention since it significantly shortens the time and cost of developing new drugs. Deep learning (DL)-based approaches are increasingly being used in all stages of drug development as DL technology advances, and drug-related data grows. Therefore, this paper presents a systematic Literature review (SLR) that integrates the recent DL technologies and applications in drug discovery Including, drug-target interactions (DTIs), drug-drug similarity interactions (DDIs), drug sensitivity and responsiveness, and drug-side effect predictions. We present a review of more than 300 articles between 2000 and 2022. The benchmark data sets, the databases, and the evaluation measures are also presented. In addition, this paper provides an overview of how explainable AI (XAI) supports drug discovery problems. The drug dosing optimization and success stories are discussed as well. Finally, digital twining (DT) and open issues are suggested as future research challenges for drug discovery problems. Challenges to be addressed, future research directions are identified, and an extensive bibliography is also included.
Collapse
Affiliation(s)
- Heba Askr
- Faculty of Computers and Artificial Intelligence, University of Sadat City, Sadat City, Egypt
| | - Enas Elgeldawi
- Computer Science Department, Faculty of Science, Minia University, Minia, Egypt
| | - Heba Aboul Ella
- Faculty of Pharmacy and Drug Technology, Chinese University in Egypt (CUE), Cairo, Egypt
| | | | - Mamdouh M. Gomaa
- Computer Science Department, Faculty of Science, Minia University, Minia, Egypt
| | - Aboul Ella Hassanien
- Faculty of Computers and Artificial Intelligence, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Petroni G, Cantley LC, Santambrogio L, Formenti SC, Galluzzi L. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nat Rev Clin Oncol 2022; 19:114-131. [PMID: 34819622 PMCID: PMC9004227 DOI: 10.1038/s41571-021-00579-w] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 02/03/2023]
Abstract
A variety of targeted anticancer agents have been successfully introduced into clinical practice, largely reflecting their ability to inhibit specific molecular alterations that are required for disease progression. However, not all malignant cells rely on such alterations to survive, proliferate, disseminate and/or evade anticancer immunity, implying that many tumours are intrinsically resistant to targeted therapies. Radiotherapy is well known for its ability to activate cytotoxic signalling pathways that ultimately promote the death of cancer cells, as well as numerous cytoprotective mechanisms that are elicited by cellular damage. Importantly, many cytoprotective mechanisms elicited by radiotherapy can be abrogated by targeted anticancer agents, suggesting that radiotherapy could be harnessed to enhance the clinical efficacy of these drugs. In this Review, we discuss preclinical and clinical data that introduce radiotherapy as a tool to elicit or amplify clinically actionable signalling pathways in patients with cancer.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lewis C Cantley
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
19
|
Parenrengi MA, Suryaningtyas W, Al Fauzi A, Hafid Bajamal A, Kusumastuti K, Utomo B, Muslim Hidayat Thamrin A, Sulistiono B. Nimotuzumab as Additional Therapy for GLIOMA in Pediatric and Adolescent: A Systematic Review. Cancer Control 2022; 29:10732748211053927. [PMID: 35191733 PMCID: PMC8874160 DOI: 10.1177/10732748211053927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Pediatric gliomas represent the most common brain tumor in children and its higher grades are associated with higher recurrence and low survival rate. All therapeutic modalities are reported to be insufficient to achieve satisfactory result, with follow-up treatment such as adjuvant radiotherapy and chemotherapy recommended to increase survival and hinder tumor progression. Nimotuzumab is a monoclonal antibody that acts as an inhibitor of epidermal growth factor receptor found on the surface of glioma cells and had been studied for its usage in pediatric gliomas in recent years. METHODS A systematic review is performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A through literature search was conducted on PubMed, Scopus, Cochrane, and clinicaltrials.gov database. Articles were selected systematically based on the PRISMA protocol and reviewed completely. The relevant data were summarized and discussed. We measured overall survival, progression-free survival, and adverse Events (AE) for nimotuzumab usage as an adjunct therapy in pediatric glioma population. RESULT From 5 studies included for qualitative analysis, 151 patients are included with overall survival (OS) that vary from 3.2-22.8 mo, progression-free survival (PFS) from 1.7-21.6 mo, and relatively low serious adverse events (0-21) are recorded. Follow-up ranged from 2.4-66 mo with four studies reporting diffuse intrinsic pontine glioma (DIPG) patients and only one study reporting nimotuzumab usage in pediatric high-grade glioma (HGG) patients with better outcome in HGG patients than DIPG. CONCLUSION There are no significant differences in the PFS and OS of nimotuzumab as adjunct therapy for pediatric compared to result of standard therapy in majority of previous studies. There were also no differences in the AE of nimotuzumab for pediatric glioma between studies, and low event of serious adverse events indicating its safety. But still there is an evidence of possible benefit of nimotuzumab as adjuvant therapy in pediatric glioma. We recommend further studies with larger number of patients that may lead to possibly different results. There should also be more studies with better level of evidence to further validate the effect of nimozutumab on pediatric glioma.
Collapse
Affiliation(s)
- Muhammad A Parenrengi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Wihasto Suryaningtyas
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Asra Al Fauzi
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Abdul Hafid Bajamal
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Kurnia Kusumastuti
- Department of Neurology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Budi Utomo
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ahmad Muslim Hidayat Thamrin
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Bagus Sulistiono
- Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
20
|
Hayden E, Holliday H, Lehmann R, Khan A, Tsoli M, Rayner BS, Ziegler DS. Therapeutic Targets in Diffuse Midline Gliomas-An Emerging Landscape. Cancers (Basel) 2021; 13:cancers13246251. [PMID: 34944870 PMCID: PMC8699135 DOI: 10.3390/cancers13246251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Diffuse midline gliomas (DMGs) remain one of the most devastating childhood brain tumour types, for which there is currently no known cure. In this review we provide a summary of the existing knowledge of the molecular mechanisms underlying the pathogenesis of this disease, highlighting current analyses and novel treatment propositions. Together, the accumulation of these data will aid in the understanding and development of more effective therapeutic options for the treatment of DMGs. Abstract Diffuse midline gliomas (DMGs) are invariably fatal pediatric brain tumours that are inherently resistant to conventional therapy. In recent years our understanding of the underlying molecular mechanisms of DMG tumorigenicity has resulted in the identification of novel targets and the development of a range of potential therapies, with multiple agents now being progressed to clinical translation to test their therapeutic efficacy. Here, we provide an overview of the current therapies aimed at epigenetic and mutational drivers, cellular pathway aberrations and tumor microenvironment mechanisms in DMGs in order to aid therapy development and facilitate a holistic approach to patient treatment.
Collapse
Affiliation(s)
- Elisha Hayden
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Holly Holliday
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Rebecca Lehmann
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Aaminah Khan
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Maria Tsoli
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Benjamin S. Rayner
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-1730; Fax: +61-2-9382-1789
| |
Collapse
|
21
|
Wu Q, Zhu C, Zhang S, Zhou Y, Zhong Y. Hematological Toxicities of Concurrent Chemoradiotherapies in Head and Neck Cancers: Comparison Among Cisplatin, Nedaplatin, Lobaplatin, and Nimotuzumab. Front Oncol 2021; 11:762366. [PMID: 34746003 PMCID: PMC8566976 DOI: 10.3389/fonc.2021.762366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cisplatin-based concurrent chemoradiotherapy is standard of care for locally advanced head and neck cancers (LAHNC). Nedaplatin, lobaplatin and nimotuzumab have shown anti-cancer effect with less gastrointestinal toxicity and nephrotoxicity. However, the profile of hematological toxicities of these agents in combination with radiotherapy has not been fully illustrated. METHODS We retrospectively collected the clinical data of consecutive LAHNC patients treated by cisplatin-, nedaplatin-, lobaplatin-, and nimotuzumab-based concurrent chemoradiotherapy. Routine blood cell counts were obtained every 4 to 7 days. Hematological toxicities were graded according to the Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. RESULTS A total of 181 eligible LAHNC patients were assigned to nimotuzumab group (n = 34), cisplatin group (n = 52), nedaplatin group (n = 62) or lobaplatin group (n = 33). Among the four groups, nimotuzumab group displayed lightest hematological toxicities, followed by cisplatin group, nedaplatin group, and lobaplatin group. Lobaplatin was more likely to produce grade 3/4 leukopenia compared with cisplatin (48.5% vs 25.0%). Compared with cisplatin, nedaplatin and lobaplatin were more likely to cause grade 3/4 thrombocytopenia (nedaplatin 19.4% vs cisplatin 3.8%; lobaplatin 30.3% vs cisplatin 3.8%). Similarly, nimotuzumab group showed highest nadir levels among the four groups, followed by cisplatin, nedaplatin, and lobaplatin group. Moreover, concurrent platinum treatment and induction chemotherapy were risk factors of developing grade 3/4 hematological toxicities. CONCLUSION Nimotuzumab-based concurrent chemoradiotherapy in head and neck cancers produced the lightest hematological toxicities, followed by cisplatin, nedaplatin, and lobaplatin. Patients should be given specific attention during concurrent chemoradiotherapy, particularly in the presence of previous induction chemotherapy.
Collapse
Affiliation(s)
| | | | | | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yahua Zhong
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Argersinger DP, Rivas SR, Shah AH, Jackson S, Heiss JD. New Developments in the Pathogenesis, Therapeutic Targeting, and Treatment of H3K27M-Mutant Diffuse Midline Glioma. Cancers (Basel) 2021; 13:cancers13215280. [PMID: 34771443 PMCID: PMC8582453 DOI: 10.3390/cancers13215280] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
H3K27M-mutant diffuse midline gliomas (DMGs) are rare childhood central nervous system tumors that carry a dismal prognosis. Thus, innovative treatment approaches are greatly needed to improve clinical outcomes for these patients. Here, we discuss current trends in research of H3K27M-mutant diffuse midline glioma. This review highlights new developments of molecular pathophysiology for these tumors, as they relate to epigenetics and therapeutic targeting. We focus our discussion on combinatorial therapies addressing the inherent complexity of treating H3K27M-mutant diffuse midline gliomas and incorporating recent advances in immunotherapy, molecular biology, genetics, radiation, and stereotaxic surgical diagnostics.
Collapse
|
23
|
Ozerov SS, Ryzhova MV, Kumirova EV. [Diffuse brainstem tumors in children. Tumor biology and hope for a better outcome. Current state of the problem]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2021; 85:77-86. [PMID: 34463454 DOI: 10.17116/neiro20218504177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diffuse brainstem tumor is a fatal disease and the main cause of child mortality from neoplasms of central nervous system. So far, no effective therapy has been found for this disease. The authors discuss the modern aspects of clinical data, biology, diagnosis and treatment of patients with diffuse brainstem tumors.
Collapse
Affiliation(s)
- S S Ozerov
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - M V Ryzhova
- Burdenko Neurosurgical Center, Moscow, Russia
| | - E V Kumirova
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
24
|
Metselaar DS, du Chatinier A, Stuiver I, Kaspers GJL, Hulleman E. Radiosensitization in Pediatric High-Grade Glioma: Targets, Resistance and Developments. Front Oncol 2021; 11:662209. [PMID: 33869066 PMCID: PMC8047603 DOI: 10.3389/fonc.2021.662209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
Pediatric high-grade gliomas (pHGG) are the leading cause of cancer-related death in children. These epigenetically dysregulated tumors often harbor mutations in genes encoding histone 3, which contributes to a stem cell-like, therapy-resistant phenotype. Furthermore, pHGG are characterized by a diffuse growth pattern, which, together with their delicate location, makes complete surgical resection often impossible. Radiation therapy (RT) is part of the standard therapy against pHGG and generally the only modality, apart from surgery, to provide symptom relief and a delay in tumor progression. However, as a single treatment modality, RT still offers no chance for a cure. As with most therapeutic approaches, irradiated cancer cells often acquire resistance mechanisms that permit survival or stimulate regrowth after treatment, thereby limiting the efficacy of RT. Various preclinical studies have investigated radiosensitizers in pHGG models, without leading to an improved clinical outcome for these patients. However, our recently improved molecular understanding of pHGG generates new opportunities to (re-)evaluate radiosensitizers in these malignancies. Furthermore, the use of radio-enhancing agents has several benefits in pHGG compared to other cancers, which will be discussed here. This review provides an overview and a critical evaluation of the radiosensitization strategies that have been studied to date in pHGG, thereby providing a framework for improving radiosensitivity of these rapidly fatal brain tumors.
Collapse
Affiliation(s)
- Dennis S Metselaar
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Aimée du Chatinier
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Iris Stuiver
- Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Gertjan J L Kaspers
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Esther Hulleman
- Department of Neuro-oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
25
|
Radio-Resistance and DNA Repair in Pediatric Diffuse Midline Gliomas. Cancers (Basel) 2020; 12:cancers12102813. [PMID: 33007840 PMCID: PMC7600397 DOI: 10.3390/cancers12102813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Malignant gliomas (MG) are among the most prevalent and lethal primary intrinsic brain tumors. Although radiotherapy (RT) is the most effective nonsurgical therapy, recurrence is universal. Dysregulated DNA damage response pathway (DDR) signaling, rampant genomic instability, and radio-resistance are among the hallmarks of MGs, with current therapies only offering palliation. A subgroup of pediatric high-grade gliomas (pHGG) is characterized by H3K27M mutation, which drives global loss of di- and trimethylation of histone H3K27. Here, we review the most recent literature and discuss the key studies dissecting the molecular biology of H3K27M-mutated gliomas in children. We speculate that the aberrant activation and/or deactivation of some of the key components of DDR may be synthetically lethal to H3K27M mutation and thus can open novel avenues for effective therapeutic interventions for patients suffering from this deadly disease.
Collapse
|
26
|
ErBb Family Proteins in Cholangiocarcinoma and Clinical Implications. J Clin Med 2020; 9:jcm9072255. [PMID: 32708604 PMCID: PMC7408920 DOI: 10.3390/jcm9072255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
The erythroblastic leukemia viral oncogene homolog (ErBb) family consists of the receptor tyrosine kinases (RTK) epidermal growth factor receptor (EGFR; also called ERBB1), ERBB2, ERBB3, and ERBB4. This family is closely associated with the progression of cholangiocarcinoma (CC) through the regulation of cellular networks, which are enhanced during tumorigenesis, metastasis, and chemoresistance. Additionally, the constitutive activation of cellular signaling by the overexpression and somatic mutation-mediated alterations conferred by the ErBb family on cholangiocarcinoma and other cancers enhances tumor aggressiveness and chemoresistance by contributing to the tumor microenvironment. This review summarizes the recent findings on the molecular functions of the ErBb family and their mutations during the progression of cholangiocarcinoma. It also discusses the developments and applications of various devising strategies for targeting the ErBb family through different inhibitors in various stages of clinical trials, which are essential for improving targeted clinical therapies.
Collapse
|
27
|
Sun Y, Bailey CP, Sadighi Z, Zaky W, Chandra J. Pediatric high-grade glioma: aberrant epigenetics and kinase signaling define emerging therapeutic opportunities. J Neurooncol 2020; 150:17-26. [PMID: 32504402 PMCID: PMC10141680 DOI: 10.1007/s11060-020-03546-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Supratentorial pediatric high-grade gliomas (pHGGs) are aggressive malignancies that lack effective treatment options. Deep genomic sequencing by multiple groups has revealed that the primary alterations unique to pHGGs occur in epigenetic and kinase genes. These mutations, fusions, and deletions present a therapeutic opportunity by use of small molecules targeting epigenetic modifiers and kinases that contribute to pHGG growth. METHODS Using a targeted search of the pre-clinical literature and clinicaltrials.gov for kinase and epigenetic pathways in pHGG, we collectively describe how these mechanisms are being targeted in pre-clinical animal models and in current clinical trials, as well as propose unexplored therapeutic possibilities for future investigations. RESULTS Relevant pHGG kinases are targetable by several FDA-approved or clinical-stage kinase inhibitors, including altered BRAF/MET/NTRK/ALK and wild-type PI3K/EGFR/PDGFR/VEGF/AXL. Epigenetic proteins implicated in pHGG are also clinically targetable and include histone erasers, writers and readers such as HDACs, demethylases LSD1/JMJD3, methyltransferase EZH2, chromatin reader bromodomains, and chromatin remodeler subunit BMI-1. Crosstalk between these pathways can occur involving kinases such as EGFR and AMPK interacting with epigenetic modifiers such as HDACs or EZH2. Single agent trial results of kinase inhibitors or epigenetic targets alone are underwhelming and hampered by poor pharmacokinetics, adaptive resistance, and broad inclusion criteria. CONCLUSIONS The genetic and phenotypic diversity of pHGGs is now well characterized after large-scale sequencing studies on patient tissue. However, clinical treatment paradigms have not yet shifted in response to this information. Combination therapies targeting multiple kinases or epigenetic targets may hold more promise, especially if attempted in selected patient populations with hemispheric pHGG tumors and relevant targeted therapeutic biomarkers.
Collapse
Affiliation(s)
- Yusha Sun
- Department of Pediatrics - Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 853, Houston, TX, 77030, USA
| | - Cavan P Bailey
- Department of Pediatrics - Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 853, Houston, TX, 77030, USA
| | - Zsila Sadighi
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Wafik Zaky
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Joya Chandra
- Department of Pediatrics - Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 853, Houston, TX, 77030, USA. .,Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 853, Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Tyson RJ, Park CC, Powell JR, Patterson JH, Weiner D, Watkins PB, Gonzalez D. Precision Dosing Priority Criteria: Drug, Disease, and Patient Population Variables. Front Pharmacol 2020; 11:420. [PMID: 32390828 PMCID: PMC7188913 DOI: 10.3389/fphar.2020.00420] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
The administered dose of a drug modulates whether patients will experience optimal effectiveness, toxicity including death, or no effect at all. Dosing is particularly important for diseases and/or drugs where the drug can decrease severe morbidity or prolong life. Likewise, dosing is important where the drug can cause death or severe morbidity. Since we believe there are many examples where more precise dosing could benefit patients, it is worthwhile to consider how to prioritize drug-disease targets. One key consideration is the quality of information available from which more precise dosing recommendations can be constructed. When a new more precise dosing scheme is created and differs significantly from the approved label, it is important to consider the level of proof necessary to either change the label and/or change clinical practice. The cost and effort needed to provide this proof should also be considered in prioritizing drug-disease precision dosing targets. Although precision dosing is being promoted and has great promise, it is underutilized in many drugs and disease states. Therefore, we believe it is important to consider how more precise dosing is going to be delivered to high priority patients in a timely manner. If better dosing schemes do not change clinical practice resulting in better patient outcomes, then what is the use? This review paper discusses variables to consider when prioritizing precision dosing candidates while highlighting key examples of precision dosing that have been successfully used to improve patient care.
Collapse
Affiliation(s)
- Rachel J. Tyson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Christine C. Park
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - J. Robert Powell
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - J. Herbert Patterson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Daniel Weiner
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Paul B. Watkins
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute for Drug Safety Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
29
|
Giagnacovo M, Antonelli M, Biassoni V, Schiavello E, Warmuth-Metz M, Buttarelli FR, Modena P, Massimino M. Retrospective analysis on the consistency of MRI features with histological and molecular markers in diffuse intrinsic pontine glioma (DIPG). Childs Nerv Syst 2020; 36:697-704. [PMID: 31848724 DOI: 10.1007/s00381-019-04463-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/29/2019] [Indexed: 11/30/2022]
Abstract
PURPOSE The diagnosis of diffuse intrinsic pontine glioma (DIPG) is based largely on a combination of clinical and radiological findings due to the difficulty of obtaining a biopsy. An accurate evaluation of magnetic resonance imaging (MRI) scans is consequently essential. Recent analyses on the genomic landscape of DIPG revealed recurrent mutations in the H3F3A and HIST1H3B histone genes. We reviewed cases with available tumor tissue from institutional DIPG series to ascertain the consistency between their histo-molecular findings and clinical-radiological features. METHODS We conducted a radiological and pathological central review of 22 cases enrolled in institutional DIPG trials. We performed immunohistochemical analyses to detect H3F3A/HIST1H3B K27M mutations, histone trimethylation, and EZH2 expression. Mutational analysis was performed for ACVR1, H3F3A, and HIST1H3B genes. RESULTS Patients' median age at diagnosis was 8 years, and their median overall survival was 11 months. Nineteen/22 cases (86%) showed evidence of K27M mutation on immunohistochemistry and/or mutation analysis. Histone trimethylation expression was low or lacking in these mutated cases. Sequence analysis revealed 13 cases with H3F3A and 1 case with HIST1H3B K27M mutation. There was no significant difference in EZH2 expression between the K27M mutant and wild-type DIPGs. Upon external, blinded MRI re-evaluation one lesion not consistent with DIPG showed no evidence of K27M mutation and retained histone trimethylation expression. CONCLUSION In conclusion, our study demonstrates a high frequency of histone K27M mutations in DIPG when MRI features are carefully assessed, thus confirming the consistency of imaging with biological markers in our institutional series of DIPG.
Collapse
Affiliation(s)
| | - Manila Antonelli
- Department of Radiological, Oncological and Anatomo-pathological Sciences, Sapienza University, Rome, Italy
| | - Veronica Biassoni
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Schiavello
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monika Warmuth-Metz
- Reference Center for Neuroradiology, Würzburg University Hospital, Würzburg, Germany
| | - Francesca R Buttarelli
- Department of Radiological, Oncological and Anatomo-pathological Sciences, Sapienza University, Rome, Italy
| | | | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
30
|
Meel MH, Kaspers GJL, Hulleman E. Preclinical therapeutic targets in diffuse midline glioma. Drug Resist Updat 2019; 44:15-25. [PMID: 31202081 DOI: 10.1016/j.drup.2019.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022]
Abstract
Diffuse midline gliomas (DMG) are rapidly fatal tumors of the midbrain in children, characterized by a diffuse growing pattern and high levels of intrinsic resistance to therapy. The location of these tumors, residing behind the blood-brain barrier (BBB), and the limited knowledge about the biology of these tumors, has hindered the development of effective treatment strategies. However, the introduction of diagnostic biopsies and the implementation of autopsy protocols in several large centers world-wide has allowed for a detailed characterization of these rare tumors. This has resulted in the identification of novel therapeutic targets, as well as major advances in understanding the biology of DMG in relation to therapy resistance. We here provide an overview of the cellular pathways and tumor-specific aberrations that have been targeted in preclinical DMG research, and discuss the advantages and limitations of these therapeutic strategies in relation to therapy resistance and BBB-penetration. Therewith, we aim to provide researchers with a framework for successful preclinical therapy development.
Collapse
Affiliation(s)
- Michaël Hananja Meel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, the Netherlands
| | - Gertjan J L Kaspers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, the Netherlands
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, the Netherlands.
| |
Collapse
|