1
|
Politis A, Stavrinou L, Kalyvas A, Boviatsis E, Piperi C. Glioblastoma: molecular features, emerging molecular targets and novel therapeutic strategies. Crit Rev Oncol Hematol 2025; 212:104764. [PMID: 40368035 DOI: 10.1016/j.critrevonc.2025.104764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/01/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025] Open
Abstract
Glioblastomas (GBMs) constitute the most common malignant tumors of the Central Nervous System (CNS) with a complex molecular, genetic and histological profile and extensive heterogenicity. GBMs are notoriously difficult to treat, with morbidity and mortality rate that remain high and practically unchanged, despite the aggressive and multimodal treatment strategies. Keeping up with current research and emerging scientific data is of primary importance for the detection of new molecular targets, enabling the design of novel therapeutic strategies. Herein, we discuss current data on the cellular and molecular features that contribute to GBM pathophysiological mechanisms in an effort to reveal emerging molecular targets with therapeutic potential as well as effective immunotherapeutic approaches, including chimeric antigen receptor (CAR) T-cell therapy and adaptive immune modulation with immune checkpoint inhibitors. Enhanced drug delivery strategies such as ultrasound-assisted technologies to overcome drug resistance are also discussed, aiming to provide an overall translational perspective that bridges molecular insights with practical therapeutic implications.
Collapse
Affiliation(s)
- Anastasios Politis
- Second Department of Neurosurgery, "Attikon" University Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Lampis Stavrinou
- Second Department of Neurosurgery, "Attikon" University Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Aristotelis Kalyvas
- Second Department of Neurosurgery, "Attikon" University Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; Division of Neurosurgery, Department of Surgery, Temetry Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Efstathios Boviatsis
- Second Department of Neurosurgery, "Attikon" University Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
2
|
Mahdi A, Aittaleb M, Tissir F. Targeting Glioma Stem Cells: Therapeutic Opportunities and Challenges. Cells 2025; 14:675. [PMID: 40358199 PMCID: PMC12072158 DOI: 10.3390/cells14090675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/25/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
Glioblastoma (GBM), or grade 4 glioma, is the most common and aggressive primary brain tumor in adults with a median survival of 15 months. Increasing evidence suggests that GBM's aggressiveness, invasiveness, and therapy resistance are driven by glioma stem cells (GSCs), a subpopulation of tumor cells that share molecular and functional characteristics with neural stem cells (NSCs). GSCs are heterogeneous and highly plastic. They evade conventional treatments by shifting their state and entering in quiescence, where they become metabolically inactive and resistant to radiotherapy and chemotherapy. GSCs can exit quiescence and be reactivated to divide into highly proliferative tumor cells which contributes to recurrence. Understanding the molecular mechanisms regulating the biology of GSCs, their plasticity, and the switch between quiescence and mitotic activity is essential to shape new therapeutic strategies. This review examines the latest evidence on GSC biology, their role in glioblastoma progression and recurrence, emerging therapeutic approaches aimed at disrupting their proliferation and survival, and the mechanisms underlying their resistance to therapy.
Collapse
Affiliation(s)
| | | | - Fadel Tissir
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Education City, Doha P.O. Box 5825, Qatar; (A.M.); (M.A.)
| |
Collapse
|
3
|
Ismail DF, El-Keey MM, Elgendy SM, Hessien M. Impregnation of mesenchymal stem cell conditioned media with wortmannin enhanced its antiproliferative effect in breast cancer cells via PI3K/Akt/mTOR pathway. BMC Res Notes 2025; 18:93. [PMID: 40038752 PMCID: PMC11877855 DOI: 10.1186/s13104-025-07124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND/AIM Conditioned media derived from Mesenchymal stem cells (MSC-CM) was suggested as a promising alternative cell-free regenerative therapy. It is hypothesized that the synergistic effect of MSC-CM with anticancer drugs may improve their antiproliferative and antimetastatic effects against cancer cells. Herein, the MSC-CM was impregnated with Wortmannin, a pan-PI3K/Akt/mTOR inhibitor, and their combined effect was investigated against breast cancer cells. MATERIALS AND METHODS To explore this, the cytotoxic, apoptotic, and autophagic potentials were assessed in luminal-A breast cancer cells (MCF-7). RESULTS We found that incubation of MCF-7 to Wort-containing-CM induced apoptosis- and autophagy-mediated cell death, meanwhile prolonged exposure caused massive necrotic cell death. The involvement of MSC-CM effectively reduced Wortmannin IC50 observed in Wort-treated cells. Also, Wort-loaded-CM induced nuclear DNA fragmentation and reduced in vitro cell migration. These findings were associated with a Wort-dependent reduction in cell viability, the formation of the phosphorylated Akt and mTOR proteins, reduced the expression of mRNA, and downregulated the expression of the catalytic domain of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K-Ca). CONCLUSION These findings revealed the promising antiproliferative and antimetastasis effects of combining pan-PI3K/Akt/mTOR inhibitors with MSC-derived-CM in breast cancer via the downregulation of PI3K/AKT/mTOR signaling pathways. Further studies are required to validate this chem-regenerative strategy in cancer treatment.
Collapse
Affiliation(s)
- Doha F Ismail
- Molecular Cell Biology Unit, Division of Biochemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mai M El-Keey
- Molecular Cell Biology Unit, Division of Biochemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Saad M Elgendy
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
4
|
Falchook GS, Battiste JD, Kalra A, Shastry M, Finney L, Hoekstra SJ, Shih MG, Shih KC. A phase Ib study evaluating the c-MET inhibitor INC280 (capmatinib) in combination with bevacizumab in patients with high-grade glioma. Neurooncol Adv 2025; 7:vdae220. [PMID: 39925637 PMCID: PMC11805691 DOI: 10.1093/noajnl/vdae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Background To improve survival in patients with high-grade glioma, INC280 (capmatinib) a highly selective and potent oral inhibitor of the MET receptor with robust central nervous system (CNS) penetration, was evaluated in combination with bevacizumab (BEV). Methods There were 2 phases, dose-escalation (3+3 design) and dose-expansion, which included patients (1) who progressed during or after first-line therapy (no prior BEV), (2) who progressed during or after second-line therapy with BEV, and (3) who had unresectable high-grade glioma (no prior BEV). Results Sixty-four patients with high-grade glioma were treated; 18 in escalation cohorts and 46 in expansion Cohorts A (21), B (15), and C (10). The maximum-tolerated dose (MTD) was not reached and the RP2D was 400 mg capmatinib PO BID (800 mg daily). Treatment continued for a median of 14 weeks and up to ~6 years in one patient. Common treatment-related adverse events (65% ≤ Grade 2) included fatigue, peripheral edema, nausea, diarrhea, ALT increased, and constipation. Headaches and seizures occurred in 11 patients; Grade 3+ events included Grade 3 headache (1) and Grade 3 seizures (4). There were no treatment-related deaths. The 12 responders to treatment (2 CRs [1 pt in escalation and 1 pt in Cohort A] and 10 PRs [2 pts in escalation and A = 6, B = 1, and C = 1]) had a median duration of response of 9.2 months. Two patients with durable responses (CR >5 years, PR >1 year) did not harbor baseline c-MET alterations. Conclusion Capmatinib + BEV was well-tolerated but had no clear signal of activity in c-MET non-activated high-grade glioma.
Collapse
Affiliation(s)
- Gerald S Falchook
- Drug Development, Sarah Cannon Research Institute at HealthOne, Denver, CO, USA
| | - James D Battiste
- Neuro-Oncology, Oklahoma University Health, Oklahoma City, OK, USA
| | - Amandeep Kalra
- Medical Oncology, HCA Midwest Kansas City, Kansas City, KS, USA
| | - Mythili Shastry
- Drug Development, Sarah Cannon Research Institute, Nashville, TN, USA
| | - Lindsey Finney
- Drug Development, Sarah Cannon Research Institute, Nashville, TN, USA
| | - Susan J Hoekstra
- Drug Development, Sarah Cannon Research Institute, Nashville, TN, USA
| | - Meredith G Shih
- Greco Hainsworth Centers for Research at Tennessee Oncology, Nashville, TN, USA
| | - Kent C Shih
- Greco Hainsworth Centers for Research at Tennessee Oncology, Nashville, TN, USA
- Drug Development, Sarah Cannon Research Institute, Nashville, TN, USA
| |
Collapse
|
5
|
Wang J, Luo J, Yang S, Deng Y, Chen P, Tan Y, Liu Y. Development and validation of disulfidptosis-related genes signature for patients with glioma. Discov Oncol 2024; 15:758. [PMID: 39692962 DOI: 10.1007/s12672-024-01664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Disulfidptosis has recently emerged as a novel form of regulated cell death (RCD). Evasion of cell death is a hallmark of cancer, and the resistance of many tumors to apoptosis-inducing therapies has heightened interest in exploring alternative RCD mechanisms. METHODS Transcriptomic and clinical data were obtained from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Chinese Glioma Genome Atlas (CGGA). Glioma samples were classified using non-negative matrix factorization (NMF). A predictive model was constructed using Lasso regression analysis, and its performance was evaluated through receiver operating characteristic (ROC) and Kaplan-Meier survival analyses. The relationship between the model and the tumor immune microenvironment (TIME) as well as treatment sensitivity was also assessed. Finally, we validated the expression of key signature genes in glioma. RESULTS Glioma samples were categorized into two distinct subtypes based on disulfidptosis-related genes, showing significant differences in overall survival (OS) and progression-free survival (PFS) between the subtypes. A genetic risk score model was then developed using these genes. A nomogram predicting OS was constructed using the risk score and clinical variables. Patients were stratified into low- and high-risk groups based on the median risk score from the TCGA cohort. Low-risk patients had significantly better outcomes compared to high-risk patients (TCGA cohort, OS: p < 0.001; PFS: p < 0.001; CGGA cohort, OS: p < 0.001). The risk score was associated with HLA expression, immune checkpoint genes, immune cell infiltration, immune function, tumor mutation burden, tumor stemness score, and drug sensitivity. Lastly, the expression of 11 signature genes was confirmed in glioma tissues. CONCLUSIONS The disulfidptosis-related gene-based risk score model effectively predicted glioma outcomes and highlighted the role of disulfidptosis-related genes in tumor immunity. This study offers potential new avenues for glioma treatment by targeting disulfidptosis.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Junchi Luo
- Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Sha Yang
- Guizhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Peng Chen
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Ying Tan
- Zunyi Medical University, Zunyi, Guizhou Province, China
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yang Liu
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China.
| |
Collapse
|
6
|
Jacome MA, Wu Q, Piña Y, Etame AB. Evolution of Molecular Biomarkers and Precision Molecular Therapeutic Strategies in Glioblastoma. Cancers (Basel) 2024; 16:3635. [PMID: 39518074 PMCID: PMC11544870 DOI: 10.3390/cancers16213635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma is the most commonly occurring malignant brain tumor, with a high mortality rate despite current treatments. Its classification has evolved over the years to include not only histopathological features but also molecular findings. Given the heterogeneity of glioblastoma, molecular biomarkers for diagnosis have become essential for initiating treatment with current therapies, while new technologies for detecting specific variations using computational tools are being rapidly developed. Advances in molecular genetics have made possible the creation of tailored therapies based on specific molecular targets, with various degrees of success. This review provides an overview of the latest advances in the fields of histopathology and radiogenomics and the use of molecular markers for management of glioblastoma, as well as the development of new therapies targeting the most common molecular markers. Furthermore, we offer a summary of the results of recent preclinical and clinical trials to recognize the current trends of investigation and understand the possible future directions of molecular targeted therapies in glioblastoma.
Collapse
Affiliation(s)
- Maria A. Jacome
- Departamento de Ciencias Morfológicas Microscópicas, Universidad de Carabobo, Valencia 02001, Venezuela
| | - Qiong Wu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA; (Q.W.); (Y.P.)
| | - Yolanda Piña
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA; (Q.W.); (Y.P.)
| | - Arnold B. Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA; (Q.W.); (Y.P.)
| |
Collapse
|
7
|
Behrmann CA, Ennis KN, Sarma P, Wetzel C, Clark NA, Von Handorf KM, Vallabhapurapu S, Andreani C, Reigle J, Scaglioni PP, Meller J, Czyzyk-Krzeska MF, Kendler A, Qi X, Sarkaria JN, Medvedovic M, Sengupta S, Dasgupta B, Plas DR. Coordinated Targeting of S6K1/2 and AXL Disrupts Pyrimidine Biosynthesis in PTEN-Deficient Glioblastoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:2215-2227. [PMID: 39087397 PMCID: PMC11342319 DOI: 10.1158/2767-9764.crc-23-0631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/20/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Intrinsic resistance to targeted therapeutics in PTEN-deficient glioblastoma (GBM) is mediated by redundant signaling networks that sustain critical metabolic functions. Here, we demonstrate that coordinated inhibition of the ribosomal protein S6 kinase 1 (S6K1) and the receptor tyrosine kinase AXL using LY-2584702 and BMS-777607 can overcome network redundancy to reduce GBM tumor growth. This combination of S6K1 and AXL inhibition suppressed glucose flux to pyrimidine biosynthesis. Genetic inactivation studies to map the signaling network indicated that both S6K1 and S6K2 transmit growth signals in PTEN-deficient GBM. Kinome-wide ATP binding analysis in inhibitor-treated cells revealed that LY-2584702 directly inhibited S6K1, and substrate phosphorylation studies showed that BMS-777607 inactivation of upstream AXL collaborated to reduce S6K2-mediated signal transduction. Thus, combination targeting of S6K1 and AXL provides a kinase-directed therapeutic approach that circumvents signal transduction redundancy to interrupt metabolic function and reduce growth of PTEN-deficient GBM. SIGNIFICANCE Therapy for glioblastoma would be advanced by incorporating molecularly targeted kinase-directed agents, similar to standard of care strategies in other tumor types. Here, we identify a kinase targeting approach to inhibit the metabolism and growth of glioblastoma.
Collapse
Affiliation(s)
- Catherine A. Behrmann
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Kelli N. Ennis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Pranjal Sarma
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Collin Wetzel
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Nicholas A. Clark
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Kate M. Von Handorf
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Subrahmanya Vallabhapurapu
- Division of Hematology-Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- UC Brain Tumor Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Cristina Andreani
- Division of Hematology-Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - James Reigle
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Pier Paolo Scaglioni
- Division of Hematology-Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Jarek Meller
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Maria F. Czyzyk-Krzeska
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- Department of Veterans Affairs, Cincinnati Veteran Affairs Medical Center, Cincinnati, Ohio.
- Department of Pharmacology and Systems Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Ady Kendler
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Xiaoyang Qi
- Division of Hematology-Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- UC Brain Tumor Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Mario Medvedovic
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Soma Sengupta
- UC Brain Tumor Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- Departments of Neurology and Neurosurgery, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.
| | - Biplab Dasgupta
- UC Brain Tumor Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio.
| | - David R. Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- UC Brain Tumor Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
8
|
Pridham KJ, Hutchings KR, Beck P, Liu M, Xu E, Saechin E, Bui V, Patel C, Solis J, Huang L, Tegge A, Kelly DF, Sheng Z. Selective regulation of chemosensitivity in glioblastoma by phosphatidylinositol 3-kinase beta. iScience 2024; 27:109921. [PMID: 38812542 PMCID: PMC11133927 DOI: 10.1016/j.isci.2024.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Resistance to chemotherapies such as temozolomide is a major hurdle to effectively treat therapy-resistant glioblastoma. This challenge arises from the activation of phosphatidylinositol 3-kinase (PI3K), which makes it an appealing therapeutic target. However, non-selectively blocking PI3K kinases PI3Kα/β/δ/γ has yielded undesired clinical outcomes. It is, therefore, imperative to investigate individual kinases in glioblastoma's chemosensitivity. Here, we report that PI3K kinases were unequally expressed in glioblastoma, with levels of PI3Kβ being the highest. Patients deficient of O6-methylguanine-DNA-methyltransferase (MGMT) and expressing elevated levels of PI3Kβ, defined as MGMT-deficient/PI3Kβ-high, were less responsive to temozolomide and experienced poor prognosis. Consistently, MGMT-deficient/PI3Kβ-high glioblastoma cells were resistant to temozolomide. Perturbation of PI3Kβ, but not other kinases, sensitized MGMT-deficient/PI3Kβ-high glioblastoma cells or tumors to temozolomide. Moreover, PI3Kβ-selective inhibitors and temozolomide synergistically mitigated the growth of glioblastoma stem cells. Our results have demonstrated an essential role of PI3Kβ in chemoresistance, making PI3Kβ-selective blockade an effective chemosensitizer for glioblastoma.
Collapse
Affiliation(s)
- Kevin J. Pridham
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Kasen R. Hutchings
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Patrick Beck
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Min Liu
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Eileen Xu
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Erin Saechin
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Vincent Bui
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Chinkal Patel
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Jamie Solis
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Leah Huang
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Allison Tegge
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - Zhi Sheng
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Faculty of Health Science, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
9
|
Smerdi D, Moutafi M, Kotsantis I, Stavrinou LC, Psyrri A. Overcoming Resistance to Temozolomide in Glioblastoma: A Scoping Review of Preclinical and Clinical Data. Life (Basel) 2024; 14:673. [PMID: 38929657 PMCID: PMC11204771 DOI: 10.3390/life14060673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma (GB) is the most common and most aggressive primary brain tumor in adults, with an overall survival almost 14.6 months. Optimal resection followed by combined temozolomide chemotherapy and radiotherapy, also known as Stupp protocol, remains the standard of treatment; nevertheless, resistance to temozolomide, which can be obtained throughout many molecular pathways, is still an unsurpassed obstacle. Several factors influence the efficacy of temozolomide, including the involvement of other DNA repair systems, aberrant signaling pathways, autophagy, epigenetic modifications, microRNAs, and extracellular vesicle production. The blood-brain barrier, which serves as both a physical and biochemical obstacle, the tumor microenvironment's pro-cancerogenic and immunosuppressive nature, and tumor-specific characteristics such as volume and antigen expression, are the subject of ongoing investigation. In this review, preclinical and clinical data about temozolomide resistance acquisition and possible ways to overcome chemoresistance, or to treat gliomas without restoration of chemosensitinity, are evaluated and presented. The objective is to offer a thorough examination of the clinically significant molecular mechanisms and their intricate interrelationships, with the aim of enhancing understanding to combat resistance to TMZ more effectively.
Collapse
Affiliation(s)
- Dimitra Smerdi
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Myrto Moutafi
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Ioannis Kotsantis
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Lampis C. Stavrinou
- Department of Neurosurgery and Neurotraumatology, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Amanda Psyrri
- Department of Medical Oncology, Second Department of Internal Medicine, “Attikon” University General Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
10
|
Shen Y, Thng DKH, Wong ALA, Toh TB. Mechanistic insights and the clinical prospects of targeted therapies for glioblastoma: a comprehensive review. Exp Hematol Oncol 2024; 13:40. [PMID: 38615034 PMCID: PMC11015656 DOI: 10.1186/s40164-024-00512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Glioblastoma (GBM) is a fatal brain tumour that is traditionally diagnosed based on histological features. Recent molecular profiling studies have reshaped the World Health Organization approach in the classification of central nervous system tumours to include more pathogenetic hallmarks. These studies have revealed that multiple oncogenic pathways are dysregulated, which contributes to the aggressiveness and resistance of GBM. Such findings have shed light on the molecular vulnerability of GBM and have shifted the disease management paradigm from chemotherapy to targeted therapies. Targeted drugs have been developed to inhibit oncogenic targets in GBM, including receptors involved in the angiogenic axis, the signal transducer and activator of transcription 3 (STAT3), the PI3K/AKT/mTOR signalling pathway, the ubiquitination-proteasome pathway, as well as IDH1/2 pathway. While certain targeted drugs showed promising results in vivo, the translatability of such preclinical achievements in GBM remains a barrier. We also discuss the recent developments and clinical assessments of targeted drugs, as well as the prospects of cell-based therapies and combinatorial therapy as novel ways to target GBM. Targeted treatments have demonstrated preclinical efficacy over chemotherapy as an alternative or adjuvant to the current standard of care for GBM, but their clinical efficacy remains hindered by challenges such as blood-brain barrier penetrance of the drugs. The development of combinatorial targeted therapies is expected to improve therapeutic efficacy and overcome drug resistance.
Collapse
Affiliation(s)
- Yating Shen
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Dexter Kai Hao Thng
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Andrea Li Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore.
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
11
|
Rios SA, Oyervides S, Uribe D, Reyes AM, Fanniel V, Vazquez J, Keniry M. Emerging Therapies for Glioblastoma. Cancers (Basel) 2024; 16:1485. [PMID: 38672566 PMCID: PMC11048459 DOI: 10.3390/cancers16081485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma is most commonly a primary brain tumor and the utmost malignant one, with a survival rate of approximately 12-18 months. Glioblastoma is highly heterogeneous, demonstrating that different types of cells from the same tumor can manifest distinct gene expression patterns and biological behaviors. Conventional therapies such as temozolomide, radiation, and surgery have limitations. As of now, there is no cure for glioblastoma. Alternative treatment methods to eradicate glioblastoma are discussed in this review, including targeted therapies to PI3K, NFKβ, JAK-STAT, CK2, WNT, NOTCH, Hedgehog, and TGFβ pathways. The highly novel application of oncolytic viruses and nanomaterials in combating glioblastoma are also discussed. Despite scores of clinical trials for glioblastoma, the prognosis remains poor. Progress in breaching the blood-brain barrier with nanomaterials and novel avenues for targeted and combination treatments hold promise for the future development of efficacious glioblastoma therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Megan Keniry
- School of Integrative Biological and Chemical Sciences, College of Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (S.A.R.); (D.U.); (A.M.R.)
| |
Collapse
|
12
|
Zhang M, Ding Y, Gao M, Lu X, Tan J, Yu F, Gu C, Gu L, Ren X, Hao C, Ming L, Xu K, Mao W, Jin Y, Zhang M, You L, Wang Z, Sun Y, Jiang J, Yang Y, Zhang D, Tang X. Discovery of Novel N-(Anthracen-9-ylmethyl) Benzamide Derivatives as ZNF207 Inhibitors Promising in Treating Glioma. J Med Chem 2024; 67:3909-3934. [PMID: 38377560 DOI: 10.1021/acs.jmedchem.3c02241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Targeting tumor stemness is an innovative approach to cancer treatment. Zinc Finger Protein 207 (ZNF207) is a promising target for weakening the stemness of glioma cells. Here, a series of novel N-(anthracen-9-ylmethyl) benzamide derivatives against ZNF207 were rationally designed and synthesized. The inhibitory activity was evaluated, and their structure-activity relationships were summarized. Among them, C16 exhibited the most potent inhibitory activity, as evidenced by its IC50 values ranging from 0.5-2.5 μM for inhibiting sphere formation and 0.5-15 μM for cytotoxicity. Furthermore, we found that C16 could hinder tumorigenesis and migration and promote apoptosis in vitro. These effects were attributed to the downregulation of stem-related genes. The in vivo evaluation demonstrated that C16 exhibited efficient permeability across the blood-brain barrier and potent efficacy in both subcutaneous and orthotopic glioma tumor models. Hence, C16 may serve as a potential lead compound targeting ZNF207 and has promising therapeutic potential for glioma.
Collapse
Affiliation(s)
- Menghan Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Yushi Ding
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China 211112
| | - Mengkang Gao
- School of Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Xiaolin Lu
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Jun Tan
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Fei Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Congying Gu
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Lujun Gu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Xiameng Ren
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Chenyan Hao
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Liqin Ming
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Kang Xu
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Wenhao Mao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Yuqing Jin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Min Zhang
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China 211112
| | - Linjun You
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China 211112
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China 211112
| | - Zhanbo Wang
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China 211112
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China 211112
| | - Yuanyuan Sun
- Shuangyun BioMed Sci & Tech (Suzhou) Co., Ltd, Suzhou, China 215000
| | - Jingwei Jiang
- Shuangyun BioMed Sci & Tech (Suzhou) Co., Ltd, Suzhou, China 215000
| | - Yong Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China 211112
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China 221004
| | - Dayong Zhang
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Xinying Tang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| |
Collapse
|
13
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
14
|
Frumento D, Grossi G, Falesiedi M, Musumeci F, Carbone A, Schenone S. Small Molecule Tyrosine Kinase Inhibitors (TKIs) for Glioblastoma Treatment. Int J Mol Sci 2024; 25:1398. [PMID: 38338677 PMCID: PMC10855061 DOI: 10.3390/ijms25031398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
In the last decade, many small molecules, usually characterized by heterocyclic scaffolds, have been designed and synthesized as tyrosine kinase inhibitors (TKIs). Among them, several compounds have been tested at preclinical and clinical levels to treat glioblastoma multiforme (GBM). GBM is the most common and aggressive type of cancer originating in the brain and has an unfavorable prognosis, with a median survival of 15-16 months and a 5-year survival rate of 5%. Despite recent advances in treating GBM, it represents an incurable disease associated with treatment resistance and high recurrence rates. For these reasons, there is an urgent need for the development of new pharmacological agents to fight this malignancy. In this review, we reported the compounds published in the last five years, which showed promising activity in GBM preclinical models acting as TKIs. We grouped the compounds based on the targeted kinase: first, we reported receptor TKIs and then, cytoplasmic and peculiar kinase inhibitors. For each small molecule, we included the chemical structure, and we schematized the interaction with the target for some representative compounds with the aim of elucidating the mechanism of action. Finally, we cited the most relevant clinical trials.
Collapse
Affiliation(s)
| | | | | | - Francesca Musumeci
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (D.F.); (G.G.); (M.F.); (S.S.)
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (D.F.); (G.G.); (M.F.); (S.S.)
| | | |
Collapse
|
15
|
Dewdney B, Jenkins MR, Best SA, Freytag S, Prasad K, Holst J, Endersby R, Johns TG. From signalling pathways to targeted therapies: unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduct Target Ther 2023; 8:400. [PMID: 37857607 PMCID: PMC10587102 DOI: 10.1038/s41392-023-01637-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia.
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia.
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Sarah A Best
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Krishneel Prasad
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Jeff Holst
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Raelene Endersby
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Terrance G Johns
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
16
|
Jahandideh A, Yarizadeh M, Noei-Khesht Masjedi M, Fatehnejad M, Jahandideh R, Soheili R, Eslami Y, Zokaei M, Ahmadvand A, Ghalamkarpour N, Kumar Pandey R, Nabi Afjadi M, Payandeh Z. Macrophage's role in solid tumors: two edges of a sword. Cancer Cell Int 2023; 23:150. [PMID: 37525217 PMCID: PMC10391843 DOI: 10.1186/s12935-023-02999-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
The tumor microenvironment is overwhelmingly dictated by macrophages, intimately affiliated with tumors, exercising pivotal roles in multiple processes, including angiogenesis, extracellular matrix reconfiguration, cellular proliferation, metastasis, and immunosuppression. They further exhibit resilience to chemotherapy and immunotherapy via meticulous checkpoint blockades. When appropriately stimulated, macrophages can morph into a potent bidirectional component of the immune system, engulfing malignant cells and annihilating them with cytotoxic substances, thus rendering them intriguing candidates for therapeutic targets. As myelomonocytic cells relentlessly amass within tumor tissues, macrophages rise as prime contenders for cell therapy upon the development of chimeric antigen receptor effector cells. Given the significant incidence of macrophage infiltration correlated with an unfavorable prognosis and heightened resistance to chemotherapy in solid tumors, we delve into the intricate role of macrophages in cancer propagation and their promising potential in confronting four formidable cancer variants-namely, melanoma, colon, glioma, and breast cancers.
Collapse
Affiliation(s)
- Arian Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Usern Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Yarizadeh
- Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Maryam Noei-Khesht Masjedi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Fatehnejad
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Romina Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roben Soheili
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Yeganeh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardavan Ahmadvand
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nogol Ghalamkarpour
- Department of Clinical Laboratory Sciences, School of Allied Medicine, Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Rajan Kumar Pandey
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
17
|
Pu Y, Zhou G, Zhao K, Chen Y, Shen S. Immunotherapy for Recurrent Glioma-From Bench to Bedside. Cancers (Basel) 2023; 15:3421. [PMID: 37444531 DOI: 10.3390/cancers15133421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is the most aggressive malignant tumor of the central nervous system, and most patients suffer from a recurrence. Unfortunately, recurrent glioma often becomes resistant to established chemotherapy and radiotherapy treatments. Immunotherapy, a rapidly developing anti-tumor therapy, has shown a potential value in treating recurrent glioma. Multiple immune strategies have been explored. The most-used ones are immune checkpoint blockade (ICB) antibodies, which are barely effective in monotherapy. However, when combined with other immunotherapy, especially with anti-angiogenesis antibodies, ICB has shown encouraging efficacy and enhanced anti-tumor immune response. Oncolytic viruses and CAR-T therapies have shown promising results in recurrent glioma through multiple mechanisms. Vaccination strategies and immune-cell-based immunotherapies are promising in some subgroups of patients, and multiple new tumor antigenic targets have been discovered. In this review, we discuss current applicable immunotherapies and related mechanisms for recurrent glioma, focusing on multiple preclinical models and clinical trials in the last 5 years. Through reviewing the current combination of immune strategies, we would like to provide substantive thoughts for further novel therapeutic regimes treating recurrent glioma.
Collapse
Affiliation(s)
- Yi Pu
- Laboratory of Mitochondria and Metabolism, Department of Burn and Reconstructive Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guanyu Zhou
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kejia Zhao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaohui Chen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shensi Shen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Huang J, Chen L, Wu J, Ai D, Zhang JQ, Chen TG, Wang L. Targeting the PI3K/AKT/mTOR Signaling Pathway in the Treatment of Human Diseases: Current Status, Trends, and Solutions. J Med Chem 2022; 65:16033-16061. [PMID: 36503229 DOI: 10.1021/acs.jmedchem.2c01070] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is one of the most important intracellular pathways involved in cell proliferation, growth, differentiation, and survival. Therefore, this route is a prospective biological target for treating various human diseases, such as tumors, neurodegenerative diseases, pulmonary fibrosis, and diabetes. An increasing number of clinical studies emphasize the necessity of developing novel molecules targeting the PI3K/AKT/mTOR pathway. This review focuses on recent advances in ATP-competitive inhibitors, allosteric inhibitors, covalent inhibitors, and proteolysis-targeting chimeras against the PI3K/AKT/mTOR pathway, and highlights possible solutions for overcoming the toxicities and acquired drug resistance of currently available drugs. We also provide recommendations for the future design and development of promising drugs targeting this pathway.
Collapse
Affiliation(s)
- Jindi Huang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Liye Chen
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiangxia Wu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Daiqiao Ai
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ji-Quan Zhang
- College of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Tie-Gen Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Room 109, Building C, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China
| | - Ling Wang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
19
|
Li Q, Li Z, Luo T, Shi H. Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. MOLECULAR BIOMEDICINE 2022; 3:47. [PMID: 36539659 PMCID: PMC9768098 DOI: 10.1186/s43556-022-00110-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
The PI3K/AKT/mTOR and RAF/MEK/ERK pathways are commonly activated by mutations and chromosomal translocation in vital targets. The PI3K/AKT/mTOR signaling pathway is dysregulated in nearly all kinds of neoplasms, with the component in this pathway alternations. RAF/MEK/ERK signaling cascades are used to conduct signaling from the cell surface to the nucleus to mediate gene expression, cell cycle processes and apoptosis. RAS, B-Raf, PI3K, and PTEN are frequent upstream alternative sites. These mutations resulted in activated cell growth and downregulated cell apoptosis. The two pathways interact with each other to participate in tumorigenesis. PTEN alterations suppress RAF/MEK/ERK pathway activity via AKT phosphorylation and RAS inhibition. Several inhibitors targeting major components of these two pathways have been supported by the FDA. Dozens of agents in these two pathways have attracted great attention and have been assessed in clinical trials. The combination of small molecular inhibitors with traditional regimens has also been explored. Furthermore, dual inhibitors provide new insight into antitumor activity. This review will further comprehensively describe the genetic alterations in normal patients and tumor patients and discuss the role of targeted inhibitors in malignant neoplasm therapy. We hope this review will promote a comprehensive understanding of the role of the PI3K/AKT/mTOR and RAF/MEK/ERK signaling pathways in facilitating tumors and will help direct drug selection for tumor therapy.
Collapse
Affiliation(s)
- Qingfang Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, PR China
| | - Ting Luo
- Department of Breast, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| |
Collapse
|
20
|
Buccarelli M, Castellani G, Ricci-Vitiani L. Glioblastoma-Specific Strategies of Vascularization: Implications in Anti-Angiogenic Therapy Resistance. J Pers Med 2022; 12:jpm12101625. [PMID: 36294763 PMCID: PMC9604754 DOI: 10.3390/jpm12101625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Angiogenesis has long been implicated as a crucial process in GBM growth and progression. GBM can adopt several strategies to build up its abundant and aberrant vasculature. Targeting GBM angiogenesis has gained more and more attention in anti-cancer therapy, and many strategies have been developed to interfere with this hallmark. However, recent findings reveal that the effects of anti-angiogenic treatments are temporally limited and that tumors become refractory to therapy and more aggressive. In this review, we summarize the GBM-associated neovascularization processes and their implication in drug resistance mechanisms underlying the transient efficacy of current anti-angiogenic therapies. Moreover, we describe potential strategies and perspectives to overcome the mechanisms adopted by GBM to develop resistance to anti-angiogenic therapy as new potential therapeutic approaches.
Collapse
Affiliation(s)
- Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del S. Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
21
|
Huang W, Hao Z, Mao F, Guo D. Small Molecule Inhibitors in Adult High-Grade Glioma: From the Past to the Future. Front Oncol 2022; 12:911876. [PMID: 35785151 PMCID: PMC9247310 DOI: 10.3389/fonc.2022.911876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary malignant tumor in the brain and has a dismal prognosis despite patients accepting standard therapies. Alternation of genes and deregulation of proteins, such as receptor tyrosine kinase, PI3K/Akt, PKC, Ras/Raf/MEK, histone deacetylases, poly (ADP-ribose) polymerase (PARP), CDK4/6, branched-chain amino acid transaminase 1 (BCAT1), and Isocitrate dehydrogenase (IDH), play pivotal roles in the pathogenesis and progression of glioma. Simultaneously, the abnormalities change the cellular biological behavior and microenvironment of tumor cells. The differences between tumor cells and normal tissue become the vulnerability of tumor, which can be taken advantage of using targeted therapies. Small molecule inhibitors, as an important part of modern treatment for cancers, have shown significant efficacy in hematologic cancers and some solid tumors. To date, in glioblastoma, there have been more than 200 clinical trials completed or ongoing in which trial designers used small molecules as monotherapy or combination regimens to correct the abnormalities. In this review, we summarize the dysfunctional molecular mechanisms and highlight the outcomes of relevant clinical trials associated with small-molecule targeted therapies. Based on the outcomes, the main findings were that small-molecule inhibitors did not bring more benefit to newly diagnosed glioblastoma, but the clinical studies involving progressive glioblastoma usually claimed “noninferiority” compared with historical results. However, as to the clinical inferiority trial, similar dosing regimens should be avoided in future clinical trials.
Collapse
Affiliation(s)
- Wenda Huang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaonian Hao
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Feng Mao,
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Feng Mao,
| |
Collapse
|
22
|
Hijazi M, Casado P, Akhtar N, Alvarez-Teijeiro S, Rajeeve V, Cutillas PR. eEF2K Activity Determines Synergy to Cotreatment of Cancer Cells With PI3K and MEK Inhibitors. Mol Cell Proteomics 2022; 21:100240. [PMID: 35513296 PMCID: PMC9184568 DOI: 10.1016/j.mcpro.2022.100240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/17/2022] [Accepted: 04/25/2022] [Indexed: 10/31/2022] Open
Abstract
PI3K-mammalian target of rapamycin and MAPK/ERK kinase (MEK)/mitogen-activated protein kinase (MAPK) are the most frequently dysregulated signaling pathways in cancer. A problem that limits the success of therapies that target individual PI3K-MAPK members is that these pathways converge to regulate downstream functions and often compensate each other, leading to drug resistance and transient responses to therapy. In order to overcome resistance, therapies based on cotreatments with PI3K/AKT and MEK/MAPK inhibitors are now being investigated in clinical trials, but the mechanisms of sensitivity to cotreatment are not fully understood. Using LC-MS/MS-based phosphoproteomics, we found that eukaryotic elongation factor 2 kinase (eEF2K), a key convergence point downstream of MAPK and PI3K pathways, mediates synergism to cotreatment with trametinib plus pictilisib (which target MEK1/2 and PI3Kα/δ, respectively). Inhibition of eEF2K by siRNA or with a small molecule inhibitor reversed the antiproliferative effects of the cotreatment with PI3K plus MEK inhibitors in a cell model-specific manner. Systematic analysis in 12 acute myeloid leukemia cell lines revealed that eEF2K activity was increased in cells for which PI3K plus MEKi cotreatment is synergistic, while PKC potentially mediated resistance to such cotreatment. Together, our study uncovers eEF2K activity as a key mediator of responses to PI3Ki plus MEKi and as a potential biomarker to predict synergy to cotreatment in cancer cells.
Collapse
Affiliation(s)
- Maruan Hijazi
- Signalling & Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | - Pedro Casado
- Signalling & Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Nosheen Akhtar
- Signalling & Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Saul Alvarez-Teijeiro
- Signalling & Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Vinothini Rajeeve
- Signalling & Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Pedro R Cutillas
- Signalling & Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; The Alan Turing Institute, British Library, London, United Kingdom.
| |
Collapse
|
23
|
Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Zhang X, Zhang L, Peng Y, Ye W, Zeng W, Liu Z, Cheng Q. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer 2022; 21:39. [PMID: 35135556 PMCID: PMC8822752 DOI: 10.1186/s12943-022-01513-z] [Citation(s) in RCA: 402] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are the common type of brain tumors originating from glial cells. Epidemiologically, gliomas occur among all ages, more often seen in adults, which males are more susceptible than females. According to the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), standard of care and prognosis of gliomas can be dramatically different. Generally, circumscribed gliomas are usually benign and recommended to early complete resection, with chemotherapy if necessary. Diffuse gliomas and other high-grade gliomas according to their molecule subtype are slightly intractable, with necessity of chemotherapy. However, for glioblastoma, feasible resection followed by radiotherapy plus temozolomide chemotherapy define the current standard of care. Here, we discuss novel feasible or potential targets for treatment of gliomas, especially IDH-wild type glioblastoma. Classic targets such as the p53 and retinoblastoma (RB) pathway and epidermal growth factor receptor (EGFR) gene alteration have met failure due to complex regulatory network. There is ever-increasing interest in immunotherapy (immune checkpoint molecule, tumor associated macrophage, dendritic cell vaccine, CAR-T), tumor microenvironment, and combination of several efficacious methods. With many targeted therapy options emerging, biomarkers guiding the prescription of a particular targeted therapy are also attractive. More pre-clinical and clinical trials are urgently needed to explore and evaluate the feasibility of targeted therapy with the corresponding biomarkers for effective personalized treatment options.
Collapse
Affiliation(s)
- Keyang Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijing Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wantao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Peng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Weijie Ye
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenjing Zeng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
24
|
A novel PI3K inhibitor XH30 suppresses orthotopic glioblastoma and brain metastasis in mice models. Acta Pharm Sin B 2022; 12:774-786. [PMID: 35256946 PMCID: PMC8897175 DOI: 10.1016/j.apsb.2021.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma is carcinogenesis of glial cells in central nervous system and has the highest incidence among primary brain tumors. Brain metastasis, such as breast cancer and lung cancer, also leads to high mortality. The available medicines are limited due to blood–brain barrier. Abnormal activation of phosphatidylinositol 3-kinases (PI3K) signaling pathway is prevalent in glioblastoma and metastatic tumors. Here, we characterized a 2-amino-4-methylquinazoline derivative XH30 as a potent PI3K inhibitor with excellent anti-tumor activity against human glioblastoma. XH30 significantly repressed the proliferation of various brain cancer cells and decreased the phosphorylation of key proteins of PI3K signaling pathway, induced cell cycle arrest in G1 phase as well. Additionally, XH30 inhibited the migration of glioma cells and blocked the activation of PI3K pathway by interleukin-17A (IL-17A), which increased the migration of U87MG. Oral administration of XH30 significantly suppressed the tumor growth in both subcutaneous and orthotopic tumor models. XH30 also repressed tumor growth in brain metastasis models of lung cancers. Moreover, XH30 reduced IL-17A and its receptor IL-17RA in vivo. These results indicate that XH30 might be a potential therapeutic drug candidate for glioblastoma migration and brain metastasis.
Collapse
|
25
|
Jhanwar-Uniyal M, Dominguez JF, Mohan AL, Tobias ME, Gandhi CD. Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma. Adv Biol Regul 2021; 83:100854. [PMID: 34996736 DOI: 10.1016/j.jbior.2021.100854] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
Aberrant signaling of mechanistic target of rapamycin (mTOR' aka mammalian target of rapamycin) is shown to be linked to tumorigenesis of numerous malignancies including glioblastoma (GB). Glioblastoma mTOR is a serine threonine kinase that functions by forming two multiprotein complexes. There complexes are named mTORC1 and mTORC2 and downstream activated substrate execute cellular and metabolic functions. This signaling cascade of PI3K/AKT/mTOR is often upregulated due to frequent loss of the tumor suppressor PTEN, a phosphatase that functions antagonistically to PI3K. mTOR regulates cell growth, motility, and metabolism by forming two multiprotein complexes, mTORC1 and mTORC2, which are composed of special binding partners. These complexes are sensitive to distinct stimuli. mTORC1 is sensitive to nutrients and mTORC2 is regulated via PI3K and growth factor signaling. Since rapamycin and it's analogue are less effective in treatment of GB, we used novel ATP-competitive dual inhibitors of mTORC1 and mTORC2, namely, Torin1, Torin2, and XL388. Torin2 caused a concentration dependent pharmacodynamic effects on inhibition of phosphorylation of the mTORC1 substrates S6KSer235/236 and 4E-BP1Thr37/46 as well as the mTORC2 substrate AKTSer473 resulting in suppression of tumor cell proliferation and migration. Torin1 showed similar effects only at higher doses. Another small molecule compound, XL388 suppressed cell proliferation at a higher dose but failed to inhibit cell migration. Torin1 suppressed phosphorylation of PRAS40Thr246, however Torin2 completely abolished it. XL388 treatment inhibited the phosphorylation of PRAS40Thr246 at higher doses only. These findings underscore the use of novel compounds in treatment of cancer. In addition, formulation of third generation mTOR inhibitor "Rapalink-1" may provide new aspects to target mTOR pathways. Numerous inhibitors are currently being used in clinical trials that are aimed to target activated mTOR pathways.
Collapse
Affiliation(s)
- Meena Jhanwar-Uniyal
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, 10595, USA.
| | - Jose F Dominguez
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, 10595, USA
| | - Avinash L Mohan
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, 10595, USA
| | - Michael E Tobias
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, 10595, USA
| | - Chirag D Gandhi
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
26
|
Ji M, Zhang Z, Lin S, Wang C, Jin J, Xue N, Xu H, Chen X. The PI3K Inhibitor XH30 Enhances Response to Temozolomide in Drug-Resistant Glioblastoma via the Noncanonical Hedgehog Signaling Pathway. Front Pharmacol 2021; 12:749242. [PMID: 34899305 PMCID: PMC8662317 DOI: 10.3389/fphar.2021.749242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant tumor of the central nervous system. Temozolomide (TMZ)-based adjuvant treatment has improved overall survival, but clinical outcomes remain poor; TMZ resistance is one of the main reasons for this. Here, we report a new phosphatidylinositide 3-kinase inhibitor, XH30; this study aimed to assess the antitumor activity of this compound against TMZ-resistant GBM. XH30 inhibited cell proliferation in TMZ-resistant GBM cells (U251/TMZ and T98G) and induced cell cycle arrest in the G1 phase. In an orthotopic mouse model, XH30 suppressed TMZ-resistant tumor growth. XH30 was also shown to enhance TMZ cytotoxicity both in vitro and in vivo. Mechanistically, the synergistic effect of XH30 may be attributed to its repression of the key transcription factor GLI1 via the noncanonical hedgehog signaling pathway. XH30 reversed sonic hedgehog-triggered GLI1 activation and decreased GLI1 activation by insulin-like growth factor 1 via the noncanonical hedgehog signaling pathway. These results indicate that XH30 may represent a novel therapeutic option for TMZ-resistant GBM.
Collapse
Affiliation(s)
- Ming Ji
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Zhang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Songwen Lin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunyang Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nina Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heng Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Kapetanaki S, Kumawat AK, Persson K, Demirel I. The Fibrotic Effects of TMAO on Human Renal Fibroblasts Is Mediated by NLRP3, Caspase-1 and the PERK/Akt/mTOR Pathway. Int J Mol Sci 2021; 22:ijms222111864. [PMID: 34769294 PMCID: PMC8584593 DOI: 10.3390/ijms222111864] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Trimethylamine N-oxide (TMAO), a product of gut microbiota metabolism, has previously been shown to be implicated in chronic kidney disease. A high TMAO-containing diet has been found to cause tubulointerstitial renal fibrosis in mice. However, today there are no data linking specific molecular pathways with the effect of TMAO on human renal fibrosis. The aim of this study was to investigate the fibrotic effects of TMAO on renal fibroblasts and to elucidate the molecular pathways involved. We found that TMAO promoted renal fibroblast activation and fibroblast proliferation via the PERK/Akt/mTOR pathway, NLRP3, and caspase-1 signaling. We also found that TMAO increased the total collagen production from renal fibroblasts via the PERK/Akt/mTOR pathway. However, TMAO did not induce fibronectin or TGF-β1 release from renal fibroblasts. We have unraveled that the PERK/Akt/mTOR pathway, NLRP3, and caspase-1 mediates TMAO’s fibrotic effect on human renal fibroblasts. Our results can pave the way for future research to further clarify the molecular mechanism behind TMAO’s effects and to identify novel therapeutic targets in the context of chronic kidney disease.
Collapse
Affiliation(s)
- Stefania Kapetanaki
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- Nephrology Department, Karolinska University Hospital, 171 76 Solna, Sweden
- Nephrology Department, Karolinska University Hospital, 141 86 Huddinge, Sweden
- Correspondence: ; Tel.: +46-1930-3000
| | - Ashok Kumar Kumawat
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- Cardiovascular Research Center, School of Medical Sciences, Örebro University, 701 82 Örebro, Sweden
| | - Katarina Persson
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- iRiSC—Inflammatory Response and Infection Susceptibility Center, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- iRiSC—Inflammatory Response and Infection Susceptibility Center, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| |
Collapse
|
28
|
Rascio F, Spadaccino F, Rocchetti MT, Castellano G, Stallone G, Netti GS, Ranieri E. The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. Cancers (Basel) 2021; 13:3949. [PMID: 34439105 PMCID: PMC8394096 DOI: 10.3390/cancers13163949] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
The PI3K/AKT pathway is one of the most frequently over-activated intracellular pathways in several human cancers. This pathway, acting on different downstream target proteins, contributes to the carcinogenesis, proliferation, invasion, and metastasis of tumour cells. A multi-level impairment, involving mutation and genetic alteration, aberrant regulation of miRNAs sequences, and abnormal phosphorylation of cascade factors, has been found in multiple cancer types. The deregulation of this pathway counteracts common therapeutic strategies and contributes to multidrug resistance. In this review, we underline the involvement of this pathway in patho-physiological cell survival mechanisms, emphasizing its key role in the development of drug resistance. We also provide an overview of the potential inhibition strategies currently available.
Collapse
Affiliation(s)
- Federica Rascio
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Federica Spadaccino
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| | - Maria Teresa Rocchetti
- Cell Biology Unit, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Giuseppe Castellano
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Giovanni Stallone
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Giuseppe Stefano Netti
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| | - Elena Ranieri
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| |
Collapse
|
29
|
Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals (Basel) 2021; 14:626. [PMID: 34209513 PMCID: PMC8308832 DOI: 10.3390/ph14070626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Cathryn H. S. Driver
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa;
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| |
Collapse
|
30
|
Guyon J, Chapouly C, Andrique L, Bikfalvi A, Daubon T. The Normal and Brain Tumor Vasculature: Morphological and Functional Characteristics and Therapeutic Targeting. Front Physiol 2021; 12:622615. [PMID: 33746770 PMCID: PMC7973205 DOI: 10.3389/fphys.2021.622615] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma is among the most common tumor of the central nervous system in adults. Overall survival has not significantly improved over the last decade, even with optimizing standard therapeutic care including extent of resection and radio- and chemotherapy. In this article, we review features of the brain vasculature found in healthy cerebral tissue and in glioblastoma. Brain vessels are of various sizes and composed of several vascular cell types. Non-vascular cells such as astrocytes or microglia also interact with the vasculature and play important roles. We also discuss in vitro engineered artificial blood vessels which may represent useful models for better understanding the tumor-vessel interaction. Finally, we summarize results from clinical trials with anti-angiogenic therapy alone or in combination, and discuss the value of these approaches for targeting glioblastoma.
Collapse
Affiliation(s)
- Joris Guyon
- INSERM, LAMC, U1029, University Bordeaux, Pessac, France
| | - Candice Chapouly
- INSERM, Biology of Cardiovascular Diseases, U1034, University Bordeaux, Pessac, France
| | - Laetitia Andrique
- INSERM, LAMC, U1029, University Bordeaux, Pessac, France.,VoxCell 3D Plateform, UMS TBMcore 3427, Bordeaux, France
| | | | - Thomas Daubon
- University Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| |
Collapse
|
31
|
Chen W, Liu D, Liu P, Kong Z, Wang Y, Wang Y, Ma W. Current evidence and challenges of systematic therapies for adult recurrent glioblastoma: Results from clinical trials. Chin J Cancer Res 2021; 33:417-432. [PMID: 34321837 PMCID: PMC8286895 DOI: 10.21147/j.issn.1000-9604.2021.03.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
Recurrence is a major concern for adult patients with glioblastomas (GBMs), and the prognosis remains poor. Although several therapies have been assessed, most of them have not achieved satisfactory results. Therefore, there is currently no standard treatment for adult recurrent GBM (rGBM). Here, we review the results of clinical trials for the systematic therapy of rGBM. Regorafenib, rindopepimut and neoadjuvant programmed death 1 (PD-1) inhibitors are promising agents for rGBM, while regorafenib is effective in both O6-methylguanine DNA methyltransferase (MGMT) promoter methylated and unmethylated patients. Temozolomide rechallenge and alkylating agents combined with bevacizumab can be useful for patients with MGMT methylation, and patients with isocitrate dehydrogenase (IDH) mutations or second recurrence can benefit from vocimagene amiretrorepvec (Toca 511). Some phase I trials on targeted therapy and immunotherapy have shown positive results, and results from further studies are expected. In addition to the analysis of existing clinical trial results, forthcoming trials should be well designed, and patients are encouraged to participate in appropriate clinical trials.
Collapse
Affiliation(s)
- Wenlin Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Delin Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Penghao Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ziren Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yaning Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
32
|
Kim HJ, Kim DY. Present and Future of Anti-Glioblastoma Therapies: A Deep Look into Molecular Dependencies/Features. Molecules 2020; 25:molecules25204641. [PMID: 33053763 PMCID: PMC7587213 DOI: 10.3390/molecules25204641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is aggressive malignant tumor residing within the central nervous system. Although the standard treatment options, consisting of surgical resection followed by combined radiochemotherapy, have long been established for patients with GBM, the prognosis is still poor. Despite recent advances in diagnosis, surgical techniques, and therapeutic approaches, the increased patient survival after such interventions is still sub-optimal. The unique characteristics of GBM, including highly infiltrative nature, hard-to-access location (mainly due to the existence of the blood brain barrier), frequent and rapid recurrence, and multiple drug resistance mechanisms, pose challenges to the development of an effective treatment. To overcome current limitations on GBM therapy and devise ideal therapeutic strategies, efforts should focus on an improved molecular understanding of GBM pathogenesis. In this review, we summarize the molecular basis for the development and progression of GBM as well as some emerging therapeutic approaches.
Collapse
Affiliation(s)
- Hyeon Ji Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41940, Korea
- Correspondence: ; Tel.: +82-53-660-6880
| |
Collapse
|
33
|
Glioblastoma: Pathogenesis and Current Status of Chemotherapy and Other Novel Treatments. Cancers (Basel) 2020; 12:cancers12040937. [PMID: 32290213 PMCID: PMC7226351 DOI: 10.3390/cancers12040937] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is one of the most common and detrimental forms of solid brain tumor, with over 10,000 new cases reported every year in the United States. Despite aggressive multimodal treatment approaches, the overall survival period is reported to be less than 15 months after diagnosis. A widely used approach for the treatment of glioblastoma is surgical removal of the tumor, followed by radiotherapy and chemotherapy. While there are several drugs available that are approved by the Food and Drug Administration (FDA), significant efforts have been made in recent years to develop new chemotherapeutic agents for the treatment of glioblastoma. This review describes the molecular targets and pathogenesis as well as the current progress in chemotherapeutic development and other novel therapies in the clinical setting for the treatment of glioblastoma.
Collapse
|
34
|
Xu F, Na L, Li Y, Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 2020; 10:54. [PMID: 32266056 PMCID: PMC7110906 DOI: 10.1186/s13578-020-00416-0] [Citation(s) in RCA: 397] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
The PI3 K/AKT/mTOR signalling pathway plays an important role in the regulation of signal transduction and biological processes such as cell proliferation, apoptosis, metabolism and angiogenesis. Compared with those of other signalling pathways, the components of the PI3K/AKT/mTOR signalling pathway are complicated. The regulatory mechanisms and biological functions of the PI3K/AKT/mTOR signalling pathway are important in many human diseases, including ischaemic brain injury, neurodegenerative diseases, and tumours. PI3K/AKT/mTOR signalling pathway inhibitors include single-component and dual inhibitors. Numerous PI3K inhibitors have exhibited good results in preclinical studies, and some have been clinically tested in haematologic malignancies and solid tumours. In this review, we briefly summarize the results of research on the PI3K/AKT/mTOR pathway and discuss the structural composition, activation, communication processes, regulatory mechanisms and biological functions of the PI3K/AKT/mTOR signalling pathway in the pathogenesis of neurodegenerative diseases and tumours.
Collapse
Affiliation(s)
- Fei Xu
- Department of Microbiology and Immunology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Rd, Shanghai, 201318 China
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Lixin Na
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Yanfei Li
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Linjun Chen
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| |
Collapse
|
35
|
Glioblastoma precision therapy: From the bench to the clinic. Cancer Lett 2020; 475:79-91. [DOI: 10.1016/j.canlet.2020.01.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
|
36
|
Tan Z, Li B, Dong X, Liu W, Liu S. The Role of β-Arrestin1 in Esophageal Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:1873-1881. [PMID: 32184622 PMCID: PMC7060783 DOI: 10.2147/ott.s235066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/10/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Esophageal squamous cell carcinoma (ESCC) is the predominant type of esophageal carcinoma with a low survival rate and a poor prognosis. Therefore, it is of great significance to explore the effective tumor markers in early diagnosis, treatment monitoring and prognosis evaluation of ESCC. The current study was designed to explore the important role of β-arrestin1 in ESCC and the underlying mechanism. Methods The defined effects of β-arrestin1 on cell proliferation, migration, invasion, EMT and tumor growth were investigated both in ESCC cells and in vivo model of ESCC. β-arrestin1 expression was detected using Western blot and immunohistochemistry assay. The cell proliferation ability was determined using CCK-8 assay. Wound healing assay and trans-well invasion assay were performed to determine cell migration and invasion. The key proteins related to cell migration, invasion and EMT were detected by Western blot. Tumor growth in vivo was also monitored by tumor volume and weight. In addition, the effects of β-arrestin1 on AKT/GSK3β/β-catenin pathway were evaluated. Results β-arrestin1 was aberrantly upregulated in human ESCC tissues, ESCC cell lines and animal model of ESCC. β-arrestin1 downregulation inhibited cell proliferation, migration, invasion and EMT of ESCC in vitro and vivo. β-arrestin downregulation also suppressed tumor growth in vivo model of ESCC. In addition, the inhibitory effects of β-arrestin1 downregulation were exerted via AKT/GSK3β/β-catenin signaling pathway. Discussion The results in the present study together confirmed the truth that β-arrestin1 interference may suppress ESCC cell proliferation, migration, invasion, EMT and tumor growth via AKT/GSK3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zhijie Tan
- Department of Gastroenterology, People's Hospital of Central District of Jinan, Shandong 250022, People's Republic of China
| | - Bin Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong 250021, People's Republic of China
| | - Xia Dong
- Department of Anesthesiology, People's Hospital of Central District of Jinan, Shandong 250022, People's Republic of China
| | - Wenxing Liu
- Department of General Surgery, People's Hospital of Central District of Jinan, Shandong 250022, People's Republic of China
| | - Shanshan Liu
- Department of Gastroenterology, People's Hospital of Central District of Jinan, Shandong 250022, People's Republic of China
| |
Collapse
|