1
|
Bommireddy A, Mayo ZS, Reddy CA, Billena C, Davies EM, Davis RW, Murphy ES, Suh JH, Balagamwala EH, Chan TA, Yu JS, Barnett GH, Angelov L, Mohammadi AM, Stevens GHJ, Grabowski M, Peereboom DM, Chao ST. Development of a recursive partitioning analysis for prediction of radiation necrosis following single-fraction stereotactic radiosurgery for intact brain metastases. J Neurooncol 2025:10.1007/s11060-025-05062-5. [PMID: 40360909 DOI: 10.1007/s11060-025-05062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE/OBJECTIVE Radiation necrosis (RN) is a potential complication after stereotactic radiosurgery (SRS) for brain metastases. This study develops a recursive partitioning analysis (RPA) to identify patients at risk for RN following SRS. METHODS Patients who underwent single-fraction SRS for intact brain metastases at a single institution from 2017 to 2021 were identified. Cox regression identified factors associated with RN, and variables with p < 0.1 were included in the RPA. Patients with staged SRS, incomplete records, or less than 3 months of follow-up were excluded. RESULTS The study included 170 patients with 919 lesions, with median follow-up of 9 months. Primary disease sites were non-small cell lung cancer (NSCLC, 49%), breast cancer (12%), melanoma (11%), renal cancer (6%), and others (22%). Median prescription dose was 24 Gy, and median maximum lesion dimension (MLD) was 0.7 cm. RN occurred in 110 (12.2%) lesions, of which 32 (3.5%) were symptomatic, at median of 4.9 months after SRS. Variables for RPA included primary disease site, tumor location, MLD, prior SRS, number of SRS targets, dosimetry, prior hemorrhage, and concurrent systemic therapy. RPA identified four groups: Group 1 (MLD ≤ 0.8 cm, non-breast/NSCLC/renal), Group 2 (MLD ≤ 0.8 cm, breast/NSCLC/renal), Group 3 (MLD > 0.8 cm, no post-SRS hemorrhage), and Group 4 (MLD > 0.8 cm, post-SRS hemorrhage). Two-year RN free survival was 99% (Group 1), 89% (Group 2), 70% (Group 3), and 52% (Group 4). CONCLUSION This is the first RPA model for RN after single-fraction SRS, which may aid in risk assessment and distinguishing RN from tumor progression.
Collapse
Affiliation(s)
- Anirudh Bommireddy
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA.
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | | | - Chandana A Reddy
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Cole Billena
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Erik M Davies
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Robin W Davis
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Erin S Murphy
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - John H Suh
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Timothy A Chan
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Jennifer S Yu
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Gene H Barnett
- Deparment of Neurosurgery, Cleveland Clinic, Cleveland, OH, USA
| | - Lilyana Angelov
- Deparment of Neurosurgery, Cleveland Clinic, Cleveland, OH, USA
| | | | - Glen H J Stevens
- Department of Neuro-Oncology, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Samuel T Chao
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
2
|
Shah S, Alberts AH, Tillotson S, Jain H, Lucke-Wold B. Recent advances in laser interstitial thermal therapy in the treatment of brain metastases and radiation necrosis. Lasers Med Sci 2025; 40:186. [PMID: 40210749 DOI: 10.1007/s10103-025-04447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
PURPOSE This manuscript reviews advancements in Laser Interstitial Thermal Therapy (LITT) for treating brain metastases and radiation necrosis, emphasizing its minimally invasive nature and precision in targeting deep-seated or eloquent area lesions. It analyzes studies from 2011 to 2024 to evaluate LITT's efficacy, safety, and complications while highlighting the need for standardized clinical endpoints. Despite its potential, LITT remains a secondary treatment due to limited high-level evidence, requiring further research and multidisciplinary collaboration. METHODS A systematic PubMed search identified 2,004 articles on LITT for brain metastases and radiation necrosis. Filtering for studies from 2011 to 2024 resulted in 60 selected articles: 4 clinical trials, 22 observational studies, 3 case reports, 2 case series, and the rest review articles. Relevant data were extracted, analyzed, and compiled for this review. RESULTS LITT is primarily used for lesions unsuitable for open craniotomy, such as deep-seated or eloquent-area tumors. Literature supports its increasing neuro-oncological applications, particularly in brain metastases, gliomas, meningiomas, and radiation necrosis. CONCLUSION The evolving landscape of brain metastasis treatment underscores the importance of a multidisciplinary approach incorporating standardized reporting, advanced imaging, and molecular diagnostics. Further innovation and collaboration are needed to optimize LITT's role in neuro-oncology and address treatment challenges in the era of personalized medicine.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, USA.
- Department of Neurosurgery, RCSM Government Medical College, Kolhapur, India.
| | - Amelia H Alberts
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Sophie Tillotson
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Hritvik Jain
- Department of Internal Medicine, All India Institute of Medical Sciencies, Jodhpur, India
| | | |
Collapse
|
3
|
Wang Y, Bao X, Zhang Y, Wu Q. The current research status of the mechanisms and treatment of radioactive brain injury. Am J Cancer Res 2024; 14:5598-5613. [PMID: 39803653 PMCID: PMC11711531 DOI: 10.62347/beau4974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
Radioactive brain injury, a severe complication ensuing from radiotherapy for head and neck malignancies, frequently manifests as cognitive impairment and substantially diminishes patients' quality of life. Despite its profound impact, the pathogenesis of this condition remains inadequately elucidated, and efficacious treatments are notably absent in clinical practice. Consequently, contemporary interventions predominantly focus on symptom alleviation rather than achieving a radical cure or reversing the injury process. This article provides a comprehensive review of the various pathogenic mechanisms and therapeutic strategies associated with radioactive brain injury, offering insights that may guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yaru Wang
- Department of Oncology, Anhui Medical UniversityHefei 230000, Anhui, China
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
| | - Xiaoqing Bao
- Department of Oncology, Anhui Medical UniversityHefei 230000, Anhui, China
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
| | - Yu Zhang
- Department of Oncology, Anhui Medical UniversityHefei 230000, Anhui, China
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
| | - Qibing Wu
- Department of Oncology, Anhui Medical UniversityHefei 230000, Anhui, China
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
| |
Collapse
|
4
|
Sampat PJ, Cortese A, Goodman A, Ghelani GH, Mix MD, Graziano S, Basnet A. Treatment of brain metastases from non-small cell lung cancer: preclinical, clinical, and translational research. Front Oncol 2024; 14:1411432. [PMID: 39534096 PMCID: PMC11554526 DOI: 10.3389/fonc.2024.1411432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Lung cancer is the second most common type of cancer and is the leading cause of cancer-related deaths in the United States. Approximately 10-40% of patients with solid tumors develop brain metastases, with non-small cell lung cancer accounting for approximately 50% of all cases of patients with brain metastases. Many management options are available which can include surgery, radiation, and systemic therapy. A variety of factors go into the selection of management of brain metastases. In this review, we will focus on the treatment strategies and optimizing the management of brain metastases in patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Parth J. Sampat
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Alyssa Cortese
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Alexandra Goodman
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Ghanshyam H. Ghelani
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Michael D. Mix
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Stephen Graziano
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Alina Basnet
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
5
|
Gecici NN, Gurses ME, Kaye B, Jimenez NLF, Berke C, Gökalp E, Lu VM, Ivan ME, Komotar RJ, Shah AH. Comparative analysis of bevacizumab and LITT for treating radiation necrosis in previously radiated CNS neoplasms: a systematic review and meta-analysis. J Neurooncol 2024; 168:1-11. [PMID: 38619777 PMCID: PMC11093788 DOI: 10.1007/s11060-024-04650-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
PURPOSE Radiation necrosis (RN) is a local inflammatory reaction that arises in response to radiation injury and may cause significant morbidity. This study aims to evaluate and compare the efficacy of bevacizumab and laser interstitial thermal therapy (LITT) in treating RN in patients with previously radiated central nervous system (CNS) neoplasms. METHODS PubMed, Cochrane, Scopus, and EMBASE databases were screened. Studies of patients with radiation necrosis from primary or secondary brain tumors were included. Indirect meta-analysis with random-effect modeling was performed to compare clinical and radiological outcomes. RESULTS Twenty-four studies were included with 210 patients in the bevacizumab group and 337 patients in the LITT group. Bevacizumab demonstrated symptomatic improvement/stability in 87.7% of cases, radiological improvement/stability in 86.2%, and steroid wean-off in 45%. LITT exhibited symptomatic improvement/stability in 71.2%, radiological improvement/stability in 64.7%, and steroid wean-off in 62.4%. Comparative analysis revealed statistically significant differences favoring bevacizumab in symptomatic improvement/stability (p = 0.02), while no significant differences were observed in radiological improvement/stability (p = 0.27) or steroid wean-off (p = 0.90). The rates of adverse reactions were 11.2% for bevacizumab and 14.9% for LITT (p = 0.66), with the majority being grade 2 or lower (72.2% for bevacizumab and 62.5% for LITT). CONCLUSION Both bevacizumab and LITT exhibited favorable clinical and radiological outcomes in managing RN. Bevacizumab was found to be associated with better symptomatic control compared to LITT. Patient-, diagnosis- and lesion-related factors should be considered when choosing the ideal treatment modality for RN to enhance overall patient outcomes.
Collapse
Affiliation(s)
- Neslihan Nisa Gecici
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| | - Muhammet Enes Gurses
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US.
| | - Brandon Kaye
- Dr. Kiran C. Patel College of Allopathic Medicine, Davie, FL, 33326, US
| | | | - Chandler Berke
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| | - Elif Gökalp
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| | - Victor M Lu
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| |
Collapse
|
6
|
Mayo ZS, Billena C, Suh JH, Lo SS, Chao ST. The dilemma of radiation necrosis from diagnosis to treatment in the management of brain metastases. Neuro Oncol 2024; 26:S56-S65. [PMID: 38437665 PMCID: PMC10911797 DOI: 10.1093/neuonc/noad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Radiation therapy with stereotactic radiosurgery (SRS) or whole brain radiation therapy is a mainstay of treatment for patients with brain metastases. The use of SRS in the management of brain metastases is becoming increasingly common and provides excellent local control. Cerebral radiation necrosis (RN) is a late complication of radiation treatment that can be seen months to years following treatment and is often indistinguishable from tumor progression on conventional imaging. In this review article, we explore risk factors associated with the development of radiation necrosis, advanced imaging modalities used to aid in diagnosis, and potential treatment strategies to manage side effects.
Collapse
Affiliation(s)
- Zachary S Mayo
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cole Billena
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - John H Suh
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Samuel T Chao
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Vellayappan B, Lim-Fat MJ, Kotecha R, De Salles A, Fariselli L, Levivier M, Ma L, Paddick I, Pollock BE, Regis J, Sheehan JP, Suh JH, Yomo S, Sahgal A. A Systematic Review Informing the Management of Symptomatic Brain Radiation Necrosis After Stereotactic Radiosurgery and International Stereotactic Radiosurgery Society Recommendations. Int J Radiat Oncol Biol Phys 2024; 118:14-28. [PMID: 37482137 DOI: 10.1016/j.ijrobp.2023.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Radiation necrosis (RN) secondary to stereotactic radiosurgery is a significant cause of morbidity. The optimal management of corticosteroid-refractory brain RN remains unclear. Our objective was to summarize the literature specific to efficacy and toxicity of treatment paradigms for patients with symptomatic corticosteroid-refractory RN and to provide consensus guidelines for grading and management of RN on behalf of the International Stereotactic Radiosurgery Society. A systematic review of articles pertaining to treatment of RN with bevacizumab, laser interstitial thermal therapy (LITT), surgical resection, or hyperbaric oxygen therapy was performed. The primary composite outcome was clinical and/or radiologic stability/improvement (ie, proportion of patients achieving improvement or stability with the given intervention). Proportions of patients achieving the primary outcome were pooled using random weighted-effects analysis but not directly compared between interventions. Twenty-one articles were included, of which only 2 were prospective studies. Thirteen reports were relevant for bevacizumab, 5 for LITT, 5 for surgical resection and 1 for hyperbaric oxygen therapy. Weighted effects analysis revealed that bevacizumab had a pooled symptom improvement/stability rate of 86% (95% CI 77%-92%), pooled T2 imaging improvement/stability rate of 93% (95% CI 87%-98%), and pooled T1 postcontrast improvement/stability rate of 94% (95% CI 87%-98%). Subgroup analysis showed a statistically significant improvement favoring treatment with low-dose (below median, ≤7.5 mg/kg every 3 weeks) versus high-dose bevacizumab with regards to symptom improvement/stability rate (P = .02) but not for radiologic T1 or T2 changes. The pooled T1 postcontrast improvement/stability rate for LITT was 88% (95% CI 82%-93%), and pooled symptom improvement/stability rate for surgery was 89% (95% CI 81%-96%). Toxicity was inconsistently reported but was generally low for all treatment paradigms. Corticosteroid-refractory RN that does not require urgent surgical intervention, with sufficient noninvasive diagnostic testing that favors RN, can be treated medically with bevacizumab in carefully selected patients as a strong recommendation. The role of LITT is evolving as a less invasive image guided surgical modality; however, the overall evidence for each modality is of low quality. Prospective head-to-head comparisons are needed to evaluate the relative efficacy and toxicity profile among treatment approaches.
Collapse
Affiliation(s)
- Balamurugan Vellayappan
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital, Singapore.
| | - Mary Jane Lim-Fat
- Division of Neurology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Antonio De Salles
- Department of Neurosurgery, University of California, Los Angeles, California; HCor Neuroscience, São Paulo, Brazil
| | - Laura Fariselli
- Department of Neurosurgery, Unit of Radiotherapy, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Marc Levivier
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Lijun Ma
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Ian Paddick
- Division Physics, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Bruce E Pollock
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
| | - Jean Regis
- Department of Functional Neurosurgery, Aix Marseille University, Timone University Hospital, Marseille, France
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - John H Suh
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Shoji Yomo
- Division of Radiation Oncology, Aizawa Comprehensive Cancer Center, Aizawa Hospital, Matsumoto, Japan
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Taylor JW. Neurologic Complications of Conventional Chemotherapy and Radiation Therapy. Continuum (Minneap Minn) 2023; 29:1809-1826. [PMID: 38085899 DOI: 10.1212/con.0000000000001358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE Neurologic complications are among the most common and feared outcomes of cancer treatments. This review discusses the signs and symptoms, mechanisms, and management of the most common peripheral and central neurologic complications of chemotherapy, radiation therapy, and antiangiogenic therapy during cancer treatment and in survivors. LATEST DEVELOPMENTS The landscape of cancer treatments is evolving to include more targeted and biologic therapies, in addition to more traditional cytotoxic therapies and radiation therapy. With increasingly complex regimens and longer survival for patients with cancer, the early recognition and management of neurologic complications is key to improving the morbidity and mortality of patients living with cancer. ESSENTIAL POINTS Neurologists should be familiar with acute central and peripheral toxicities that can occur during cancer treatment and delayed toxicities that can occur years after exposure. Neurologists should be familiar with the clinical and radiologic presentations of these complications and strategies for management.
Collapse
|
9
|
Cuschieri A, Borg M, Levinskaia E, Zammit C. LITT for biopsy proven radiation necrosis: A qualitative systematic review. J Clin Neurosci 2023; 116:69-78. [PMID: 37639807 DOI: 10.1016/j.jocn.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION With the widespread use of stereotactic radiosurgery (SRS), post-radiation treatment effects (PTREs) are increasing in prevalence. Radiation necrosis (RN) is a serious PTRE which carries a poor prognosis. Since 2012, laser interstitial thermal therapy (LITT) has been used to treat RN. However, reviews have attempting to generalise the efficacy of LITT against biopsy-proven RN are limited. In this systematic review, patient demographic characteristics and post-LITT clinical outcomes are characterised. METHODS A systematic literature search was conducted in four major databases for cohort studies and case reports published between 2012 and 2022, following the PRISMA 2020 checklist. Data was extracted and descriptively analysed. Quality of reporting was assessed using the PROCESS criteria and reporting bias was evaluated using the ROBINS-I scoring system. RESULTS Eleven studies met our inclusion criteria, with an overall moderate risk of reporting bias being observed. Mean pre-LITT target lesion volume was 6.75 cm3, and was independent of gender, time since SRS, age and number of interventions prior to LITT. DISCUSSION AND CONCLUSION LITT is a versatile treatment option which may be used to treat a vast range of patients with refractory biopsy-proven RN. However, neurosurgeons should exercise caution when selecting patients for LITT due to insufficient data on the treatment's efficacy against biopsy-proven RN. This warrants further studies to unequivocally determine the safety and clinical outcomes.
Collapse
Affiliation(s)
- Andrea Cuschieri
- Faculty of Medicine and Surgery, University of Malta, Imsida MSD2080, Malta.
| | - Mariah Borg
- Faculty of Medicine and Surgery, University of Malta, Imsida MSD2080, Malta
| | | | - Christian Zammit
- Faculty of Medicine and Surgery, University of Malta, Imsida MSD2080, Malta
| |
Collapse
|
10
|
Terrapon APR, Krüger M, Hundsberger T, Neidert MC, Bozinov O. Laser Interstitial Thermal Therapy for Radionecrosis. Neurosurg Clin N Am 2023; 34:209-225. [PMID: 36906328 DOI: 10.1016/j.nec.2022.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Radiotherapy is widely used for brain tumors but can cause radiation necrosis (RN). Laser interstitial thermal therapy (LITT) is a relatively new therapeutic modality for RN and its impact on patient outcome is still not well understood. Based on a systematic literature search (n=33), the authors discuss the available evidence. Most studies found a positive safety/efficacy profile, as LITT may help to lengthen survival, prevent progression, taper steroids, and improve neurological symptoms while remaining safe. Prospective studies on this subject are needed and may result in LITT becoming an essential therapeutic option for the treatment of RN.
Collapse
Affiliation(s)
- Alexis Paul Romain Terrapon
- Department of Neurosurgery, Kantonsspital St. Gallen, Medical School St. Gallen, Rorschacher Strasse 95, St. Gallen 9007, Switzerland
| | - Marie Krüger
- Department of Neurosurgery, Kantonsspital St. Gallen, Medical School St. Gallen, Rorschacher Strasse 95, St. Gallen 9007, Switzerland; Unit of Functional Neurosurgery, Institute of Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Department of Stereotactic and Functional Neurosurgery, University Medical Center Freiburg, Breisacher Strasse 64, Freiburg 79095, Germany
| | - Thomas Hundsberger
- Department of Neurology and of Oncology, Kantonsspital St. Gallen, Medical School St. Gallen, Rorschacher Strasse 95, St. Gallen 9007, Switzerland
| | - Marian Christoph Neidert
- Department of Neurosurgery, Kantonsspital St. Gallen, Medical School St. Gallen, Rorschacher Strasse 95, St. Gallen 9007, Switzerland
| | - Oliver Bozinov
- Department of Neurosurgery, Kantonsspital St. Gallen, Medical School St. Gallen, Rorschacher Strasse 95, St. Gallen 9007, Switzerland.
| |
Collapse
|
11
|
Palmisciano P, Haider AS, Balasubramanian K, Boockvar JA, Schwartz TH, D'Amico RS, Gabriella Wernicke A. Cesium-131 brachytherapy for the treatment of brain metastases: Current status and future perspectives. J Clin Neurosci 2023; 109:57-63. [PMID: 36753799 DOI: 10.1016/j.jocn.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 02/09/2023]
Abstract
Adjuvant radiotherapy is often necessary following surgical resection of brain metastases to improve local tumor control and survival. Brachytherapy using cesium-131 offers a novel method for loco-regional radiotherapy. We reviewed the current literature reporting the use of cesium-131 brachytherapy for the treatment of brain metastases. Published studies and ongoing trials were reviewed to identify treatment protocols and clinical outcomes of cesium-131 brachytherapy for brain metastases. Cesium-131 brachytherapy was further compared to current outcomes for iodine-125 brachytherapy and stereotactic radiosurgery. Intraoperative brachytherapy allows patients to receive two treatment modalities in one setting while minimizing tumor cell repopulation. After initial interest, the use of iodine-125 brachytherapy has declined due to unfavorable rates of radiation necrosis without survival improvement. Recent data on intracavitary cesium-131 brachytherapy in brain metastases have demonstrated improved locoregional tumor control with low risks of radiation necrosis, with associated improvements in patients compliance and satisfaction. Cesium-131 isotope has a short half-life, delivers 90% of its dose within a month, shortens the time to initiation of systemic therapy compared to iodine-125 or external radiotherapy, and has an excellent radiation safety profile. Further analyses have demonstrated superior cost-effectiveness and quality-of-life improvement ratios of cesium-131 brachytherapy than adjuvant stereotactic radiosurgery. Cesium-131 brachytherapy is a safe and effective post-surgical treatment option for brain metastases with associated clinical and cost-effectiveness benefits in appropriately selected patients.
Collapse
Affiliation(s)
- Paolo Palmisciano
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ali S Haider
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | - John A Boockvar
- Department of Neurological Surgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
| | - Theodore H Schwartz
- Department of Neurosurgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA
| | - Randy S D'Amico
- Department of Neurological Surgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
| | - Alla Gabriella Wernicke
- Department of Radiation Medicine, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA.
| |
Collapse
|
12
|
Sweidan H, Jarrah A, Zhu F, AlQasem S, Manasrah N, Chaudhary AJ. Recurrent Brain Metastasis Versus Radiation-Induced Necrosis: A Case Report and Literature Review. Cureus 2023; 15:e34400. [PMID: 36874691 PMCID: PMC9977201 DOI: 10.7759/cureus.34400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Radiotherapy is the cornerstone of brain metastasis management. With the advancement of therapies, patients are living longer, exposing them to the long-term effects of radiotherapy. Using concurrent or sequential chemotherapy, targeted agents, and immune checkpoint inhibitors may increase the incidence and severity of radiation-induced toxicity. Recurrent metastasis and radiation necrosis (RN) appear indistinguishable on neuroimaging, making it a diagnostic dilemma for clinicians. Here, we present a case of RN in a 65-year-old male patient who previously had brain metastasis (BM) from primary lung cancer, misdiagnosed initially as recurrent BM.
Collapse
Affiliation(s)
- Hisham Sweidan
- Internal medicine, Detroit Medical Center/Sinai Grace Hospital/Wayne State University, Detroit, USA
| | - Abdullah Jarrah
- Internal Medicine, Detroit Medical Center/Sinai Grace Hospital/Wayne State University, Detroit, USA
| | - Feng Zhu
- Internal Medicine, Detroit Medical Center/Sinai Grace Hospital/Wayne State University, Detroit, USA
| | | | - Nouraldeen Manasrah
- Internal Medicine, Detroit Medical Center/Sinai Grace Hospital, Detroit, USA
| | | |
Collapse
|
13
|
Mayo ZS, Halima A, Broughman JR, Smile TD, Tom MC, Murphy ES, Suh JH, Lo SS, Barnett GH, Wu G, Johnson S, Chao ST. Radiation necrosis or tumor progression? A review of the radiographic modalities used in the diagnosis of cerebral radiation necrosis. J Neurooncol 2023; 161:23-31. [PMID: 36633800 DOI: 10.1007/s11060-022-04225-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
PURPOSE Cerebral radiation necrosis is a complication of radiation therapy that can be seen months to years following radiation treatment. Differentiating radiation necrosis from tumor progression on standard magnetic resonance imaging (MRI) is often difficult and advanced imaging techniques may be needed to make an accurate diagnosis. The purpose of this article is to review the imaging modalities used in differentiating radiation necrosis from tumor progression following radiation therapy for brain metastases. METHODS We performed a review of the literature addressing the radiographic modalities used in the diagnosis of radiation necrosis. RESULTS Differentiating radiation necrosis from tumor progression remains a diagnostic challenge and advanced imaging modalities are often required to make a definitive diagnosis. If diagnostic uncertainty remains following conventional imaging, a multi-modality diagnostic approach with perfusion MRI, magnetic resonance spectroscopy (MRS), positron emission tomography (PET), single photon emission spectroscopy (SPECT), and radiomics may be used to improve diagnosis. CONCLUSION Several imaging modalities exist to aid in the diagnosis of radiation necrosis. Future studies developing advanced imaging techniques are needed.
Collapse
Affiliation(s)
- Zachary S Mayo
- Department of Radiation Oncology, Cleveland Clinic, 9500 Euclid Ave CA-50, Cleveland, OH, 44195, USA
| | - Ahmed Halima
- Department of Radiation Oncology, Cleveland Clinic, 9500 Euclid Ave CA-50, Cleveland, OH, 44195, USA
| | - James R Broughman
- Department of Radiation Oncology, Cleveland Clinic, 9500 Euclid Ave CA-50, Cleveland, OH, 44195, USA
| | - Timothy D Smile
- Department of Radiation Oncology, Cleveland Clinic, 9500 Euclid Ave CA-50, Cleveland, OH, 44195, USA
| | - Martin C Tom
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Erin S Murphy
- Department of Radiation Oncology, Cleveland Clinic, 9500 Euclid Ave CA-50, Cleveland, OH, 44195, USA.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - John H Suh
- Department of Radiation Oncology, Cleveland Clinic, 9500 Euclid Ave CA-50, Cleveland, OH, 44195, USA.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Gene H Barnett
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.,Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, USA
| | - Guiyun Wu
- Department of Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Scott Johnson
- Department of Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Samuel T Chao
- Department of Radiation Oncology, Cleveland Clinic, 9500 Euclid Ave CA-50, Cleveland, OH, 44195, USA. .,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
14
|
Sneed PK, Chan JW, Ma L, Braunstein SE, Theodosopoulos PV, Fogh SE, Nakamura JL, Boreta L, Raleigh DR, Ziemer BP, Morin O, Hervey-Jumper SL, McDermott MW. Adverse radiation effect and freedom from progression following repeat stereotactic radiosurgery for brain metastases. J Neurosurg 2023; 138:104-112. [PMID: 35594891 DOI: 10.3171/2022.4.jns212597] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/05/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The authors previously evaluated risk and time course of adverse radiation effects (AREs) following stereotactic radiosurgery (SRS) for brain metastases, excluding lesions treated after prior SRS. In the present analysis they focus specifically on single-fraction salvage SRS to brain metastases previously treated with SRS or hypofractionated SRS (HFSRS), evaluating freedom from progression (FFP) and the risk and time course of AREs. METHODS Brain metastases treated from September 1998 to May 2019 with single-fraction SRS after prior SRS or HFSRS were analyzed. Serial follow-up magnetic resonance imaging (MRI) and surgical pathology reports were reviewed to score local treatment failure and AREs. The Kaplan-Meier method was used to estimate FFP and risk of ARE measured from the date of repeat SRS with censoring at the last brain MRI. RESULTS A total of 229 retreated brain metastases in 124 patients were evaluable. The most common primary cancers were breast, lung, and melanoma. The median interval from prior SRS/HFSRS to repeat SRS was 15.4 months, the median prescription dose was 18 Gy, and the median duration of follow-up imaging was 14.5 months. At 1 year after repeat SRS, FFP was 80% and the risk of symptomatic ARE was 11%. The 1-year risk of imaging changes, including asymptomatic RE and symptomatic ARE, was 30%. Among lesions that demonstrated RE, the median time to onset was 6.7 months (IQR 4.7-9.9 months) and the median time to peak imaging changes was 10.1 months (IQR 5.6-13.6 months). Lesion size by quadratic mean diameter (QMD) showed similar results for QMDs ranging from 0.75 to 2.0 cm (1-year FFP 82%, 1-year risk of symptomatic ARE 11%). For QMD < 0.75 cm, the 1-year FFP was 86% and the 1-year risk of symptomatic ARE was only 2%. Outcomes were worse for QMDs 2.01-3.0 cm (1-year FFP 65%, 1-year risk of symptomatic ARE 24%). The risk of symptomatic ARE was not increased with tyrosine kinase inhibitors or immunotherapy before or after repeat SRS. CONCLUSIONS RE on imaging was common after repeat SRS (30% at 1 year), but the risk of a symptomatic ARE was much less (11% at 1 year). The results of repeat single-fraction SRS were good for brain metastases ≤ 2 cm. The authors recommend an interval ≥ 6 months from prior SRS and a prescription dose ≥ 18 Gy. Alternatives such as HFSRS, laser interstitial thermal therapy, or resection with adjuvant radiation should be considered for recurrent brain metastases > 2 cm.
Collapse
Affiliation(s)
- Penny K Sneed
- 1Department of Radiation Oncology, University of California, San Francisco
| | - Jason W Chan
- 1Department of Radiation Oncology, University of California, San Francisco
| | - Lijun Ma
- 2Department of Radiation Oncology, University of Southern California, Los Angeles
| | - Steve E Braunstein
- 1Department of Radiation Oncology, University of California, San Francisco
| | - Philip V Theodosopoulos
- 3Department of Neurological Surgery, University of California, San Francisco, California; and
| | - Shannon E Fogh
- 1Department of Radiation Oncology, University of California, San Francisco
| | - Jean L Nakamura
- 1Department of Radiation Oncology, University of California, San Francisco
| | - Lauren Boreta
- 1Department of Radiation Oncology, University of California, San Francisco
| | - David R Raleigh
- 1Department of Radiation Oncology, University of California, San Francisco.,3Department of Neurological Surgery, University of California, San Francisco, California; and
| | - Benjamin P Ziemer
- 1Department of Radiation Oncology, University of California, San Francisco
| | - Olivier Morin
- 1Department of Radiation Oncology, University of California, San Francisco
| | - Shawn L Hervey-Jumper
- 3Department of Neurological Surgery, University of California, San Francisco, California; and
| | - Michael W McDermott
- 4Division of Neurosurgery, Miami Neuroscience Institute, Baptist Health South Florida, Miami, Florida
| |
Collapse
|
15
|
Ogasawara C, Watanabe G, Young K, Kwon R, Conching A, Palmisciano P, Kan P, de Oliveira Sillero R. Laser Interstitial Thermal Therapy for Cerebral Cavernous Malformations: A Systematic Review of Indications, Safety, and Outcomes. World Neurosurg 2022; 166:279-287.e1. [PMID: 35760323 DOI: 10.1016/j.wneu.2022.06.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cerebral cavernous malformations (CCM) in deep eloquent areas present a surgical challenge. Laser interstitial thermal therapy (LITT) may present itself as a safe minimally invasive treatment option. OBJECTIVE To systematically review the indications, safety, and outcomes of LITT for CCM. METHODS Electronic databases were searched from inception to October 7, 2021 for articles with CCM and LITT keywords. Studies describing CCMs treated with LITT were included. RESULTS A total of 32 patients with CCMs in lobar (79%), basal ganglia (12%), and brainstem (9%) locations were treated with LITT. Indications for LITT included drug-resistant seizures (75%), unacceptable surgical risk (22%), recurrent hemorrhage (16%), and early intervention to discontinue antiepileptic drugs (3%). No death or CCM-associated intracranial hemorrhage occurred intraoperatively or postoperatively, and most patients experienced no adverse effects or transient effects that resolved at follow-up (84%). Of those treated for CCM-associated epilepsy, 83% experienced Engel class I seizure freedom and most were class IA (61%). Most patients experienced symptomatic improvement (93%), and a decrease in antiepileptic drugs was reported in more than half of patients (56%), with 28% able to discontinue all antiepilepsy medications after LITT. CONCLUSIONS LITT seems to be a safe treatment for CCMs located in deep eloquent areas and in lesions presenting with medically refractory seizures or recurrent hemorrhages. Randomized studies are needed to further elucidate its efficacy in treating CCM.
Collapse
Affiliation(s)
- Christian Ogasawara
- Division of Neurosurgery, John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawai'i, USA.
| | - Gina Watanabe
- Division of Neurosurgery, John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawai'i, USA
| | - Kurtis Young
- Division of Neurosurgery, John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawai'i, USA
| | - Royce Kwon
- Division of Neurosurgery, John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawai'i, USA
| | - Andie Conching
- Division of Neurosurgery, John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawai'i, USA
| | - Paolo Palmisciano
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Peter Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, Texas, USA
| | | |
Collapse
|
16
|
Neoadjuvant Stereotactic Radiotherapy for Brain Metastases: Systematic Review and Meta-Analysis of the Literature and Ongoing Clinical Trials. Cancers (Basel) 2022; 14:cancers14174328. [PMID: 36077863 PMCID: PMC9455064 DOI: 10.3390/cancers14174328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The available treatment strategies for patients with brain metastases remain suboptimal, with current research focused on identifying therapies intended to improve patient outcomes while reducing the risk of treatment-related complications. Several studies have investigated the role of pre-operative neoadjuvant stereotactic radiotherapy, and have proposed it as a valid alternative to post-operative adjuvant stereotactic radiotherapy. The aim of our systematic review was to comprehensively analyze the current literature and ongoing clinical trials evaluating neoadjuvant stereotactic radiotherapy in patients with brain metastases, describing treatment protocols and related outcomes. Early evidence suggests that neoadjuvant stereotactic radiotherapy may offer rates of local control and overall survival comparable to those obtained with adjuvant postoperative SRS, but comparative studies are currently lacking. In addition, neoadjuvant stereotactic radiotherapy shows low rates of post-treatment radiation necrosis and leptomeningeal metastases. Ongoing clinical trials aim to evaluate long-term outcomes in large patient cohorts, with some focused on comparing neoadjuvant stereotactic radiotherapy to adjuvant stereotactic radiosurgery. Abstract Background: Brain metastases (BMs) carry a high morbidity and mortality burden. Neoadjuvant stereotactic radiotherapy (NaSRT) has shown promising results. We systematically reviewed the literature on NaSRT for BMs. Methods: PubMed, EMBASE, Scopus, Web-of-Science, Cochrane, and ClinicalTrial.gov were searched following the PRISMA guidelines to include studies and ongoing trials reporting NaSRT for BMs. Indications, protocols, and outcomes were analyzed using indirect random-effect meta-analyses. Results: We included 7 studies comprising 460 patients with 483 BMs, and 13 ongoing trials. Most BMs originated from non-small lung cell carcinoma (41.4%), breast cancer (18.7%) and melanoma (43.6%). Most patients had single-BM (69.8%) located supratentorial (77.8%). Patients were eligible if they had histologically-proven primary tumors and ≤4 synchronous BMs candidate for non-urgent surgery and radiation. Patients with primary tumors clinically responsive to radiotherapy, prior brain radiation, and leptomeningeal metastases were deemed non-eligible. Median planning target volume was 9.9 cm3 (range, 2.9–57.1), and NaSRT was delivered in 1-fraction (90.9%), 5-fraction (4.8%), or 3-fraction (4.3%), with a median biological effective dose of 39.6 Gy10 (range, 35.7–60). Most patients received piecemeal (76.3%) and gross-total (94%) resection after a median of 1-day (range, 1–10) post-NaSRT. Median follow-up was 19.2-months (range, 1–41.3). Actuarial post-treatment rates were 4% (95%CI: 2–6%) for symptomatic radiation necrosis, 15% (95%CI: 12–18%) and 47% (95%CI: 42–52%) for local and distant recurrences, 6% (95%CI: 3–8%) for leptomeningeal metastases, 81% (95%CI: 75–87%) and 59% (95%CI: 54–63%) for 1-year local tumor control and overall survival. Conclusion: NaSRT is effective and safe for BMs. Ongoing trials will provide high-level evidence on long-term post-treatment outcomes, further compared to adjuvant stereotactic radiotherapy.
Collapse
|
17
|
DEGRO practical guideline for central nervous system radiation necrosis part 2: treatment. Strahlenther Onkol 2022; 198:971-980. [PMID: 36038670 PMCID: PMC9581806 DOI: 10.1007/s00066-022-01973-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 11/08/2022]
Abstract
Purpose The Working Group for Neurooncology of the German Society for Radiation Oncology (DEGRO; AG NRO) in cooperation with members of the Neurooncological Working Group of the German Cancer Society (DKG-NOA) aimed to define a practical guideline for the diagnosis and treatment of radiation-induced necrosis (RN) of the central nervous system (CNS). Methods Panel members of the DEGRO working group invited experts, participated in a series of conferences, supplemented their clinical experience, performed a literature review, and formulated recommendations for medical treatment of RN, including bevacizumab, in clinical routine. Conclusion Diagnosis and treatment of RN requires multidisciplinary structures of care and defined processes. Diagnosis has to be made on an interdisciplinary level with the joint knowledge of a neuroradiologist, radiation oncologist, neurosurgeon, neuropathologist, and neurooncologist. If the diagnosis of blood–brain barrier disruptions (BBD) or RN is likely, treatment should be initiated depending on the symptoms, location, and dynamic of the lesion. Multiple treatment options are available (such as observation, surgery, steroids, and bevacizumab) and the optimal approach should be discussed in an interdisciplinary setting. In this practice guideline, we offer detailed treatment strategies for various scenarios.
Collapse
|
18
|
Palmisciano P, Haider AS, Balasubramanian K, D'Amico RS, Wernicke AG. The role of cesium-131 brachytherapy in brain tumors: a scoping review of the literature and ongoing clinical trials. J Neurooncol 2022; 159:117-133. [PMID: 35696019 DOI: 10.1007/s11060-022-04050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Cesium-131 radioactive isotope has favored the resurgence of intracavitary brachytherapy in neuro-oncology, minimizing radiation-induced complications and maximizing logistical and clinical outcomes. We reviewed the literature on cesium-131 brachytherapy for brain tumors. METHODS PubMed, Web-of-Science, Scopus, Clinicaltrial.gov, and Cochrane were searched following the PRISMA extension for scoping reviews to include published studies and ongoing trials reporting cesium-131 brachytherapy for brain tumors. RESULTS We included 27 published studies comprising 279 patients with 293 lesions, and 3 ongoing trials. Most patients had brain metastases (63.1%), followed by high-grade gliomas (23.3%), of WHO Grade III (15.2%) and Grade IV (84.8%), and meningiomas (13.6%), mostly of WHO Grade II (62.8%) and Grade III (27.9%). Most brain metastases were newly diagnosed (72.3%), while most gliomas and meningiomas were recurrent (95.4% and 88.4%). Patients underwent gross-total (91.1%) or subtotal (8.9%) resection, with median postoperative cavity size of 3.5 cm (range 1-5.8 cm). A median of 20, 28, and 16 seeds were implanted in gliomas, meningiomas, and brain metastases, with median seed activity of 3.8 mCi (range 2.4-5 mCi). Median follow-up was 16.2 months (range 0.6-72 months). 1-year freedom from progression rates were local 94% (range 57-100%), regional 85.1% (range 55.6-93.8%), and distant 53.5% (range 26.3-67.4%). Post-treatment radiation necrosis, seizure, and surgical wound infection occurred in 3.4%, 4.7%, and 4.3% patients. CONCLUSION Initial data suggest that cesium-131 brachytherapy is safe and effective in primary or metastatic malignant brain tumors. Ongoing trials are evaluating long-term locoregional tumor control and future studies should analyze its role in multimodal systemic tumor management.
Collapse
Affiliation(s)
- Paolo Palmisciano
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ali S Haider
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | - Randy S D'Amico
- Department of Neurological Surgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
| | - Alla Gabriella Wernicke
- Department of Radiation Oncology, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA.
- Department of Radiation Medicine, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra, 130 East 77th Street, New York, NY, 10075, USA.
| |
Collapse
|
19
|
The Role of [ 68Ga]Ga-DOTA-SSTR PET Radiotracers in Brain Tumors: A Systematic Review of the Literature and Ongoing Clinical Trials. Cancers (Basel) 2022; 14:cancers14122925. [PMID: 35740591 PMCID: PMC9221214 DOI: 10.3390/cancers14122925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary [68Ga]Ga-DOTA-SSTR PET imaging has recently been introduced in the management of patients with brain tumors, mostly meningiomas and pituitary adenomas or carcinomas. The current literature demonstrated the superior diagnostic accuracy of this imaging modality, especially for lesions difficult to be detected or characterized on conventional imaging protocols, such as skull base or transosseous meningiomas. [68Ga]Ga-DOTA-SSTR PET tracers also seem to provide superior volume contouring for radiotherapy planning and may also be used to evaluate the tumor’s overexpression of somatostatin receptors for devising patient-tailored peptide receptor radionuclide therapy. In this review, we comprehensively analyzed the current literature discussing the implementation of [68Ga]Ga-DOTA-SSTR PET imaging in brain tumors, further presenting ongoing clinical trials and suggesting potential future applications. Abstract Background: The development of [68Ga]Ga-DOTA-SSTR PET tracers has garnered interest in neuro-oncology, to increase accuracy in diagnostic, radiation planning, and neurotheranostics protocols. We systematically reviewed the literature on the current uses of [68Ga]Ga-DOTA-SSTR PET in brain tumors. Methods: PubMed, Scopus, Web of Science, and Cochrane were searched in accordance with the PRISMA guidelines to include published studies and ongoing trials utilizing [68Ga]Ga-DOTA-SSTR PET in patients with brain tumors. Results: We included 63 published studies comprising 1030 patients with 1277 lesions, and 4 ongoing trials. [68Ga]Ga-DOTA-SSTR PET was mostly used for diagnostic purposes (62.5%), followed by treatment planning (32.7%), and neurotheranostics (4.8%). Most lesions were meningiomas (93.6%), followed by pituitary adenomas (2.8%), and the DOTATOC tracer (53.2%) was used more frequently than DOTATATE (39.1%) and DOTANOC (5.7%), except for diagnostic purposes (DOTATATE 51.1%). [68Ga]Ga-DOTA-SSTR PET studies were mostly required to confirm the diagnosis of meningiomas (owing to their high SSTR2 expression and tracer uptake) or evaluate their extent of bone invasion, and improve volume contouring for better radiotherapy planning. Some studies reported the uncommon occurrence of SSTR2-positive brain pathology challenging the diagnostic accuracy of [68Ga]Ga-DOTA-SSTR PET for meningiomas. Pre-treatment assessment of tracer uptake rates has been used to confirm patient eligibility (high somatostatin receptor-2 expression) for peptide receptor radionuclide therapy (PRRT) (i.e., neurotheranostics) for recurrent meningiomas and pituitary carcinomas. Conclusion: [68Ga]Ga-DOTA-SSTR PET studies may revolutionize the routine neuro-oncology practice, especially in meningiomas, by improving diagnostic accuracy, delineation of radiotherapy targets, and patient eligibility for radionuclide therapies.
Collapse
|
20
|
Palmisciano P, Ogasawara C, Ogasawara M, Ferini G, Scalia G, Haider AS, Bin Alamer O, Salvati M, Umana GE. Endocrine disorders after primary gamma knife radiosurgery for pituitary adenomas: A systematic review and meta-analysis. Pituitary 2022; 25:404-419. [PMID: 35349010 DOI: 10.1007/s11102-022-01219-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Gamma Knife radiosurgery (GKRS) is feasible for pituitary adenomas, but post-surgery GKRS may cause severe hormone deficits. We reviewed the literature on primary GKRS for pituitary adenoma focusing on radiation-induced hormone deficiencies. METHODS PubMed, Web-of-Science, Scopus, and Cochrane were searched upon the PRISMA guidelines to include studies describing primary GKRS for pituitary adenomas. Pooled-rates of GKRS-induced hormone deficiencies and clinical-radiological responses were analyzed with a random-effect model meta-analysis. RESULTS We included 24 studies comprising 1381 patients. Prolactinomas were the most common (34.2%), and 289 patients had non-functioning adenomas (20.9%). Median tumor volume was 1.6cm3 (range, 0.01-31.3), with suprasellar extension and cavernous sinus invasion detected in 26% and 31.1% cases. GKRS was delivered with median marginal dose 22.6 Gy (range, 6-49), maximum dose 50 Gy (range, 25-90), and isodose line 50% (range, 9-100%). Median maximum point doses were 9 Gy (range, 0.5-25) to the pituitary stalk, 7 Gy (range, 1-38) to the optic apparatus, and 5 Gy (range, 0.4-12.3) to the optic chiasm. Pooled 5 year rates of endocrine normalization and local tumor control were 48% (95%CI 45-51%) and 97% (95%CI 95-98%). 158 patients (11.4%) experienced endocrinopathies at a median of 45 months (range, 4-187.3) after GKRS, with pooled 5-year rates of 8% (95%CI 6-9%). GKRS-induced hormone deficiencies comprised secondary hypothyroidism (42.4%) and hypogonadotropic hypogonadism (33.5%), with panhypopituitarism reported in 31 cases (19.6%). CONCLUSION Primary GKRS for pituitary adenoma may correlate with lower rates of radiation-induced hypopituitarism (11.4%) than post-surgery GKRS (18-32%). Minimal doses to normal pituitary structures and long-term endocrine follow-up are of primary importance.
Collapse
Affiliation(s)
- Paolo Palmisciano
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | | | | | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia srl, Viagrande, Italy
| | - Gianluca Scalia
- Department of Neurosurgery, Highly Specialized Hospital of National Importance "Garibaldi", Catania, Italy
| | - Ali S Haider
- Texas A&M University College of Medicine, Houston, TX, USA
| | - Othman Bin Alamer
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Maurizio Salvati
- Department of Neurosurgery, IRCCS, Sapienza University of Rome, NeuromedPozzilli, Italy
| | - Giuseppe E Umana
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Via Messina 829, 95126, Catania, Italy.
| |
Collapse
|
21
|
Palmisciano P, Ferini G, Barone F, Chavda V, Romano F, Amico P, Emmanuele D, Nicoletti GF, Pompili G, Giammalva GR, Maugeri R, Iacopino DG, Strigari L, Yeo TT, Cicero S, Scalia G, Umana GE. Extra-Neural Metastases From Primary Intracranial Ependymomas: A Systematic Review. Front Oncol 2022; 12:831016. [PMID: 35574408 PMCID: PMC9093681 DOI: 10.3389/fonc.2022.831016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Primary intracranial ependymomas (IE) are rare brain tumors rarely metastasizing outside the central nervous system. We systematically reviewed the literature on extra-neural metastases from primary IEs. Methods PubMed, Scopus, Web-of-Science, and Cochrane were searched following the PRISMA guidelines to include studies of extra-neural metastases from primary IEs. Clinical features, management strategies, and survival were analyzed. Results We collected 48 patients from 43 studies. Median age was 13 years (range, 2-65). Primary IEs were frequently located in the parietal (22.9%) and frontal (16.7%) lobes, and mostly treated with resection (95.8%) and/or radiotherapy (62.5%). Most IEs were of grade-III (79.1%), and few of grade-I (6.3%) or grade-II (14.6%). 45 patients experienced intracranial recurrences, mostly treated with resection (86.7%), radiotherapy (60%), and/or chemotherapy (24.4%). Median time-interval from primary IEs was 28 months (range, 0-140). Most extra-neural metastases were diagnosed at imaging (37.5%) or autopsy (35.4%). Extra-neural metastases were multifocal in 38 patients (79.1%), mostly involving cervical or hilar lymph-nodes (66.7%), lung/pleura (47.9%), and/or scalp (29.1%). Surgical resection (31.3%), chemotherapy (31.3%) and locoregional radiotherapy (18.8%) were the most common treatments for extra-neural metastases, but 28 (58.3%) patients were not treated. At last follow-up, 37 patients died with median overall-survivals from primary IEs of 36 months (range, 1-239), and from extra-neural metastases of 3 months (range, 0.1-36). Overall-survival was significantly longer in patients with grade-I and II IEs (P=0.040). Conclusion Extra-neural metastases from primary IEs are rare, but mostly occur at later disease stages. Multidisciplinary management strategies should be intended mostly for palliation.
Collapse
Affiliation(s)
- Paolo Palmisciano
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia srl, Viagrande, Italy
| | - Fabio Barone
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Palo Alto, CA, United States
| | | | - Paolo Amico
- Department of Pathological Anatomy, Cannizzaro Hospital, Catania, Italy
| | | | - Giovanni F. Nicoletti
- Department of Neurosurgery, Highly Specialized Hospital of National Importance “Garibaldi”, Catania, Italy
| | | | - Giuseppe Roberto Giammalva
- Unit of Neurosurgery, Department of Biomedical Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- Unit of Neurosurgery, Department of Biomedical Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Domenico Gerardo Iacopino
- Unit of Neurosurgery, Department of Biomedical Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tseng T. Yeo
- Department of Surgery, Division of Neurosurgery, National University Hospital, Singapore, Singapore
| | - Salvatore Cicero
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| | - Gianluca Scalia
- Department of Neurosurgery, Highly Specialized Hospital of National Importance “Garibaldi”, Catania, Italy
| | - Giuseppe Emmanuele Umana
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| |
Collapse
|
22
|
Tariciotti L, Caccavella VM, Fiore G, Schisano L, Carrabba G, Borsa S, Giordano M, Palmisciano P, Remoli G, Remore LG, Pluderi M, Caroli M, Conte G, Triulzi F, Locatelli M, Bertani G. A Deep Learning Model for Preoperative Differentiation of Glioblastoma, Brain Metastasis and Primary Central Nervous System Lymphoma: A Pilot Study. Front Oncol 2022; 12:816638. [PMID: 35280801 PMCID: PMC8907851 DOI: 10.3389/fonc.2022.816638] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
Background Neuroimaging differentiation of glioblastoma, primary central nervous system lymphoma (PCNSL) and solitary brain metastasis (BM) remains challenging in specific cases showing similar appearances or atypical features. Overall, advanced MRI protocols have high diagnostic reliability, but their limited worldwide availability, coupled with the overlapping of specific neuroimaging features among tumor subgroups, represent significant drawbacks and entail disparities in the planning and management of these oncological patients. Objective To evaluate the classification performance metrics of a deep learning algorithm trained on T1-weighted gadolinium-enhanced (T1Gd) MRI scans of glioblastomas, atypical PCNSLs and BMs. Materials and Methods We enrolled 121 patients (glioblastoma: n=47; PCNSL: n=37; BM: n=37) who had undergone preoperative T1Gd-MRI and histopathological confirmation. Each lesion was segmented, and all ROIs were exported in a DICOM dataset. The patient cohort was then split in a training and hold-out test sets following a 70/30 ratio. A Resnet101 model, a deep neural network (DNN), was trained on the training set and validated on the hold-out test set to differentiate glioblastomas, PCNSLs and BMs on T1Gd-MRI scans. Results The DNN achieved optimal classification performance in distinguishing PCNSLs (AUC: 0.98; 95%CI: 0.95 - 1.00) and glioblastomas (AUC: 0.90; 95%CI: 0.81 - 0.97) and moderate ability in differentiating BMs (AUC: 0.81; 95%CI: 0.70 - 0.95). This performance may allow clinicians to correctly identify patients eligible for lesion biopsy or surgical resection. Conclusion We trained and internally validated a deep learning model able to reliably differentiate ambiguous cases of PCNSLs, glioblastoma and BMs by means of T1Gd-MRI. The proposed predictive model may provide a low-cost, easily-accessible and high-speed decision-making support for eligibility to diagnostic brain biopsy or maximal tumor resection in atypical cases.
Collapse
Affiliation(s)
- Leonardo Tariciotti
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valerio M. Caccavella
- Department of Paediatric Orthopaedics and Traumatology, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan, Italy
| | - Giorgio Fiore
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Luigi Schisano
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giorgio Carrabba
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Borsa
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Giordano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Palmisciano
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| | - Giulia Remoli
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Luigi Gianmaria Remore
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Pluderi
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Caroli
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Conte
- Unit of Neuroradiology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Fabio Triulzi
- Unit of Neuroradiology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marco Locatelli
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Aldo Ravelli” Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Giulio Bertani
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
23
|
Narita Y, Sato S, Kayama T. Review of the diagnosis and treatment of brain metastases. Jpn J Clin Oncol 2022; 52:3-7. [PMID: 34865060 DOI: 10.1093/jjco/hyab182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/10/2021] [Indexed: 11/14/2022] Open
Abstract
Brain metastases (BM) occur in at least 10% of cancer patients, and are one of the main causes of cancer-related deaths and significant deterioration in the quality of life of cancer patients due to the neurological deterioration caused by brain compression and tumor invasion. Whole-brain irradiation has been emphasized as the standard treatment for BM. However, recent clinical trials including the JLGK0901 and JCOG0504 trials conducted in Japan have established therapeutic evidence for the use of stereotactic radiosurgery with regular follow-up with magnetic resonance imaging for BM. In addition to surgery and stereotactic radiotherapy, advances in drug therapy for BM, such as tyrosine kinase inhibitors and immune checkpoint inhibitors, are expected. This review describes the history and the recent evidence of the diagnosis and treatment of BM.
Collapse
Affiliation(s)
- Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo
| | | | - Takamasa Kayama
- National Cancer Center, Tokyo.,Yamagata University, Yamagata, Japan
| |
Collapse
|
24
|
Palmisciano P, Ferini G, Ogasawara C, Wahood W, Bin Alamer O, Gupta AD, Scalia G, Larsen AMG, Yu K, Umana GE, Cohen-Gadol AA, El Ahmadieh TY, Haider AS. Orbital Metastases: A Systematic Review of Clinical Characteristics, Management Strategies, and Treatment Outcomes. Cancers (Basel) 2021; 14:94. [PMID: 35008259 PMCID: PMC8750198 DOI: 10.3390/cancers14010094] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Orbital metastases often lead to severe functional impairment. The role of resection, orbital exenteration, and complementary treatments is still debated. We systematically reviewed the literature on orbital metastases. METHODS PubMed, Scopus, Web-of-Science, and Cochrane were searched upon PRISMA guidelines to identify studies on orbital metastases. Clinical characteristics, management strategies, and survival were analyzed. RESULTS We included 262 studies comprising 873 patients. Median age was 59 years. The most frequent primary tumors were breast (36.3%), melanoma (10.1%), and prostate (8.5%) cancers, with median time interval of 12 months (range, 0-420). The most common symptoms were proptosis (52.3%) and relative-afferent-pupillary-defect (38.7%). Most metastases showed a diffuse location within the orbit (19%), with preferential infiltration of orbital soft tissues (40.2%). In 47 cases (5.4%), tumors extended intracranially. Incisional biopsy (63.7%) was preferred over fine-needle aspiration (10.2%), with partial resection (16.6%) preferred over complete (9.5%). Orbital exenteration was pursued in 26 patients (3%). A total of 305 patients (39.4%) received chemotherapy, and 506 (58%) received orbital radiotherapy. Post-treatment symptom improvement was significantly superior after resection (p = 0.005) and orbital radiotherapy (p = 0.032). Mean follow-up was 14.3 months, and median overall survival was 6 months. Fifteen cases (1.7%) demonstrated recurrence with median local control of six months. Overall survival was statistically increased in patients with breast cancer (p < 0.001) and in patients undergoing resection (p = 0.024) but was not correlated with orbital location (p = 0.174), intracranial extension (p = 0.073), biopsy approach (p = 0.344), extent-of-resection (p = 0.429), or orbital exenteration (p = 0.153). CONCLUSIONS Orbital metastases severely impair patient quality of life. Surgical resection safely provides symptom and survival benefit compared to biopsy, while orbital radiotherapy significantly improves symptoms compared to not receiving radiotherapy.
Collapse
Affiliation(s)
- Paolo Palmisciano
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, 95126 Catania, Italy;
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia srl, 95029 Viagrande, Italy;
| | - Christian Ogasawara
- John A. Burns School of Medicine, University of Hawai’i, Honolulu, HI 96813, USA;
| | - Waseem Wahood
- Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA;
| | - Othman Bin Alamer
- Department of Neurosurgery, King Abdullah International Medical Research Center, Riyadh 11451, Saudi Arabia;
| | - Aditya D. Gupta
- College of Medicine, Texas A&M University, Houston, TX 77030, USA; (A.D.G.); (A.S.H.)
| | - Gianluca Scalia
- Department of Neurosurgery, Highly Specialized Hospital and of National Importance “Garibaldi”, 95126 Catania, Italy;
| | - Alexandra M. G. Larsen
- Department of Neurosurgery, Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.M.G.L.); (K.Y.); (T.Y.E.A.)
| | - Kenny Yu
- Department of Neurosurgery, Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.M.G.L.); (K.Y.); (T.Y.E.A.)
| | - Giuseppe E. Umana
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, 95126 Catania, Italy;
| | - Aaron A. Cohen-Gadol
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46077, USA;
| | - Tarek Y. El Ahmadieh
- Department of Neurosurgery, Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.M.G.L.); (K.Y.); (T.Y.E.A.)
| | - Ali S. Haider
- College of Medicine, Texas A&M University, Houston, TX 77030, USA; (A.D.G.); (A.S.H.)
- Department of Neurosurgery, Anderson Cancer Center, The University of Texas M.D., Houston, TX 77030, USA
| |
Collapse
|
25
|
Primary Skull Base Chondrosarcomas: A Systematic Review. Cancers (Basel) 2021; 13:cancers13235960. [PMID: 34885071 PMCID: PMC8656924 DOI: 10.3390/cancers13235960] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Primary skull base chondrosarcomas (SBCs) may carry significant tumor-burden by causing severe cranial nerve neuropathies. Current treatment strategies mainly focus on surgical resection and radiotherapy protocols, with a wide range of findings in terms of efficacy and safety. The aim of our systematic review was to comprehensively analyze the current literature on primary SBCs, describing clinical and radiological characteristics, available management strategies, treatment outcomes, and prognoses. We found that most primary SBCs show benign slow-growing patterns but may cause neurological deficits by compressing critical neurovascular structures. Open surgical approaches favor maximal resection with acceptable complication rates, but only a few studies reported the use of newer endoscopic approaches. Proton-based, photon-based, and carbon-based radiotherapy protocols may also allow safe and effective local tumor control as adjuvant treatments or stand-alone strategies in patients not eligible to undergo surgery. Overall, primary SBCs’ prognoses proved to be favorable and comparable to benign skull base neoplasms. Abstract Background: Primary skull base chondrosarcomas (SBCs) can severely affect patients’ quality of life. Surgical-resection and radiotherapy are feasible but may cause debilitating complications. We systematically reviewed the literature on primary SBCs. Methods: PubMed, EMBASE, Scopus, Web-of-Science, and Cochrane were searched following the PRISMA guidelines to include studies of patients with primary SBCs. Clinical characteristics, management strategies, and treatment outcomes were analyzed. Results: We included 33 studies comprising 1307 patients. Primary SBCs mostly involved the middle-fossa (72.7%), infiltrating the cavernous-sinus in 42.4% of patients. Cranial-neuropathies were reported in 810 patients (62%). Surgical-resection (93.3%) was preferred over biopsy (6.6%). The most frequent open surgical approaches were frontotemporal-orbitozygomatic (17.6%) and pterional (11.9%), and 111 patients (21.3%) underwent endoscopic-endonasal resection. Post-surgical cerebrospinal-fluid leaks occurred in 36 patients (6.5%). Radiotherapy was delivered in 1018 patients (77.9%): photon-based (41.4%), proton-based (64.2%), and carbon-based (13.1%). Severe post-radiotherapy complications, mostly hypopituitarism (15.4%) and hearing loss (7.1%) were experienced by 251 patients (30.7%). Post-treatment symptom-improvement (46.7%) and reduced/stable tumor volumes (85.4%) showed no differences based on radiotherapy-protocols (p = 0.165; p = 0.062). Median follow-up was 67-months (range, 0.1–376). SBCs recurrences were reported in 211 cases (16.1%). The 5-year and 10-year progression-free survival rates were 84.3% and 67.4%, and overall survival rates were 94% and 84%. Conclusion: Surgical-resection and radiotherapy are effective treatments in primary SBCs, with acceptable complication rates and favorable local tumor control.
Collapse
|