1
|
Zhou J, Duan S, Zhu Z, Wang H, Tian C, Yang H, Chen S, Ye M, Zhang X, Zhang B. Identification of intrinsic imaging subtypes using clustering analysis based on dynamic contrast-enhanced magnetic resonance imaging radiomics features for gliomas: preliminary associations with gene expression profiles. Quant Imaging Med Surg 2025; 15:4734-4747. [PMID: 40384650 PMCID: PMC12082578 DOI: 10.21037/qims-24-1459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/14/2025] [Indexed: 05/20/2025]
Abstract
Background There has been no research based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) radiomics for the stratification diagnosis and prognostic evaluation of gliomas. The study aimed to identify multiple glioma subtypes and decipher the gene expression profiles linked with different subtypes. Methods Cross-sectional and retrospective data of 189 patients were collected. The static radiomics features were obtained at three time points (0, 90, and 300 s) corresponding to pre-contrast, arterial, and delayed phases, respectively. The dynamic radiomics features were retrieved by determining the temporal anisotropy of these three phases. Multi-omics clustering was used to identify intrinsic radiomics subtypes within the cohort. The association between the radiomics clusters and gene expression profiles was evaluated through the analysis of variance. Results The patients in cluster 3 were oldest. Cluster 3 and cluster 1 had higher frequency of grade 4, high Ki-67 level, glioblastoma isocitrate dehydrogenase (IDH) wild-type, and unmethylated O6-methylguanine-DNA methyltransferase (MGMT) promoter. Cluster 3 had the highest frequency of epidermal growth factor receptor (EGFR) amplification and cyclin-dependent kinase inhibitor (CDKN) 2A/B homozygous deletion. Cluster 1 had the highest frequency of EGFR non-mutant. Cluster 4 and cluster 2 had a higher frequency of astrocytoma IDH-mutant. Cluster 4 had a higher frequency of grade 3, oligodendroglioma IDH-mutant and 1p/19q codeleted, MGMT promoter methylation, and EGFR non-amplification. Cluster 2 had a higher frequency of grade 2, low Ki-67 level, and patients without CDKN 2A/B homozygous deletion. There were no associations for other molecular markers between clusters. Conclusions The intrinsic imaging subtypes obtained from DCE-MRI radiomics features provide a new insight into glioma classification, potentially guiding the diagnosis.
Collapse
Affiliation(s)
- Jianan Zhou
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | | | - Zhengyang Zhu
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Han Wang
- Nanjing Center for Applied Math, Nanjing, China
| | - Chuanshuai Tian
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huiquan Yang
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Sixuan Chen
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Meiping Ye
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Farahani S, Hejazi M, Moradizeyveh S, Di Ieva A, Fatemizadeh E, Liu S. Diagnostic Accuracy of Deep Learning Models in Predicting Glioma Molecular Markers: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2025; 15:797. [PMID: 40218147 PMCID: PMC11988998 DOI: 10.3390/diagnostics15070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Integrating deep learning (DL) into radiomics offers a noninvasive approach to predicting molecular markers in gliomas, a crucial step toward personalized medicine. This study aimed to assess the diagnostic accuracy of DL models in predicting various glioma molecular markers using MRI. Methods: Following PRISMA guidelines, we systematically searched PubMed, Scopus, Ovid, and Web of Science until 27 February 2024 for studies employing DL algorithms to predict gliomas' molecular markers from MRI sequences. The publications were assessed for the risk of bias, applicability concerns, and quality using the QUADAS-2 tool and the radiomics quality score (RQS). A bivariate random-effects model estimated pooled sensitivity and specificity, accounting for inter-study heterogeneity. Results: Of 728 articles, 43 were qualified for qualitative analysis, and 30 were included in the meta-analysis. In the validation cohorts, MGMT methylation had a pooled sensitivity of 0.74 (95% CI: 0.66-0.80) and a pooled specificity of 0.75 (95% CI: 0.65-0.82), both with significant heterogeneity (p = 0.00, I2 = 80.90-84.50%). ATRX and TERT mutations had a pooled sensitivity of 0.79 (95% CI: 0.67-0.87) and 0.81 (95% CI: 0.72-0.87) and a pooled specificity of 0.85 (95% CI: 0.78-0.91) and 0.70 (95% CI: 0.61-0.77), respectively. Meta-regression analyses revealed that significant heterogeneity was influenced by data sources, MRI sequences, feature extraction methods, and validation techniques. Conclusions: While the DL models show promising prediction accuracy for glioma molecular markers, variability in the study settings complicates clinical translation. To bridge this gap, future efforts should focus on harmonizing multi-center MRI datasets, incorporating external validation, and promoting open-source studies and data sharing.
Collapse
Affiliation(s)
- Somayeh Farahani
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran 14618-84513, Iran;
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia
- Computational NeuroSurgery (CNS) Lab, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.M.); (A.D.I.)
| | - Marjaneh Hejazi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran 14618-84513, Iran;
| | - Sahar Moradizeyveh
- Computational NeuroSurgery (CNS) Lab, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.M.); (A.D.I.)
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.M.); (A.D.I.)
| | - Emad Fatemizadeh
- Department of Electrical Engineering, Sharif University of Technology, Tehran 14588-89694, Iran;
| | - Sidong Liu
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia
- Computational NeuroSurgery (CNS) Lab, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.M.); (A.D.I.)
| |
Collapse
|
3
|
Ahmadzadeh AM, Lomer NB, Ashoobi MA, Bathla G, Sotoudeh H. MRI-derived radiomics and end-to-end deep learning models for predicting glioma ATRX status: a systematic review and meta-analysis of diagnostic test accuracy studies. Clin Imaging 2025; 119:110386. [PMID: 39742798 DOI: 10.1016/j.clinimag.2024.110386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/06/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025]
Abstract
We aimed to systematically review and meta-analyze the predictive value of magnetic resonance imaging (MRI)-derived radiomics/end-to-end deep learning (DL) models in predicting glioma alpha thalassemia/mental retardation syndrome X-linked (ATRX) status. We conducted a comprehensive search across four major databases-Web of Science, PubMed, Scopus, and Embase. All the studies that assessed the performance of radiomics and/or end-to-end DL models for predicting glioma ATRX status were included. Quality assessment was performed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) criteria and the METhodological RadiomICs Score (METRICS). Pooled estimates for performance metrics were calculated. I-squared was used to assess heterogeneity, while subgroup and sensitivity analyses were performed to find its potential sources. Publication bias was assessed using Deeks' funnel plots. Seventeen and eleven studies were included in the systematic review and meta-analysis, respectively. Most of the studies had a low risk of bias and low concern for applicability according to the QUADAS-2. Also, most of them had good quality according to the METRICS. Meta-analysis showed a pooled sensitivity of 0.80 (95%CI: 0.71-0.96), a specificity of 0.82 (95%CI: 0.67-0.93), a positive diagnostic likelihood ratio (DLR) of 6.77 (95%CI: 4.67-9.82), a negative DLR of 0.15 (95%CI: 0.06-0.38), a diagnostic odds ratio of 30.36 (95%CI: 15.87-58.05), and an area under the curve (AUC) of 0.92 (95%CI: 0.89-0.94). Subgroup analysis revealed significant intergroup differences based on several factors. Radiomics models can accurately predict ATRX status in gliomas, enhancing non-invasive tumor characterization and guiding treatment strategies.
Collapse
Affiliation(s)
- Amir Mahmoud Ahmadzadeh
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Broomand Lomer
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Girish Bathla
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Houman Sotoudeh
- Department of Radiology, Neuroradiology Section, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Leone A, Di Napoli V, Fochi NP, Di Perna G, Spetzger U, Filimonova E, Angileri F, Carbone F, Colamaria A. Virtual Biopsy for the Prediction of MGMT Promoter Methylation in Gliomas: A Comprehensive Review of Radiomics and Deep Learning Approaches Applied to MRI. Diagnostics (Basel) 2025; 15:251. [PMID: 39941181 PMCID: PMC11816478 DOI: 10.3390/diagnostics15030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter in gliomas has emerged as a critical biomarker for prognosis and treatment response. Conventional methods for assessing MGMT promoter methylation, such as methylation-specific PCR, are invasive and require tissue sampling. Methods: A comprehensive literature search was performed in compliance with the updated PRISMA 2020 guidelines within electronic databases MEDLINE/PubMed, Scopus, and IEEE Xplore. Search terms, including "MGMT", "methylation", "glioma", "glioblastoma", "machine learning", "deep learning", and "radiomics", were adopted in various MeSH combinations. Original studies in the English, Italian, German, and French languages were considered for inclusion. Results: This review analyzed 34 studies conducted in the last six years, focusing on assessing MGMT methylation status using radiomics (RD), deep learning (DL), or combined approaches. These studies utilized radiological data from the public (e.g., BraTS, TCGA) and private institutional datasets. Sixteen studies focused exclusively on glioblastoma (GBM), while others included low- and high-grade gliomas. Twenty-seven studies reported diagnostic accuracy, with fourteen achieving values above 80%. The combined use of DL and RD generally resulted in higher accuracy, sensitivity, and specificity, although some studies reported lower minimum accuracy compared to studies using a single model. Conclusions: The integration of RD and DL offers a powerful, non-invasive tool for precisely recognizing MGMT promoter methylation status in gliomas, paving the way for enhanced personalized medicine in neuro-oncology. The heterogeneity of study populations, data sources, and methodologies reflected the complexity of the pipeline and machine learning algorithms, which may require general standardization to be implemented in clinical practice.
Collapse
Affiliation(s)
- Augusto Leone
- Department of Neurosurgery, Karlsruher Neurozentrum, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany; (A.L.); (U.S.); (F.C.)
- Faculty of Human Medicine, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - Veronica Di Napoli
- Department of Neurosurgery, University of Turin, 10124 Turin, Italy; (V.D.N.); (N.P.F.)
| | - Nicola Pio Fochi
- Department of Neurosurgery, University of Turin, 10124 Turin, Italy; (V.D.N.); (N.P.F.)
| | - Giuseppe Di Perna
- Division of Neurosurgery, “Policlinico Riuniti”, 71122 Foggia, Italy;
| | - Uwe Spetzger
- Department of Neurosurgery, Karlsruher Neurozentrum, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany; (A.L.); (U.S.); (F.C.)
| | - Elena Filimonova
- Department of Neuroradiology, Federal Neurosurgical Center, 630048 Novosibirsk, Russia;
| | - Flavio Angileri
- Department of Neurosurgery, University of Messina, 98122 Messina, Italy;
| | - Francesco Carbone
- Department of Neurosurgery, Karlsruher Neurozentrum, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany; (A.L.); (U.S.); (F.C.)
- Division of Neurosurgery, “Policlinico Riuniti”, 71122 Foggia, Italy;
| | - Antonio Colamaria
- Division of Neurosurgery, “Policlinico Riuniti”, 71122 Foggia, Italy;
| |
Collapse
|
5
|
Chung CYC, Pigott LE. Predicting IDH and ATRX mutations in gliomas from radiomic features with machine learning: a systematic review and meta-analysis. FRONTIERS IN RADIOLOGY 2024; 4:1493824. [PMID: 39544481 PMCID: PMC11560782 DOI: 10.3389/fradi.2024.1493824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024]
Abstract
Objective This systematic review aims to evaluate the quality and accuracy of ML algorithms in predicting ATRX and IDH mutation status in patients with glioma through the analysis of radiomic features extracted from medical imaging. The potential clinical impacts and areas for further improvement in non-invasive glioma diagnosis, classification and prognosis are also identified and discussed. Methods The review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic and Test Accuracy (PRISMA-DTA) statement. Databases including PubMed, Science Direct, CINAHL, Academic Search Complete, Medline, and Google Scholar were searched from inception to April 2024. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was used to assess the risk of bias and applicability concerns. Additionally, meta-regression identified covariates contributing to heterogeneity before a subgroup meta-analysis was conducted. Pooled sensitivities, specificities and area under the curve (AUC) values were calculated for the prediction of ATRX and IDH mutations. Results Eleven studies involving 1,685 patients with grade I-IV glioma were included. Primary contributors to heterogeneity included the MRI modalities utilised (conventional only vs. combined) and the types of ML models employed. The meta-analysis revealed pooled sensitivities of 0.682 for prediction of ATRX loss and 0.831 for IDH mutations, specificities of 0.874 and 0.828, and AUC values of 0.842 and 0.948, respectively. Interestingly, incorporating semantics and clinical data, including patient demographics, improved the diagnostic performance of ML models. Conclusions The high AUC in the prediction of both mutations demonstrates an overall robust diagnostic performance of ML, indicating the potential for accurate, non-invasive diagnosis and precise prognosis. Future research should focus on integrating diverse data types, including advanced imaging, semantics and clinical data while also aiming to standardise the collection and integration of multimodal data. This approach will enhance clinical applicability and consistency.
Collapse
Affiliation(s)
- Chor Yiu Chloe Chung
- Institute of Health and Social Care, London South Bank University, London, United Kingdom
| | - Laura Elin Pigott
- Institute of Health and Social Care, London South Bank University, London, United Kingdom
- Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
6
|
Singh G, Singh A, Bae J, Manjila S, Spektor V, Prasanna P, Lignelli A. -New frontiers in domain-inspired radiomics and radiogenomics: increasing role of molecular diagnostics in CNS tumor classification and grading following WHO CNS-5 updates. Cancer Imaging 2024; 24:133. [PMID: 39375809 PMCID: PMC11460168 DOI: 10.1186/s40644-024-00769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 10/09/2024] Open
Abstract
Gliomas and Glioblastomas represent a significant portion of central nervous system (CNS) tumors associated with high mortality rates and variable prognosis. In 2021, the World Health Organization (WHO) updated its Glioma classification criteria, most notably incorporating molecular markers including CDKN2A/B homozygous deletion, TERT promoter mutation, EGFR amplification, + 7/-10 chromosome copy number changes, and others into the grading and classification of adult and pediatric Gliomas. The inclusion of these markers and the corresponding introduction of new Glioma subtypes has allowed for more specific tailoring of clinical interventions and has inspired a new wave of Radiogenomic studies seeking to leverage medical imaging information to explore the diagnostic and prognostic implications of these new biomarkers. Radiomics, deep learning, and combined approaches have enabled the development of powerful computational tools for MRI analysis correlating imaging characteristics with various molecular biomarkers integrated into the updated WHO CNS-5 guidelines. Recent studies have leveraged these methods to accurately classify Gliomas in accordance with these updated molecular-based criteria based solely on non-invasive MRI, demonstrating the great promise of Radiogenomic tools. In this review, we explore the relative benefits and drawbacks of these computational frameworks and highlight the technical and clinical innovations presented by recent studies in the landscape of fast evolving molecular-based Glioma subtyping. Furthermore, the potential benefits and challenges of incorporating these tools into routine radiological workflows, aiming to enhance patient care and optimize clinical outcomes in the evolving field of CNS tumor management, have been highlighted.
Collapse
Affiliation(s)
- Gagandeep Singh
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA.
| | - Annie Singh
- Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Joseph Bae
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, USA
| | - Sunil Manjila
- Department of Neurological Surgery, Garden City Hospital, Garden City, MI, USA
| | - Vadim Spektor
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA
| | - Prateek Prasanna
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, USA
| | - Angela Lignelli
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
7
|
Doniselli FM, Pascuzzo R, Mazzi F, Padelli F, Moscatelli M, Akinci D'Antonoli T, Cuocolo R, Aquino D, Cuccarini V, Sconfienza LM. Quality assessment of the MRI-radiomics studies for MGMT promoter methylation prediction in glioma: a systematic review and meta-analysis. Eur Radiol 2024; 34:5802-5815. [PMID: 38308012 PMCID: PMC11364578 DOI: 10.1007/s00330-024-10594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/04/2023] [Accepted: 12/31/2023] [Indexed: 02/04/2024]
Abstract
OBJECTIVES To evaluate the methodological quality and diagnostic accuracy of MRI-based radiomic studies predicting O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status in gliomas. METHODS PubMed Medline, EMBASE, and Web of Science were searched to identify MRI-based radiomic studies on MGMT methylation in gliomas published until December 31, 2022. Three raters evaluated the study methodological quality with Radiomics Quality Score (RQS, 16 components) and Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis Or Diagnosis (TRIPOD, 22 items) scales. Risk of bias and applicability concerns were assessed with QUADAS-2 tool. A meta-analysis was performed to estimate the pooled area under the curve (AUC) and to assess inter-study heterogeneity. RESULTS We included 26 studies, published from 2016. The median RQS total score was 8 out of 36 (22%, range 8-44%). Thirteen studies performed external validation. All studies reported AUC or accuracy, but only 4 (15%) performed calibration and decision curve analysis. No studies performed phantom analysis, cost-effectiveness analysis, and prospective validation. The overall TRIPOD adherence score was between 50% and 70% in 16 studies and below 50% in 10 studies. The pooled AUC was 0.78 (95% CI, 0.73-0.83, I2 = 94.1%) with a high inter-study heterogeneity. Studies with external validation and including only WHO-grade IV gliomas had significantly lower AUC values (0.65; 95% CI, 0.57-0.73, p < 0.01). CONCLUSIONS Study RQS and adherence to TRIPOD guidelines was generally low. Radiomic prediction of MGMT methylation status showed great heterogeneity of results and lower performances in grade IV gliomas, which hinders its current implementation in clinical practice. CLINICAL RELEVANCE STATEMENT MGMT promoter methylation status appears to be variably correlated with MRI radiomic features; radiomic models are not sufficiently robust to be integrated into clinical practice to accurately predict MGMT promoter methylation status in patients with glioma before surgery. KEY POINTS • Adherence to the indications of TRIPOD guidelines was generally low, as was RQS total score. • MGMT promoter methylation status prediction with MRI radiomic features provided heterogeneous diagnostic accuracy results across studies. • Studies that included grade IV glioma only and performed external validation had significantly lower diagnostic accuracy than others.
Collapse
Affiliation(s)
- Fabio M Doniselli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli 31, 20133, Milan, Italy
| | - Riccardo Pascuzzo
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy.
| | - Federica Mazzi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Francesco Padelli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Marco Moscatelli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Rheinstrasse 26, 4410, Liestal, Switzerland
| | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Via Salvador Allende 43, Baronissi, 84081, Salerno, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Valeria Cuccarini
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Luca Maria Sconfienza
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli 31, 20133, Milan, Italy
- IRCCS Ospedale Galeazzi-Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| |
Collapse
|
8
|
Jia F, Kang Y, Wang Z. Case report: A 53-year-old woman with synchronous WHO classification II and IV gliomas. Front Oncol 2024; 14:1308497. [PMID: 38919539 PMCID: PMC11196406 DOI: 10.3389/fonc.2024.1308497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Glioma is the most common primary intracranial neoplasm with a relatively poor prognosis. Case presentation Here, we present a unique case of a 53-year-old woman with two histopathologically distinct gliomas at the initial diagnosis. She presented with headaches and left limb weakness before admission, and magnetic resonance imaging (MRI) showed right frontal and basal ganglia area involvement combined with hemorrhage. The patient underwent a navigation-guided craniotomy for tumor removal. Pathological examination revealed the right frontal lobe lesion as a WHO grade II IDH-NOS astrocytoma, but the right parietal lobe lesion was a WHO grade IV IDH-mutant diffuse astrocytoma. Molecular detection of the parietal lesion revealed a point mutation at the R132 locus of the IDH1 gene, no mutation in the TERT promoter, amplification of the epidermal growth factor receptor, and a non-homozygous CDKN2A/B deletion. Discussion In-depth epigenomic analysis and molecular examination revealed that one patient had two different brain tumors, underscoring the importance of performing a comprehensive brain tumor workup. Conclusion This unique case confirms that adjacent astrocytomas may have different molecular pathogenesis and provides novel insights into the development of gliomas.
Collapse
Affiliation(s)
| | | | - Zhanxiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Zheng F, Zhang L, Chen H, Zang Y, Chen X, Li Y. Radiomics for predicting MGMT status in cerebral glioblastoma: comparison of different MRI sequences. JOURNAL OF RADIATION RESEARCH 2024; 65:350-359. [PMID: 38650477 PMCID: PMC11115443 DOI: 10.1093/jrr/rrae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/12/2023] [Indexed: 04/25/2024]
Abstract
Using radiomics to predict O6-methylguanine-DNA methyltransferase promoter methylation status in patients with newly diagnosed glioblastoma and compare the performances of different MRI sequences. Preoperative MRI scans from 215 patients were included in this retrospective study. After image preprocessing and feature extraction, two kinds of machine-learning models were established and compared for their performances. One kind was established using all MRI sequences (T1-weighted image, T2-weighted image, contrast enhancement, fluid-attenuated inversion recovery, DWI_b_high, DWI_b_low and apparent diffusion coefficient), and the other kind was based on single MRI sequence as listed above. For the machine-learning model based on all sequences, a total of seven radiomic features were selected with the Maximum Relevance and Minimum Redundancy algorithm. The predictive accuracy was 0.993 and 0.750 in the training and validation sets, respectively, and the area under curves were 1.000 and 0.754 in the two sets, respectively. For the machine-learning model based on single sequence, the numbers of selected features were 8, 10, 10, 13, 9, 7 and 6 for T1-weighted image, T2-weighted image, contrast enhancement, fluid-attenuated inversion recovery, DWI_b_high, DWI_b_low and apparent diffusion coefficient, respectively, with predictive accuracies of 0.797-1.000 and 0.583-0.694 in the training and validation sets, respectively, and the area under curves of 0.874-1.000 and 0.538-0.697 in the two sets, respectively. Specifically, T1-weighted image-based model performed best, while contrast enhancement-based model performed worst in the independent validation set. The machine-learning models based on seven different single MRI sequences performed differently in predicting O6-methylguanine-DNA methyltransferase status in glioblastoma, while the machine-learning model based on the combination of all sequences performed best.
Collapse
Affiliation(s)
- Fei Zheng
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
- Department of Radiology, Peking University People’s Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, P. R. China
| | - Lingling Zhang
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| | - Hongyan Chen
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| | - Yuying Zang
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| | - Xuzhu Chen
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| | - Yiming Li
- Department of Neurosurgery, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| |
Collapse
|
10
|
Yin XN, Wang ZH, Zou L, Yang CW, Shen CY, Liu BK, Yin Y, Liu XJ, Zhang B. Computed tomography radiogenomics: A potential tool for prediction of molecular subtypes in gastric stromal tumor. World J Gastrointest Oncol 2024; 16:1296-1308. [PMID: 38660646 PMCID: PMC11037038 DOI: 10.4251/wjgo.v16.i4.1296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/23/2024] [Accepted: 02/25/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Preoperative knowledge of mutational status of gastrointestinal stromal tumors (GISTs) is essential to guide the individualized precision therapy. AIM To develop a combined model that integrates clinical and contrast-enhanced computed tomography (CE-CT) features to predict gastric GISTs with specific genetic mutations, namely KIT exon 11 mutations or KIT exon 11 codons 557-558 deletions. METHODS A total of 231 GIST patients with definitive genetic phenotypes were divided into a training dataset and a validation dataset in a 7:3 ratio. The models were constructed using selected clinical features, conventional CT features, and radiomics features extracted from abdominal CE-CT images. Three models were developed: ModelCT sign, modelCT sign + rad, and model CTsign + rad + clinic. The diagnostic performance of these models was evaluated using receiver operating characteristic (ROC) curve analysis and the Delong test. RESULTS The ROC analyses revealed that in the training cohort, the area under the curve (AUC) values for modelCT sign, modelCT sign + rad, and modelCT sign + rad + clinic for predicting KIT exon 11 mutation were 0.743, 0.818, and 0.915, respectively. In the validation cohort, the AUC values for the same models were 0.670, 0.781, and 0.811, respectively. For predicting KIT exon 11 codons 557-558 deletions, the AUC values in the training cohort were 0.667, 0.842, and 0.720 for modelCT sign, modelCT sign + rad, and modelCT sign + rad + clinic, respectively. In the validation cohort, the AUC values for the same models were 0.610, 0.782, and 0.795, respectively. Based on the decision curve analysis, it was determined that the modelCT sign + rad + clinic had clinical significance and utility. CONCLUSION Our findings demonstrate that the combined modelCT sign + rad + clinic effectively distinguishes GISTs with KIT exon 11 mutation and KIT exon 11 codons 557-558 deletions. This combined model has the potential to be valuable in assessing the genotype of GISTs.
Collapse
Affiliation(s)
- Xiao-Nan Yin
- Gastric Cancer Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zi-Hao Wang
- Gastric Cancer Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li Zou
- Department of Paediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Cai-Wei Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Chao-Yong Shen
- Gastric Cancer Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bai-Ke Liu
- Gastric Cancer Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yuan Yin
- Gastric Cancer Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xi-Jiao Liu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bo Zhang
- Department of Gastrointestinal Surgery, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
11
|
Agarwal A, Bathla G, Soni N, Desai A, Ajmera P, Rao D, Gupta V, Vibhute P. Newly Recognized Genetic Tumor Syndromes of the CNS in the 5th WHO Classification: Imaging Overview with Genetic Updates. AJNR Am J Neuroradiol 2024; 45:128-138. [PMID: 37945522 PMCID: PMC11285983 DOI: 10.3174/ajnr.a8039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023]
Abstract
The nervous system is commonly involved in a wide range of genetic tumor-predisposition syndromes. The classification of genetic tumor syndromes has evolved during the past years; however, it has now become clear that these syndromes can be categorized into a relatively small number of major mechanisms, which form the basis of the new 5th edition of the World Health Organization book (beta online version) on genetic tumor syndromes. For the first time, the World Health Organization has also included a separate chapter on genetic tumor syndromes in the latest edition of all the multisystem tumor series, including the 5th edition of CNS tumors. Our understanding of these syndromes has evolved rapidly since the previous edition (4th edition, 2016) with recognition of 8 new syndromes, including the following: Elongator protein complex-medulloblastoma syndrome, BRCA1-associated protein 1 tumor-predisposition syndrome, DICER1 syndrome, familial paraganglioma syndrome, melanoma-astrocytoma syndrome, Carney complex, Fanconi anemia, and familial retinoblastoma. This review provides a description of these new CNS tumor syndromes with a focus on imaging and genetic characteristics.
Collapse
Affiliation(s)
- Amit Agarwal
- From the Department of Radiology (A.A., G.B., N.S., P.A.), Mayo Clinic, Jacksonville, Florida
| | - Girish Bathla
- From the Department of Radiology (A.A., G.B., N.S., P.A.), Mayo Clinic, Jacksonville, Florida
| | - Neetu Soni
- From the Department of Radiology (A.A., G.B., N.S., P.A.), Mayo Clinic, Jacksonville, Florida
| | - Amit Desai
- Department of Neuroradiology (A.D., D.R., V.G., P.V.), Mayo Clinic, Jacksonville, Florida
| | - Pranav Ajmera
- From the Department of Radiology (A.A., G.B., N.S., P.A.), Mayo Clinic, Jacksonville, Florida
| | - Dinesh Rao
- Department of Neuroradiology (A.D., D.R., V.G., P.V.), Mayo Clinic, Jacksonville, Florida
| | - Vivek Gupta
- Department of Neuroradiology (A.D., D.R., V.G., P.V.), Mayo Clinic, Jacksonville, Florida
| | - Prasanna Vibhute
- Department of Neuroradiology (A.D., D.R., V.G., P.V.), Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
12
|
Wei R, Lu S, Lai S, Liang F, Zhang W, Jiang X, Zhen X, Yang R. A subregion-based RadioFusionOmics model discriminates between grade 4 astrocytoma and glioblastoma on multisequence MRI. J Cancer Res Clin Oncol 2024; 150:73. [PMID: 38305926 PMCID: PMC10837235 DOI: 10.1007/s00432-023-05603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE To explore a subregion-based RadioFusionOmics (RFO) model for discrimination between adult-type grade 4 astrocytoma and glioblastoma according to the 2021 WHO CNS5 classification. METHODS 329 patients (40 grade 4 astrocytomas and 289 glioblastomas) with histologic diagnosis was retrospectively collected from our local institution and The Cancer Imaging Archive (TCIA). The volumes of interests (VOIs) were obtained from four multiparametric MRI sequences (T1WI, T1WI + C, T2WI, T2-FLAIR) using (1) manual segmentation of the non-enhanced tumor (nET), enhanced tumor (ET), and peritumoral edema (pTE), and (2) K-means clustering of four habitats (H1: high T1WI + C, high T2-FLAIR; (2) H2: high T1WI + C, low T2-FLAIR; (3) H3: low T1WI + C, high T2-FLAIR; and (4) H4: low T1WI + C, low T2-FLAIR). The optimal VOI and best MRI sequence combination were determined. The performance of the RFO model was evaluated using the area under the precision-recall curve (AUPRC) and the best signatures were identified. RESULTS The two best VOIs were manual VOI3 (putative peritumoral edema) and clustering H34 (low T1WI + C, high T2-FLAIR (H3) combined with low T1WI + C and low T2-FLAIR (H4)). Features fused from four MRI sequences ([Formula: see text]) outperformed those from either a single sequence or other sequence combinations. The RFO model that was trained using fused features [Formula: see text] achieved the AUPRC of 0.972 (VOI3) and 0.976 (H34) in the primary cohort (p = 0.905), and 0.971 (VOI3) and 0.974 (H34) in the testing cohort (p = 0.402). CONCLUSION The performance of subregions defined by clustering was comparable to that of subregions that were manually defined. Fusion of features from the edematous subregions of multiple MRI sequences by the RFO model resulted in differentiation between grade 4 astrocytoma and glioblastoma.
Collapse
Affiliation(s)
- Ruili Wei
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China
| | - Songlin Lu
- School of Biomedical Engineering, Southern Medical University, GuangZhou, China
| | - Shengsheng Lai
- School of Medical Equipment, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Fangrong Liang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China
| | - Wanli Zhang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China
| | - Xinqing Jiang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China
| | - Xin Zhen
- School of Biomedical Engineering, Southern Medical University, GuangZhou, China.
| | - Ruimeng Yang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, GuangZhou, China.
| |
Collapse
|
13
|
Samartha MVS, Dubey NK, Jena B, Maheswar G, Lo WC, Saxena S. AI-driven estimation of O6 methylguanine-DNA-methyltransferase (MGMT) promoter methylation in glioblastoma patients: a systematic review with bias analysis. J Cancer Res Clin Oncol 2024; 150:57. [PMID: 38291266 PMCID: PMC10827977 DOI: 10.1007/s00432-023-05566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Accurate and non-invasive estimation of MGMT promoter methylation status in glioblastoma (GBM) patients is of paramount clinical importance, as it is a predictive biomarker associated with improved overall survival (OS). In response to the clinical need, recent studies have focused on the development of non-invasive artificial intelligence (AI)-based methods for MGMT estimation. In this systematic review, we not only delve into the technical aspects of these AI-driven MGMT estimation methods but also emphasize their profound clinical implications. Specifically, we explore the potential impact of accurate non-invasive MGMT estimation on GBM patient care and treatment decisions. METHODS Employing a PRISMA search strategy, we identified 33 relevant studies from reputable databases, including PubMed, ScienceDirect, Google Scholar, and IEEE Explore. These studies were comprehensively assessed using 21 diverse attributes, encompassing factors such as types of imaging modalities, machine learning (ML) methods, and cohort sizes, with clear rationales for attribute scoring. Subsequently, we ranked these studies and established a cutoff value to categorize them into low-bias and high-bias groups. RESULTS By analyzing the 'cumulative plot of mean score' and the 'frequency plot curve' of the studies, we determined a cutoff value of 6.00. A higher mean score indicated a lower risk of bias, with studies scoring above the cutoff mark categorized as low-bias (73%), while 27% fell into the high-bias category. CONCLUSION Our findings underscore the immense potential of AI-based machine learning (ML) and deep learning (DL) methods in non-invasively determining MGMT promoter methylation status. Importantly, the clinical significance of these AI-driven advancements lies in their capacity to transform GBM patient care by providing accurate and timely information for treatment decisions. However, the translation of these technical advancements into clinical practice presents challenges, including the need for large multi-institutional cohorts and the integration of diverse data types. Addressing these challenges will be critical in realizing the full potential of AI in improving the reliability and accessibility of MGMT estimation while lowering the risk of bias in clinical decision-making.
Collapse
Affiliation(s)
- Mullapudi Venkata Sai Samartha
- Department of Computer Science & Engineering, International Institute of Information Technology, Bhubaneswar, 751003, India
| | - Navneet Kumar Dubey
- Victory Biotechnology Co., Ltd., Taipei, 114757, Taiwan
- Executive Programme in Healthcare Management, Indian Institute of Management, Lucknow, 226013, India
| | - Biswajit Jena
- Institute of Technical Education and Research, SOA Deemed to be University, Bhubaneswar, 751030, India
| | - Gorantla Maheswar
- Department of Computer Science & Engineering, International Institute of Information Technology, Bhubaneswar, 751003, India
| | - Wen-Cheng Lo
- Division of Neurosurgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Sanjay Saxena
- Department of Computer Science & Engineering, International Institute of Information Technology, Bhubaneswar, 751003, India.
| |
Collapse
|
14
|
Doniselli FM, Pascuzzo R, Agrò M, Aquino D, Anghileri E, Farinotti M, Pollo B, Paterra R, Cuccarini V, Moscatelli M, DiMeco F, Sconfienza LM. Development of A Radiomic Model for MGMT Promoter Methylation Detection in Glioblastoma Using Conventional MRI. Int J Mol Sci 2023; 25:138. [PMID: 38203308 PMCID: PMC10778771 DOI: 10.3390/ijms25010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The methylation of the O6-methylguanine-DNA methyltransferase (MGMT) promoter is a molecular marker associated with a better response to chemotherapy in patients with glioblastoma (GB). Standard pre-operative magnetic resonance imaging (MRI) analysis is not adequate to detect MGMT promoter methylation. This study aims to evaluate whether the radiomic features extracted from multiple tumor subregions using multiparametric MRI can predict MGMT promoter methylation status in GB patients. This retrospective single-institution study included a cohort of 277 GB patients whose 3D post-contrast T1-weighted images and 3D fluid-attenuated inversion recovery (FLAIR) images were acquired using two MRI scanners. Three separate regions of interest (ROIs) showing tumor enhancement, necrosis, and FLAIR hyperintensities were manually segmented for each patient. Two machine learning algorithms (support vector machine (SVM) and random forest) were built for MGMT promoter methylation prediction from a training cohort (196 patients) and tested on a separate validation cohort (81 patients), based on a set of automatically selected radiomic features, with and without demographic variables (i.e., patients' age and sex). In the training set, SVM based on the selected radiomic features of the three separate ROIs achieved the best performances, with an average of 83.0% (standard deviation: 5.7%) for accuracy and 0.894 (0.056) for the area under the curve (AUC) computed through cross-validation. In the test set, all classification performances dropped: the best was obtained by SVM based on the selected features extracted from the whole tumor lesion constructed by merging the three ROIs, with 64.2% (95% confidence interval: 52.8-74.6%) accuracy and 0.572 (0.439-0.705) for AUC. The performances did not change when the patients' age and sex were included with the radiomic features into the models. Our study confirms the presence of a subtle association between imaging characteristics and MGMT promoter methylation status. However, further verification of the strength of this association is needed, as the low diagnostic performance obtained in this validation cohort is not sufficiently robust to allow clinically meaningful predictions.
Collapse
Affiliation(s)
- Fabio M. Doniselli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.M.D.); (D.A.); (V.C.)
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Riccardo Pascuzzo
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.M.D.); (D.A.); (V.C.)
| | - Massimiliano Agrò
- Post-Graduate School in Radiodiagnostics, Università Degli Studi di Milano, 20122 Milan, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.M.D.); (D.A.); (V.C.)
| | - Elena Anghileri
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.)
| | - Mariangela Farinotti
- Neuroepidemiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Rosina Paterra
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.A.)
| | - Valeria Cuccarini
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.M.D.); (D.A.); (V.C.)
| | - Marco Moscatelli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.M.D.); (D.A.); (V.C.)
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
- Department of Oncology and Hematology-Oncology, Università Degli Studi di Milano, 20122 Milan, Italy
- Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| | - Luca Maria Sconfienza
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20133 Milan, Italy
- Radiology Unit, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy
| |
Collapse
|
15
|
Sohn B, Park K, Ahn SS, Park YW, Choi SH, Kang SG, Kim SH, Chang JH, Lee SK. Dynamic contrast-enhanced MRI radiomics model predicts epidermal growth factor receptor amplification in glioblastoma, IDH-wildtype. J Neurooncol 2023; 164:341-351. [PMID: 37689596 DOI: 10.1007/s11060-023-04435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 09/11/2023]
Abstract
PURPOSE To develop and validate a dynamic contrast-enhanced (DCE) MRI-based radiomics model to predict epidermal growth factor receptor (EGFR) amplification in patients with glioblastoma, isocitrate dehydrogenase (IDH) wildtype. METHODS Patients with pathologically confirmed glioblastoma, IDH wildtype, from January 2015 to December 2020, with an EGFR amplification status, were included. Patients who did not undergo DCE or conventional brain MRI were excluded. Patients were categorized into training and test sets by a ratio of 7:3. DCE MRI data were used to generate volume transfer constant (Ktrans) and extracellular volume fraction (Ve) maps. Ktrans, Ve, and conventional MRI were then used to extract the radiomics features, from which the prediction models for EGFR amplification status were developed and validated. RESULTS A total of 190 patients (mean age, 59.9; male, 55.3%), divided into training (n = 133) and test (n = 57) sets, were enrolled. In the test set, the radiomics model using the Ktrans map exhibited the highest area under the receiver operating characteristic curve (AUROC), 0.80 (95% confidence interval [CI], 0.65-0.95). The AUROC for the Ve map-based and conventional MRI-based models were 0.74 (95% CI, 0.58-0.90) and 0.76 (95% CI, 0.61-0.91). CONCLUSION The DCE MRI-based radiomics model that predicts EGFR amplification in glioblastoma, IDH wildtype, was developed and validated. The MRI-based radiomics model using the Ktrans map has higher AUROC than conventional MRI.
Collapse
Affiliation(s)
- Beomseok Sohn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kisung Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea.
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Chen W, Guo S, Wang Y, Shi Y, Guo X, Liu D, Li Y, Wang Y, Xing H, Xia Y, Li J, Wu J, Liang T, Wang H, Liu Q, Jin S, Qu T, Li H, Yang T, Zhang K, Wang Y, Ma W. Novel insight into histological and molecular astrocytoma, IDH-mutant, Grade 4 by the updated WHO classification of central nervous system tumors. Cancer Med 2023; 12:18666-18678. [PMID: 37667984 PMCID: PMC10557904 DOI: 10.1002/cam4.6476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND The latest fifth edition of the World Health Organization (WHO) classification of the central nervous system (CNS) tumors (WHO CNS 5 classification) released in 2021 defined astrocytoma, IDH-mutant, Grade 4. However, the understanding of this subtype is still limited. We conducted this study to describe the features of astrocytoma, IDH-mutant, Grade 4 and explored the similarities and differences between histological and molecular subtypes. METHODS Patients who underwent surgery from January 2011 to January 2022, classified as astrocytoma, IDH-mutant, Grade 4 were included in this study. Clinical, radiological, histopathological, molecular pathological, and survival data were collected for analysis. RESULTS Altogether 33 patients with astrocytoma, IDH-mutant, Grade 4 were selected, including 20 with histological and 13 with molecular WHO Grade 4 astrocytoma. Tumor enhancement, intratumoral-necrosis like presentation, larger peritumoral edema, and more explicit tumor margins were frequently observed in histological WHO Grade 4 astrocytoma. Additionally, molecular WHO Grade 4 astrocytoma showed a tendency for relatively longer overall survival, while a statistical significance was not reached (47 vs. 25 months, p = 0.22). TP53, CDK6, and PIK3CA alteration was commonly observed, while PIK3R1 (p = 0.033), Notch1 (p = 0.027), and Mycn (p = 0.027) alterations may affect the overall survival of molecular WHO Grade 4 astrocytomas. CONCLUSIONS Our study scrutinized IDH-mutant, Grade 4 astrocytoma. Therefore, further classification should be considered as the prognosis varied between histological and molecular WHO Grade 4 astrocytomas. Notably, therapies aiming at PIK3R1, Notch 1, and Mycn may be beneficial.
Collapse
Affiliation(s)
- Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Siying Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- 4+4 Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Xia
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiaming Wu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qianshu Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- 4+4 Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tian Qu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Huanzhang Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kun Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year Medical Doctor ProgramChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- China Anti‐Cancer Association Specialty Committee of GliomaBeijingChina
| |
Collapse
|
17
|
Zhang S, Liu M, Li S, Cui J, Zhang G, Wang X. An MRI-based radiomics nomogram for differentiating spinal metastases from multiple myeloma. Cancer Imaging 2023; 23:72. [PMID: 37488622 PMCID: PMC10367256 DOI: 10.1186/s40644-023-00585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Spinal metastasis and multiple myeloma share many overlapping conventional radiographic imaging characteristics, thus, their differentiation may be challenging. The purpose of this study was to develop and validate an MRI-based radiomics nomogram for the differentiation of spinal metastasis and multiple myeloma. MATERIALS AND METHODS A total of 312 patients (training set: n = 146, validation set: n = 65, our center; external test set: n = 101, two other centers) with spinal metastasis (n = 196) and multiple myeloma (n = 116) were retrospectively enrolled. Demographics and MRI findings were assessed to build a clinical factor model. Radiomics features were extracted from MRI images. A radiomics model was constructed by the least absolute shrinkage and selection operator method. A radiomics nomogram combining the radiomics signature and independent clinical factors was constructed. And, one experienced radiologist reviewed the MRI images for all case. The diagnostic performance of the different models was evaluated by receiver operating characteristic curves. RESULTS A clinical factors model was built based on heterogeneous appearance and shape. Twenty-one features were used to build the radiomics signature. The area under the curve (AUC) values of the radiomics nomogram (0.853 and 0.762, respectively) were significantly higher than that of the clinical factor model (0.692 and 0.540, respectively) in both validation (p = 0.048) and external test (p < 0.001) sets. The AUC values of the radiomics nomogram model were higher than that of radiologist in training, validation and external test sets (all p < 0.05). Moreover, no significant difference in AUC values of radiomics nomogram model was found between the validation set and external test set (p = 0.212). CONCLUSION The radiomics nomogram can differentiate spinal metastasis and multiple myeloma with a moderate to good performance, and may be as a valuable method to assist in the clinical diagnosis and preoperative decision-making.
Collapse
Affiliation(s)
- Shuai Zhang
- Shandong Provincial Hospital Affliated to Shandong First Medical University, Shandong, China
| | - Menghan Liu
- Depertment of Health Management, The First Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Sha Li
- Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Jingjing Cui
- United Imaging Intelligence Co., Ltd, Beijing, China
| | - Guang Zhang
- Depertment of Health Management, The First Affiliated Hospital of Shandong First Medical University, Shandong, China.
- Depertment of Health Management, The First Affiliated Hospital of Shandong First Medical University, No. 16766, Jingshi Road, Jinan, Shandong, 250014, China.
| | - Ximing Wang
- Shandong Provincial Hospital Affliated to Shandong First Medical University, Shandong, China.
- Department of Radiology, Shandong Provincial Hospital, Shandong First Medical University, No.324 Jingwu Road, Jinan, Shandong, 250021, China.
| |
Collapse
|
18
|
Forecasting Molecular Features in IDH-Wildtype Gliomas: The State of the Art of Radiomics Applied to Neurosurgery. Cancers (Basel) 2023; 15:cancers15030940. [PMID: 36765898 PMCID: PMC9913449 DOI: 10.3390/cancers15030940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, marks a step forward the future diagnostic approach to these neoplasms. Alongside this, radiomics has experienced rapid evolution over the last several years, allowing us to correlate tumor imaging heterogeneity with a wide range of tumor molecular and subcellular features. Radiomics is a translational field focused on decoding conventional imaging data to extrapolate the molecular and prognostic features of tumors such as gliomas. We herein analyze the state-of-the-art of radiomics applied to glioblastoma, with the goal to estimate its current clinical impact and potential perspectives in relation to well-rounded patient management, including the end-of-life stage. METHODS A literature review was performed on the PubMed, MEDLINE and Scopus databases using the following search items: "radiomics and glioma", "radiomics and glioblastoma", "radiomics and glioma and IDH", "radiomics and glioma and TERT promoter", "radiomics and glioma and EGFR", "radiomics and glioma and chromosome". RESULTS A total of 719 articles were screened. Further quantitative and qualitative analysis allowed us to finally include 11 papers. This analysis shows that radiomics is rapidly evolving towards a reliable tool. CONCLUSIONS Further studies are necessary to adjust radiomics' potential to the newest molecular requirements pointed out by the 2021 WHO classification of CNS tumors. At a glance, its application in the clinical routine could be beneficial to achieve a timely diagnosis, especially for those patients not eligible for surgery and/or adjuvant therapies but still deserving palliative and supportive care.
Collapse
|
19
|
A Survey of Radiomics in Precision Diagnosis and Treatment of Adult Gliomas. J Clin Med 2022; 11:jcm11133802. [PMID: 35807084 PMCID: PMC9267404 DOI: 10.3390/jcm11133802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Glioma is the most common primary malignant tumor of the adult central nervous system (CNS), which mostly shows invasive growth. In most cases, surgery is often difficult to completely remove, and the recurrence rate and mortality of patients are high. With the continuous development of molecular genetics and the great progress of molecular biology technology, more and more molecular biomarkers have been proved to have important guiding significance in the individualized diagnosis, treatment, and prognosis evaluation of glioma. With the updates of the World Health Organization (WHO) classification of tumors of the CNS in 2021, the diagnosis and treatment of glioma has entered the era of precision medicine in the true sense. Due to its ability to non-invasively achieve accurate identification of glioma from other intracranial tumors, and to predict the grade, genotyping, treatment response, and prognosis of glioma, which provides a scientific basis for the clinical application of individualized diagnosis and treatment model of glioma, radiomics has become a research hotspot in the field of precision medicine. This paper reviewed the research related to radiomics of adult gliomas published in recent years and summarized the research proceedings of radiomics in differential diagnosis, preoperative grading and genotyping, treatment and efficacy evaluation, and survival prediction of adult gliomas.
Collapse
|