1
|
Wang SSY, Horstmann G, Renovanz M, van Eck A, Tatagiba M, Naros G. Sex-specific difference in treatment success/failure after vestibular schwannoma treatment. Neurooncol Adv 2025; 7:vdaf025. [PMID: 40296987 PMCID: PMC12035609 DOI: 10.1093/noajnl/vdaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Background Sex-related differences in patients with sporadic, unilateral vestibular schwannoma (VS) are poorly investigated so far, and it remains unclear whether biological sex affects treatment response to stereotactic radiosurgery (SRS) or microsurgical resection (SURGERY). This study elucidates sex-related differences in treatment outcome of VS. Methods This is a retrospective two-center cohort study. All consecutive patients treated for their VS between 2005 and 2012 were included. Previously treated VS and patients with neurofibromatosis were excluded. Clinical status and treatment-related complications were analyzed from both centers' prospective treatment registries. Recurrence/progression-free-survival was assessed radiographically by contrast-enhanced magnetic resonance imaging. Results Within the entire patient cohort of N = 1,118, the majority of VS patients (56%) was female. Sixty-two percent of patients were treated by SRS. Females with very small tumors (KOOS I) were significantly less likely to be assigned to SURGERY than males (P = .009). Mean follow-up time was 6 ± 4.3 years. In SURGERY, the rate of subtotal resection was significantly higher in women (7%) compared to men (2%) (P = .041). However, there was no difference in long-term tumor control after SURGERY between both sexes (P = .729). In SRS however, the incidence of recurrence was significantly higher in women (14%) compared to men (8%) (P = .004), which was also reflected in the Kaplan-Meier analysis (P = .031). Conclusions Female sex was a negative prognostic factor for treatment success (long-term tumor control) if treated with SRS-there was no sex-related differences in long-term tumor control after SURGERY. Additional research is needed to elucidate sex-related differences in tumor biology affecting the response to VS treatment.
Collapse
Affiliation(s)
- Sophie Shih-Yüng Wang
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Neurosurgery, University Hospital Tubingen & Eberhard Karls University, Tubingen, Germany
| | | | - Mirjam Renovanz
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Neurosurgery, University Hospital Tubingen & Eberhard Karls University, Tubingen, Germany
| | | | - Marcos Tatagiba
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Neurosurgery, University Hospital Tubingen & Eberhard Karls University, Tubingen, Germany
| | - Georgios Naros
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Neurosurgery, University Hospital Tubingen & Eberhard Karls University, Tubingen, Germany
| |
Collapse
|
2
|
Li M, Liu J, Weng J, Dong G, Chen X, Cui Y, Ren X, Shen S, Jiang H, Zhang X, Zhao X, Li M, Wang X, Ren H, Li Q, Zhang Y, Cheng Q, Yu Y, Lin S. Unveiling hierarchy and spatial distribution of O 6-methylguanine-DNA methyltransferase promoter methylation in World Health Organization grade 2-3 gliomas. Cancer Sci 2024; 115:3403-3414. [PMID: 39101880 PMCID: PMC11447971 DOI: 10.1111/cas.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024] Open
Abstract
This study investigated the role of O6-methylguanine-DNA methyltransferase promoter (MGMTp) methylation hierarchy and heterogeneity in grade 2-3 gliomas, focusing on variations in chemotherapy benefits and resection dependency. A cohort of 668 newly diagnosed grade 2-3 gliomas, with comprehensive clinical, radiological, and molecular data, formed the basis of this analysis. The extent of resection was categorized into gross total resection (GTR ≥100%), subtotal resection (STR >90%), and partial resection (PR ≤90%). MGMTp methylation levels were examined using quantitative pyrosequencing. Our findings highlighted the critical role of GTR in improving the prognosis for astrocytomas (IDH1/2-mutant and 1p/19q non-codeleted), contrasting with its lesser significance for oligodendrogliomas (IDH1/2 mutation and 1p/19q codeletion). Oligodendrogliomas demonstrated the highest average MGMTp methylation levels (median: 28%), with a predominant percentage of methylated cases (average methylation levels >20%). Astrocytomas were more common in the low-methylated group (10%-20%), while IDH wild-type gliomas were mostly unmethylated (<10%). Spatial distribution analysis revealed a decrement in frontal lobe involvement from methylated, low-methylated to unmethylated cases (72.8%, 59.3%, and 47.8%, respectively). In contrast, low-methylated and unmethylated cases were more likely to invade the temporal-insular region (19.7%, 34.3%, and 40.4%, respectively). Astrocytomas with intermediate MGMTp methylation were notably associated with temporal-insular involvement, potentially indicating a moderate response to temozolomide and underscoring the importance of aggressive resection strategies. In conclusion, our study elucidates the complex interplay of MGMTp methylation hierarchy and heterogeneity among grade 2-3 gliomas, providing insights into why astrocytomas and IDH wild-type lower-grade glioma might derive less benefit from chemotherapy.
Collapse
Affiliation(s)
- Mingxiao Li
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiang Liu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Jiancong Weng
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuzhu Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Cui
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shaoping Shen
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Xiaokang Zhang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xuzhe Zhao
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ming Li
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xijie Wang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hongxiang Ren
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Qiang Li
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Yulian Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanbing Yu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Song Lin
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Shin I, Park YW, Sim Y, Choi SH, Ahn SS, Chang JH, Kim SH, Lee SK, Jain R. Revisiting gliomatosis cerebri in adult-type diffuse gliomas: a comprehensive imaging, genomic and clinical analysis. Acta Neuropathol Commun 2024; 12:128. [PMID: 39127694 PMCID: PMC11316408 DOI: 10.1186/s40478-024-01832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although gliomatosis cerebri (GC) has been removed as an independent tumor type from the WHO classification, its extensive infiltrative pattern may harbor a unique biological behavior. However, the clinical implication of GC in the context of the 2021 WHO classification is yet to be unveiled. This study investigated the incidence, clinicopathologic and imaging correlations, and prognostic implications of GC in adult-type diffuse glioma patients. Retrospective chart and imaging review of 1,211 adult-type diffuse glioma patients from a single institution between 2005 and 2021 was performed. Among 1,211 adult-type diffuse glioma patients, there were 99 (8.2%) patients with GC. The proportion of molecular types significantly differed between patients with and without GC (P = 0.017); IDH-wildtype glioblastoma was more common (77.8% vs. 66.5%), while IDH-mutant astrocytoma (16.2% vs. 16.9%) and oligodendroglioma (6.1% vs. 16.5%) were less common in patients with GC than in those without GC. The presence of contrast enhancement, necrosis, cystic change, hemorrhage, and GC type 2 were independent risk factors for predicting IDH mutation status in GC patients. GC remained as an independent prognostic factor (HR = 1.25, P = 0.031) in IDH-wildtype glioblastoma patients on multivariable analysis, along with clinical, molecular, and surgical factors. Overall, our data suggests that although no longer included as a distinct pathological entity in the WHO classification, recognition of GC may be crucial considering its clinical significance. There is a relatively high incidence of GC in adult-type diffuse gliomas, with different proportion according to molecular types between patients with and without GC. Imaging may preoperatively predict the molecular type in GC patients and may assist clinical decision-making. The prognostic role of GC promotes its recognition in clinical settings.
Collapse
Affiliation(s)
- Ilah Shin
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, College of Medicine, Yonsei University, 50 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea.
| | - Yongsik Sim
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, College of Medicine, Yonsei University, 50 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea
| | - Seo Hee Choi
- Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, College of Medicine, Yonsei University, 50 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Sedaemun- gu, Seoul, 03722, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, 50 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, College of Medicine, Yonsei University, 50 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea
| | - Rajan Jain
- Department of Radiology, New York University Grossman School of Medicine, 550 1st Ave, New York, NY States, USA
- Department of Neurosurgery, New York University Grossman School of Medicine, 550 1st Ave, New York, NY States, USA
| |
Collapse
|
4
|
Lee JO, Ahn SS, Choi KS, Lee J, Jang J, Park JH, Hwang I, Park CK, Park SH, Chung JW, Choi SH. Added prognostic value of 3D deep learning-derived features from preoperative MRI for adult-type diffuse gliomas. Neuro Oncol 2024; 26:571-580. [PMID: 37855826 PMCID: PMC10912011 DOI: 10.1093/neuonc/noad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND To investigate the prognostic value of spatial features from whole-brain MRI using a three-dimensional (3D) convolutional neural network for adult-type diffuse gliomas. METHODS In a retrospective, multicenter study, 1925 diffuse glioma patients were enrolled from 5 datasets: SNUH (n = 708), UPenn (n = 425), UCSF (n = 500), TCGA (n = 160), and Severance (n = 132). The SNUH and Severance datasets served as external test sets. Precontrast and postcontrast 3D T1-weighted, T2-weighted, and T2-FLAIR images were processed as multichannel 3D images. A 3D-adapted SE-ResNeXt model was trained to predict overall survival. The prognostic value of the deep learning-based prognostic index (DPI), a spatial feature-derived quantitative score, and established prognostic markers were evaluated using Cox regression. Model evaluation was performed using the concordance index (C-index) and Brier score. RESULTS The MRI-only median DPI survival prediction model achieved C-indices of 0.709 and 0.677 (BS = 0.142 and 0.215) and survival differences (P < 0.001 and P = 0.002; log-rank test) for the SNUH and Severance datasets, respectively. Multivariate Cox analysis revealed DPI as a significant prognostic factor, independent of clinical and molecular genetic variables: hazard ratio = 0.032 and 0.036 (P < 0.001 and P = 0.004) for the SNUH and Severance datasets, respectively. Multimodal prediction models achieved higher C-indices than models using only clinical and molecular genetic variables: 0.783 vs. 0.774, P = 0.001, SNUH; 0.766 vs. 0.748, P = 0.023, Severance. CONCLUSIONS The global morphologic feature derived from 3D CNN models using whole-brain MRI has independent prognostic value for diffuse gliomas. Combining clinical, molecular genetic, and imaging data yields the best performance.
Collapse
Affiliation(s)
- Jung Oh Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Artificial Intelligence Collaborative Network, Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sung Soo Ahn
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyu Sung Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Artificial Intelligence Collaborative Network, Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junhyeok Lee
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Joon Jang
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jung Hyun Park
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Inpyeong Hwang
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Artificial Intelligence Collaborative Network, Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sung Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Wook Chung
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Artificial Intelligence Collaborative Network, Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Innovate Biomedical Technology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Artificial Intelligence Collaborative Network, Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea
| |
Collapse
|
5
|
Park YW, Kim S, Han K, Ahn SS, Moon JH, Kim EH, Kim J, Kang SG, Kim SH, Lee SK, Chang JH. Rethinking extent of resection of contrast-enhancing and non-enhancing tumor: different survival impacts on adult-type diffuse gliomas in 2021 World Health Organization classification. Eur Radiol 2024; 34:1376-1387. [PMID: 37608093 DOI: 10.1007/s00330-023-10125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVES Extent of resection (EOR) of contrast-enhancing (CE) and non-enhancing (NE) tumors may have different impacts on survival according to types of adult-type diffuse gliomas in the molecular era. This study aimed to evaluate the impact of EOR of CE and NE tumors in glioma according to the 2021 World Health Organization classification. METHODS This retrospective study included 1193 adult-type diffuse glioma patients diagnosed between 2001 and 2021 (183 oligodendroglioma, 211 isocitrate dehydrogenase [IDH]-mutant astrocytoma, and 799 IDH-wildtype glioblastoma patients) from a single institution. Patients had complete information on IDH mutation, 1p/19q codeletion, and O6-methylguanine-methyltransferase (MGMT) status. Cox survival analyses were performed within each glioma type to assess predictors of overall survival, including clinical, imaging data, histological grade, MGMT status, adjuvant treatment, and EOR of CE and NE tumors. Subgroup analyses were performed in patients with CE tumor. RESULTS Among 1193 patients, 935 (78.4%) patients had CE tumors. In entire oligodendrogliomas, gross total resection (GTR) of NE tumor was not associated with survival (HR = 0.56, p = 0.223). In 86 (47.0%) oligodendroglioma patients with CE tumor, GTR of CE tumor was the only independent predictor of survival (HR = 0.16, p = 0.004) in multivariable analysis. GTR of CE and NE tumors was independently associated with better survival in IDH-mutant astrocytoma and IDH-wildtype glioblastoma (all ps < 0.05). CONCLUSIONS GTR of both CE and NE tumors may significantly improve survival within IDH-mutant astrocytomas and IDH-wildtype glioblastomas. In oligodendrogliomas, the EOR of CE tumor may be crucial in survival; aggressive GTR of NE tumor may be unnecessary, whereas GTR of the CE tumor is recommended. CLINICAL RELEVANCE STATEMENT Surgical strategies on contrast-enhancing (CE) and non-enhancing (NE) tumors should be reassessed considering the different survival outcomes after gross total resection depending on CE and NE tumors in the 2021 World Health Organization classification of adult-type diffuse gliomas. KEY POINTS The survival impact of extent of resection of contrast-enhancing (CE) and non-enhancing (NE) tumors was evaluated in adult-type diffuse gliomas. Gross total resection of both CE and NE tumors may improve survival in isocitrate dehydrogenase (IDH)-mutant astrocytomas and IDH-wildtype glioblastomas, while only gross total resection of the CE tumor improves survival in oligodendrogliomas. Surgical strategies should be reconsidered according to types in adult-type diffuse gliomas.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Sooyon Kim
- Department of Statistics and Data Science, Yonsei University, Seoul, Korea
| | - Kyunghwa Han
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea.
| | - Ju Hyung Moon
- Department of Neurosurgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Jinna Kim
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea.
| |
Collapse
|
6
|
Park YW, Vollmuth P, Foltyn-Dumitru M, Sahm F, Ahn SS, Chang JH, Kim SH. The 2021 WHO Classification for Gliomas and Implications on Imaging Diagnosis: Part 1-Key Points of the Fifth Edition and Summary of Imaging Findings on Adult-Type Diffuse Gliomas. J Magn Reson Imaging 2023; 58:677-689. [PMID: 37069792 DOI: 10.1002/jmri.28743] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
The fifth edition of the World Health Organization (WHO) classification of central nervous system tumors published in 2021 advances the role of molecular diagnostics in the classification of gliomas by emphasizing integrated diagnoses based on histopathology and molecular information and grouping tumors based on genetic alterations. Importantly, molecular biomarkers that provide important prognostic information are now a parameter for establishing tumor grades in gliomas. Understanding the 2021 WHO classification is crucial for radiologists for daily imaging interpretation as well as communication with clinicians. Although imaging features are not included in the 2021 WHO classification, imaging can serve as a powerful tool to impact the clinical practice not only prior to tissue confirmation but beyond. This review represents the first of a three-installment review series on the 2021 WHO classification for gliomas, glioneuronal tumors, and neuronal tumors and implications on imaging diagnosis. This Part 1 Review focuses on the major changes to the classification of gliomas and imaging findings on adult-type diffuse gliomas. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Philipp Vollmuth
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Martha Foltyn-Dumitru
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Park YW, Han K, Kim S, Kwon H, Ahn SS, Moon JH, Kim EH, Kim J, Kang SG, Chang JH, Kim SH, Lee SK. Revisiting prognostic factors in glioma with leptomeningeal metastases: a comprehensive analysis of clinical and molecular factors and treatment modalities. J Neurooncol 2023; 162:59-68. [PMID: 36841906 PMCID: PMC10050057 DOI: 10.1007/s11060-022-04233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/30/2022] [Indexed: 02/27/2023]
Abstract
PURPOSE To comprehensively investigate prognostic factors, including clinical and molecular factors and treatment modalities, in adult glioma patients with leptomeningeal metastases (LM). METHODS Total 226 patients with LM (from 2001 to 2021 among 1495 grade 2 to 4 glioma patients, 88.5% of LM patients being IDH-wildtype) with complete information on IDH mutation, 1p/19q codeletion, and MGMT promoter methylation status were enrolled. Predictors of overall survival (OS) of entire patients were determined by time-dependent Cox analysis, including clinical, molecular, and treatment data. Subgroup analyses were performed for patients with LM at initial diagnosis and LM diagnosed at recurrence (herein, initial and recurrent LM). Identical analyses were performed in IDH-wildtype glioblastoma patients. RESULTS Median OS was 17.0 (IQR 9.7-67.1) months, with shorter median OS in initial LM than recurrent LM patients (12.2 vs 20.6 months, P < 0.001). In entire patients, chemotherapy and antiangiogenic therapy were predictors of longer OS, while male sex and initial LM were predictors of shorter OS. In initial LM, higher KPS, chemotherapy, and antiangiogenic therapy were predictors of longer OS, while male sex was a predictor of shorter OS. In recurrent LM, chemotherapy and longer interval between initial glioma and LM diagnoses were predictors of longer OS, while male sex was a predictor of shorter OS. A similar trend was observed in IDH-wildtype glioblastoma. CONCLUSION Active chemotherapy and antiangiogenic therapy demonstrated survival benefit in glioma patients with LM. There is consistent female survival advantage, whereas longer interval between initial glioma diagnosis and LM development suggests longer OS in recurrent LM.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, Korea
| | - Kyunghwa Han
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, Korea
| | - Sooyon Kim
- Department of Statistics and Data Science, Yonsei University, Seoul, Korea
| | - Hyuk Kwon
- Sea Salvage & Rescue Unit, Naval Special Warfare Flotilla, Gyeryong, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, Korea.
| | - Ju Hyung Moon
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jinna Kim
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, Korea
| |
Collapse
|
8
|
Fudaba H, Wakimoto H. Oncolytic virus therapy for malignant gliomas: entering the new era. Expert Opin Biol Ther 2023; 23:269-282. [PMID: 36809883 DOI: 10.1080/14712598.2023.2184256] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION To overcome the challenge of treating malignant brain tumors, oncolytic viruses (OVs) represent an innovative therapeutic approach, featuring unique mechanisms of action. The recent conditional approval of the oncolytic herpes simplex virus G47Δ as a therapeutic for malignant brain tumors marked a significant milestone in the long history of OV development in neuro-oncology. AREAS COVERED This review summarizes the results of recently completed and active clinical studies that investigate the safety and efficacy of different OV types in patients with malignant gliomas. The changing landscape of the OV trial design includes expansion of subjects to newly diagnosed tumors and pediatric populations. A variety of delivery methods and new routes of administration are vigorously tested to optimize tumor infection and overall efficacy. New therapeutic strategies such as combination with immunotherapies are proposed that take advantage of the characteristics of OV therapy as an immunotherapy. Preclinical studies of OV have been active and aim to translate new OV strategies to the clinic. EXPERT OPINION For the next decade, clinical trials and preclinical and translational research will continue to drive the development of innovative OV treatments for malignant gliomas and benefit patients and define new OV biomarkers.
Collapse
Affiliation(s)
- Hirotaka Fudaba
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, Oita University Faculty of Medicine, Yufu, Japan
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Park YW, Park KS, Park JE, Ahn SS, Park I, Kim HS, Chang JH, Lee SK, Kim SH. Qualitative and Quantitative Magnetic Resonance Imaging Phenotypes May Predict CDKN2A/B Homozygous Deletion Status in Isocitrate Dehydrogenase-Mutant Astrocytomas: A Multicenter Study. Korean J Radiol 2023; 24:133-144. [PMID: 36725354 PMCID: PMC9892217 DOI: 10.3348/kjr.2022.0732] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/22/2022] [Accepted: 12/10/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Cyclin-dependent kinase inhibitor (CDKN)2A/B homozygous deletion is a key molecular marker of isocitrate dehydrogenase (IDH)-mutant astrocytomas in the 2021 World Health Organization. We aimed to investigate whether qualitative and quantitative MRI parameters can predict CDKN2A/B homozygous deletion status in IDH-mutant astrocytomas. MATERIALS AND METHODS Preoperative MRI data of 88 patients (mean age ± standard deviation, 42.0 ± 11.9 years; 40 females and 48 males) with IDH-mutant astrocytomas (76 without and 12 with CDKN2A/B homozygous deletion) from two institutions were included. A qualitative imaging assessment was performed. Mean apparent diffusion coefficient (ADC), 5th percentile of ADC, mean normalized cerebral blood volume (nCBV), and 95th percentile of nCBV were assessed via automatic tumor segmentation. Logistic regression was performed to determine the factors associated with CDKN2A/B homozygous deletion in all 88 patients and a subgroup of 47 patients with histological grades 3 and 4. The discrimination performance of the logistic regression models was evaluated using the area under the receiver operating characteristic curve (AUC). RESULTS In multivariable analysis of all patients, infiltrative pattern (odds ratio [OR] = 4.25, p = 0.034), maximal diameter (OR = 1.07, p = 0.013), and 95th percentile of nCBV (OR = 1.34, p = 0.049) were independent predictors of CDKN2A/B homozygous deletion. The AUC, accuracy, sensitivity, and specificity of the corresponding model were 0.83 (95% confidence interval [CI], 0.72-0.91), 90.4%, 83.3%, and 75.0%, respectively. On multivariable analysis of the subgroup with histological grades 3 and 4, infiltrative pattern (OR = 10.39, p = 0.012) and 95th percentile of nCBV (OR = 1.24, p = 0.047) were independent predictors of CDKN2A/B homozygous deletion, with an AUC accuracy, sensitivity, and specificity of the corresponding model of 0.76 (95% CI, 0.60-0.88), 87.8%, 80.0%, and 58.1%, respectively. CONCLUSION The presence of an infiltrative pattern, larger maximal diameter, and higher 95th percentile of the nCBV may be useful MRI biomarkers for CDKN2A/B homozygous deletion in IDH-mutant astrocytomas.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ki Sung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Ji Eun Park
- Department of Radiology, Ulsan University College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Inho Park
- Center for Precision Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ho Sung Kim
- Department of Radiology, Ulsan University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Usuzaki T, Takahashi K. Comment on "Sex as a prognostic factor in adult‑type diffuse gliomas: an integrated clinical and molecular analysis according to 2021 WHO classification". J Neurooncol 2023; 161:189-190. [PMID: 36547854 DOI: 10.1007/s11060-022-04224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Takuma Usuzaki
- Takeda General Hospital, 3-27 Yamaga-machi, 965-8585, Aizuwakamatsu, Fukushima, Japan.
| | - Kengo Takahashi
- Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Park YW, Han K, Park JE, Ahn SS, Kim EH, Kim J, Kang SG, Chang JH, Kim SH, Lee SK. Leptomeningeal metastases in glioma revisited: incidence and molecular predictors based on postcontrast fluid-attenuated inversion recovery imaging. J Neurosurg 2022:1-11. [DOI: 10.3171/2022.9.jns221659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Leptomeningeal metastases (LMs) in glioma have been underestimated given their low incidence and the lack of reliable imaging. Authors of this study aimed to investigate the real-world incidence of LMs using cerebrospinal fluid (CSF)–sensitive imaging, namely postcontrast fluid-attenuated inversion recovery (FLAIR) imaging, and to analyze molecular predictors for LMs in the molecular era.
METHODS
A total of 1405 adult glioma (World Health Organization [WHO] grade 2–4) patients underwent postcontrast FLAIR imaging at initial diagnosis and during treatment monitoring between 2001 and 2021. Collected molecular data included isocitrate dehydrogenase (IDH) mutation, 1p/19q codeletion, H3 K27 alteration, and O6-methylguanine–DNA methyltransferase (MGMT) promoter methylation status. LM diagnosis was performed with MRI including postcontrast FLAIR sequences. Logistic regression analysis for LM development was performed with molecular, clinical, and imaging data. Overall survival (OS) was compared between patients with and those without LM.
RESULTS
LM was identified in 228 patients (16.2%), 110 (7.8%) at the initial diagnosis and 118 (8.4%) at recurrence. Among the molecular diagnostics, IDH-wildtype (OR 3.14, p = 0.001) and MGMT promoter unmethylation (OR 1.43, p = 0.034) were independent predictors of LM. WHO grade 4 (OR 10.52, p < 0.001) and nonlobar location (OR 1.56, p = 0.048) were associated with LM at initial diagnosis, whereas IDH-wildtype (OR 5.04, p < 0.001) and H3 K27 alteration (OR 3.39, p = 0.003) were associated with LM at recurrence. Patients with LM had a worse median OS than those without LM (16.7 vs 32.0 months, p < 0.001, log-rank test), which was confirmed as an independent factor on multivariable Cox analysis (p = 0.004).
CONCLUSIONS
CSF-sensitive imaging aids the diagnosis of LM, demonstrating a high incidence of LM in adult gliomas. Furthermore, molecular markers are associated with LM development in glioma, and patients with aggressive molecular markers warrant imaging surveillance for LM.
Collapse
Affiliation(s)
- Yae Won Park
- Departments of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science,
| | - Kyunghwa Han
- Departments of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science,
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Departments of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science,
| | | | - Jinna Kim
- Departments of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science,
| | | | | | - Se Hoon Kim
- Pathology, Yonsei University College of Medicine, Seoul; and
| | - Seung-Koo Lee
- Departments of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science,
| |
Collapse
|