1
|
Bommireddy A, Mayo ZS, Reddy CA, Billena C, Davies EM, Davis RW, Murphy ES, Suh JH, Balagamwala EH, Chan TA, Yu JS, Barnett GH, Angelov L, Mohammadi AM, Stevens GHJ, Grabowski M, Peereboom DM, Chao ST. Development of a recursive partitioning analysis for prediction of radiation necrosis following single-fraction stereotactic radiosurgery for intact brain metastases. J Neurooncol 2025:10.1007/s11060-025-05062-5. [PMID: 40360909 DOI: 10.1007/s11060-025-05062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE/OBJECTIVE Radiation necrosis (RN) is a potential complication after stereotactic radiosurgery (SRS) for brain metastases. This study develops a recursive partitioning analysis (RPA) to identify patients at risk for RN following SRS. METHODS Patients who underwent single-fraction SRS for intact brain metastases at a single institution from 2017 to 2021 were identified. Cox regression identified factors associated with RN, and variables with p < 0.1 were included in the RPA. Patients with staged SRS, incomplete records, or less than 3 months of follow-up were excluded. RESULTS The study included 170 patients with 919 lesions, with median follow-up of 9 months. Primary disease sites were non-small cell lung cancer (NSCLC, 49%), breast cancer (12%), melanoma (11%), renal cancer (6%), and others (22%). Median prescription dose was 24 Gy, and median maximum lesion dimension (MLD) was 0.7 cm. RN occurred in 110 (12.2%) lesions, of which 32 (3.5%) were symptomatic, at median of 4.9 months after SRS. Variables for RPA included primary disease site, tumor location, MLD, prior SRS, number of SRS targets, dosimetry, prior hemorrhage, and concurrent systemic therapy. RPA identified four groups: Group 1 (MLD ≤ 0.8 cm, non-breast/NSCLC/renal), Group 2 (MLD ≤ 0.8 cm, breast/NSCLC/renal), Group 3 (MLD > 0.8 cm, no post-SRS hemorrhage), and Group 4 (MLD > 0.8 cm, post-SRS hemorrhage). Two-year RN free survival was 99% (Group 1), 89% (Group 2), 70% (Group 3), and 52% (Group 4). CONCLUSION This is the first RPA model for RN after single-fraction SRS, which may aid in risk assessment and distinguishing RN from tumor progression.
Collapse
Affiliation(s)
- Anirudh Bommireddy
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA.
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | | | - Chandana A Reddy
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Cole Billena
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Erik M Davies
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Robin W Davis
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Erin S Murphy
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - John H Suh
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Timothy A Chan
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Jennifer S Yu
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Gene H Barnett
- Deparment of Neurosurgery, Cleveland Clinic, Cleveland, OH, USA
| | - Lilyana Angelov
- Deparment of Neurosurgery, Cleveland Clinic, Cleveland, OH, USA
| | | | - Glen H J Stevens
- Department of Neuro-Oncology, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Samuel T Chao
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
2
|
Mansouri A, Ozair A, Bhanja D, Wilding H, Mashiach E, Haque W, Mikolajewicz N, de Macedo Filho L, Mahase SS, Machtay M, Metellus P, Dhermain F, Sheehan J, Kondziolka D, Lunsford LD, Niranjan A, Minniti G, Li J, Kalkanis SN, Wen PY, Kotecha R, McDermott MW, Bettegowda C, Woodworth GF, Brown PD, Sahgal A, Ahluwalia MS. Stereotactic radiosurgery for patients with brain metastases: current principles, expanding indications and opportunities for multidisciplinary care. Nat Rev Clin Oncol 2025; 22:327-347. [PMID: 40108412 DOI: 10.1038/s41571-025-01013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
The management of brain metastases is challenging and should ideally be coordinated through a multidisciplinary approach. Stereotactic radiosurgery (SRS) has been the cornerstone of management for most patients with oligometastatic central nervous system involvement (one to four brain metastases), and several technological and therapeutic advances over the past decade have broadened the indications for SRS to include polymetastatic central nervous system involvement (>4 brain metastases), preoperative application and fractionated SRS, as well as combinatorial approaches with targeted therapy and immune-checkpoint inhibitors. For example, improved imaging and frameless head-immobilization technologies have facilitated fractionated SRS for large brain metastases or postsurgical cavities, or lesions in proximity to organs at risk. However, these opportunities come with new challenges and questions, including the implications of tumour histology as well as the role and sequencing of concurrent systemic treatments. In this Review, we discuss these advances and associated challenges in the context of ongoing clinical trials, with insights from a global group of experts, including recommendations for current clinical practice and future investigations. The updates provided herein are meaningful for all practitioners in clinical oncology.
Collapse
Affiliation(s)
- Alireza Mansouri
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
- Department of Neurosurgery, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA.
| | - Ahmad Ozair
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Debarati Bhanja
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Hannah Wilding
- Department of Neurosurgery, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Elad Mashiach
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Waqas Haque
- Division of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Nicholas Mikolajewicz
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Leonardo de Macedo Filho
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Neurosurgery, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Sean S Mahase
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, PA, USA
| | - Mitchell Machtay
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, PA, USA
| | - Philippe Metellus
- Department of Neurosurgery, Ramsay Santé, Hôpital Privé Clairval, Marseille, France
| | - Frédéric Dhermain
- Radiation Therapy Department, Institut Gustave Roussy, Villejuif, France
| | - Jason Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA
| | - Douglas Kondziolka
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - L Dade Lunsford
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ajay Niranjan
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza IRCCS Neuromed, Pozzilli, Italy
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven N Kalkanis
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Michael W McDermott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Department of Neurosurgery, Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Brain Tumour Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- University of Maryland-Medicine Institute for Neuroscience Discovery, Baltimore, MD, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Manmeet S Ahluwalia
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
| |
Collapse
|
3
|
Martínez Barbero JP, García FJP, López Cornejo D, García Cerezo M, Gutiérrez PMJ, Balderas L, Lastra M, Arauzo-Azofra A, Benítez JM, Ramos-Bossini AJL. A Combined Approach Using T2*-Weighted Dynamic Susceptibility Contrast MRI Perfusion Parameters and Radiomics to Differentiate Between Radionecrosis and Glioma Progression: A Proof-of-Concept Study. Life (Basel) 2025; 15:606. [PMID: 40283161 PMCID: PMC12028526 DOI: 10.3390/life15040606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Differentiating tumor progression from radionecrosis in patients with treated brain glioma represents a significant clinical challenge due to overlapping imaging features. This study aimed to develop and evaluate a machine learning model that integrates radiomics features and T2*-weighted Dynamic Susceptibility Contrast MRI perfusion (DSC MRI) parameters to improve diagnostic accuracy in distinguishing these entities. A retrospective cohort of 46 patients (25 with confirmed radionecrosis, 21 with glioma progression) was analyzed. From lesion segmentation on DSC MRI, 851 radiomics features were extracted using PyRadiomics, alongside seven perfusion parameters (e.g., relative cerebral blood volume, time to peak) obtained from time-intensity curves (TICs). These features were combined into a single dataset and 14 classification algorithms were evaluated with GroupKFold cross-validation (k = 4). The top-performing model was selected based on predictive area under the curve (AUC) yield. The Logistic Regression classifier achieved the highest performance, with an AUC of 0.88, followed by multilayer perceptron and AdaBoost with AUC values of 0.85 and 0.79, respectively. The precision values were 72%, 74%, and 78% for the three models, respectively, while the accuracy was 63%, 70%, and 71%. Key predictive variables included radiomics features like wavelet-HHH_firstorder_Mean and mean normalized TIC values. Our combined approach integrating radiomics and DSC MRI parameters shows strong potential for distinguishing radionecrosis from glioma progression. However, further validation with larger cohorts is essential to confirm the generalizability of this approach.
Collapse
Affiliation(s)
- José Pablo Martínez Barbero
- Advanced Medical Imaging Group (TeCe22), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain (F.J.P.G.); (D.L.C.); (M.G.C.); (P.M.J.G.); (L.B.); (M.L.); (J.M.B.)
- Department of Radiology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Francisco Javier Pérez García
- Advanced Medical Imaging Group (TeCe22), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain (F.J.P.G.); (D.L.C.); (M.G.C.); (P.M.J.G.); (L.B.); (M.L.); (J.M.B.)
| | - David López Cornejo
- Advanced Medical Imaging Group (TeCe22), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain (F.J.P.G.); (D.L.C.); (M.G.C.); (P.M.J.G.); (L.B.); (M.L.); (J.M.B.)
| | - Marta García Cerezo
- Advanced Medical Imaging Group (TeCe22), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain (F.J.P.G.); (D.L.C.); (M.G.C.); (P.M.J.G.); (L.B.); (M.L.); (J.M.B.)
- Centro de Genómica e Investigación Oncológica (GENYO), 18016 Granada, Spain
| | - Paula María Jiménez Gutiérrez
- Advanced Medical Imaging Group (TeCe22), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain (F.J.P.G.); (D.L.C.); (M.G.C.); (P.M.J.G.); (L.B.); (M.L.); (J.M.B.)
- Department of Anesthesiology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Luis Balderas
- Advanced Medical Imaging Group (TeCe22), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain (F.J.P.G.); (D.L.C.); (M.G.C.); (P.M.J.G.); (L.B.); (M.L.); (J.M.B.)
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
| | - Miguel Lastra
- Advanced Medical Imaging Group (TeCe22), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain (F.J.P.G.); (D.L.C.); (M.G.C.); (P.M.J.G.); (L.B.); (M.L.); (J.M.B.)
- Department of Software Engineering, University of Granada, 18071 Granada, Spain
| | - Antonio Arauzo-Azofra
- Department of Rural, Civil Engineering and Project Management, University of Córdoba, 14014 Córdoba, Spain;
| | - José M. Benítez
- Advanced Medical Imaging Group (TeCe22), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain (F.J.P.G.); (D.L.C.); (M.G.C.); (P.M.J.G.); (L.B.); (M.L.); (J.M.B.)
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
| | - Antonio Jesús Láinez Ramos-Bossini
- Advanced Medical Imaging Group (TeCe22), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain (F.J.P.G.); (D.L.C.); (M.G.C.); (P.M.J.G.); (L.B.); (M.L.); (J.M.B.)
- Department of Radiology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
4
|
Hellström J, Huq I, Witt Nyström P, Blomquist E, Libard S, Raininko R, Wikström J. Intravoxel incoherent motion imaging and dynamic susceptibility contrast perfusion MRI in differentiation between recurrent intracranial tumor and treatment-induced changes. Neuroradiology 2025:10.1007/s00234-025-03575-4. [PMID: 40116943 DOI: 10.1007/s00234-025-03575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/15/2025] [Indexed: 03/23/2025]
Abstract
PURPOSE To compare intravoxel incoherent motion (IVIM) imaging to dynamic susceptibility-weighted contrast (DSC) perfusion MRI in differentiating tumor recurrence from treatment-induced changes. METHODS Our prospective study included patients previously treated with radiotherapy for intracranial tumors who later developed a new or increasing contrast-enhancing lesion. The final diagnosis was based on neuropathology or 6-month follow-up. MR examinations were performed for calculation of the perfusion fraction (f) using the IVIM technique and relative blood volume (rCBV) using DSC perfusion. Measurements of f and rCBV were made by two independent readers in hotspots when possible, but otherwise in the whole enhancing region. Measures of rCBV were normalized to the contralateral region. Receiver operating characteristics (ROC) analysis was performed. RESULTS Sixty patients (35 men, median age 49, range 20-77) were evaluated. Forty-four patients had tumor recurrence and 16 had treatment-induced changes. Mean f was 0.090 for tumors and 0.058 for treatment-induced changes (p = 0.002). Mean rCBV was 3.52 and 1.79, respectively (p = 0.002). The area under the curve (AUC) in the ROC analysis was 0.72 for f and 0.77 for rCBV. Cutoff values of 0.073 for f and 2.26 for rCBV yielded equal values for sensitivity (73%), specificity (75%), and accuracy (73%). The 90th percentile value of rCBV was 4.77 for tumors and 2.53 for treatment-induced changes (p = 0.0004) and yielded the highest AUC (0.79) and a sensitivity/specificity/accuracy of 80%/75%/78% at cutoff value 3.25. CONCLUSION The accuracy of the IVIM parameter f is similar to that of rCBV in differentiating tumor recurrence from treatment-induced changes.
Collapse
Affiliation(s)
- Jussi Hellström
- Section of Neuroradiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Ishita Huq
- Section of Neuroradiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Erik Blomquist
- Department of Oncology, Uppsala University, Uppsala, Sweden
| | - Sylwia Libard
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Surgical Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Raili Raininko
- Section of Neuroradiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Johan Wikström
- Section of Neuroradiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Essed RA, Prysiazhniuk Y, Wamelink IJ, Azizova A, Keil VC. Performance of amide proton transfer imaging to differentiate true progression from therapy-related changes in gliomas and metastases. Eur Radiol 2025; 35:580-591. [PMID: 39134744 PMCID: PMC11782315 DOI: 10.1007/s00330-024-11004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 07/20/2024] [Indexed: 02/01/2025]
Abstract
OBJECTIVES Differentiating true progression or recurrence (TP/TR) from therapy-related changes (TRC) is complex in brain tumours. Amide proton transfer-weighted (APT) imaging is a chemical exchange saturation transfer (CEST) MRI technique that may improve diagnostic accuracy during radiological follow-up. This systematic review and meta-analysis elucidated the level of evidence and details of state-of-the-art imaging for APT-CEST in glioma and brain metastasis surveillance. METHODS PubMed, EMBASE, Web of Science, and Cochrane Library were systematically searched for original articles about glioma and metastasis patients who received APT-CEST imaging for suspected TP/TR within 2 years after (chemo)radiotherapy completion. Modified Quality Assessment of Diagnostic Accuracy Studies-2 criteria were applied. A meta-analysis was performed to pool results and to compare subgroups. RESULTS Fifteen studies were included for a narrative synthesis, twelve of which (500 patients) were deemed sufficiently homogeneous for a meta-analysis. Magnetisation transfer ratio asymmetry performed well in gliomas (sensitivity 0.88 [0.82-0.92], specificity 0.84 [0.72-0.91]) but not in metastases (sensitivity 0.64 [0.38-0.84], specificity 0.56 [0.33-0.77]). APT-CEST combined with conventional/advanced MRI rendered 0.92 [0.86-0.96] and 0.88 [0.72-0.95] in gliomas. Tumour type, TR prevalence, sex, and acquisition protocol were sources of significant inter-study heterogeneity in sensitivity (I2 = 62.25%; p < 0.01) and specificity (I2 = 66.31%; p < 0.001). CONCLUSION A growing body of literature suggests that APT-CEST is a promising technique for improving the discrimination of TP/TR from TRC in gliomas, with limited data on metastases. CLINICAL RELEVANCE STATEMENT This meta-analysis identified a utility for APT-CEST imaging regarding the non-invasive discrimination of brain tumour progression from therapy-related changes, providing a critical evaluation of sequence parameters and cut-off values, which can be used to improve response assessment and patient outcome. KEY POINTS Therapy-related changes mimicking progression complicate brain tumour treatment. Amide proton imaging improves the non-invasive discrimination of glioma progression from therapy-related changes. Magnetisation transfer ratio asymmetry measurement seems not to have added value in brain metastases.
Collapse
Affiliation(s)
- Rajeev A Essed
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, Netherlands
| | - Yeva Prysiazhniuk
- Charles University, The Second Faculty of Medicine, Department of Pathophysiology, Prague, Czech Republic
| | - Ivar J Wamelink
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, 1081HV, Amsterdam, Netherlands
| | - Aynur Azizova
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, 1081HV, Amsterdam, Netherlands
| | - Vera C Keil
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, Netherlands.
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, 1081HV, Amsterdam, Netherlands.
- Amsterdam Neuroscience, Brain Imaging, De Boelelaan 1117, 1081HV, Amsterdam, Netherlands.
| |
Collapse
|
6
|
Heyn C, Bishop J, Moody AR, Kang T, Wong E, Howard P, Maralani P, Symons S, MacIntosh BJ, Keith J, Lim-Fat MJ, Perry J, Myrehaug S, Detsky J, Tseng CL, Chen H, Sahgal A, Soliman H. Gadolinium-Enhanced T2 FLAIR Is an Imaging Biomarker of Radiation Necrosis and Tumor Progression in Patients with Brain Metastases. AJNR Am J Neuroradiol 2025; 46:129-135. [PMID: 39107039 PMCID: PMC11735435 DOI: 10.3174/ajnr.a8431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/10/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND AND PURPOSE Differentiating radiation necrosis (RN) from tumor progression (TP) after radiation therapy for brain metastases is an important clinical problem requiring advanced imaging techniques that may not be widely available and are challenging to perform at multiple time points. The ability to leverage conventional MRI for this problem could have a meaningful clinical impact. The purpose of this study was to explore contrast-enhanced T2 FLAIR (T2FLAIRc) as a new imaging biomarker of RN and TP. MATERIALS AND METHODS This single-institution retrospective study included patients with treated brain metastases undergoing DSC-MRI between January 2021 and June 2023. Reference standard assessment was based on histopathology or serial follow-up, including the results of DSC-MRI for a minimum of 6 months from the first DSC-MRI. The index test was implemented as part of the institutional brain tumor MRI protocol and preceded the first DSC-MRI. T2FLAIRc and gadolinium-enhanced T1 (T1c) MPRAGE signal were normalized against normal brain parenchyma and expressed as a z score. The mean signal intensity of enhancing disease for the RN and TP groups was compared using an unpaired t test. Receiver operating characteristic curves and area under the receiver operating characteristic curve (AUC) were derived by bootstrapping. The DeLong test was used to compare AUCs. RESULTS Fifty-six participants (mean age, 62 [SD, 12.7] years; 39 women; 28 with RN, 28 with TP) were evaluated. The index MRI was performed, on average, 73 [SD, 34] days before the first DSC-MRI. Significantly higher z scores were found for RN using T2FLAIRc (8.3 versus 5.8, P < .001) and T1c (4.1 versus 3.5, P = .02). The AUC for T2FLAIRc (0.83; 95% CI, 0.72-0.92) was greater than that for T1c (0.70; 95% CI, 0.56-0.83) (P = .04). The AUC of DSC-derived relative CBV (0.82; 95% CI, 0.70-0.93) was not significantly different from that of T2FLAIRc (P = .9). CONCLUSIONS A higher normalized T1c and T2FLAIRc signal intensity was found for RN. In a univariable test, the mean T2FLAIRc signal intensity of enhancing voxels showed good discrimination performance for distinguishing RN from TP. The results of this work demonstrate the potential of T2FLAIRc as an imaging biomarker in the work-up of RN in patients with brain metastases.
Collapse
Affiliation(s)
- Chris Heyn
- From the Department of Medical Imaging (C.H., J.B., A.R.M., T.K., E.W., P.H., P.M., S.S.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Medical Imaging (C.H., A.R.M., T.K., E.W., P.H., P.M., S.S.), University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre (C.H., A.R.M., P.M., S.S., B.J.M.), Toronto, Ontario, Canada
| | - Jonathan Bishop
- From the Department of Medical Imaging (C.H., J.B., A.R.M., T.K., E.W., P.H., P.M., S.S.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Alan R Moody
- From the Department of Medical Imaging (C.H., J.B., A.R.M., T.K., E.W., P.H., P.M., S.S.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Medical Imaging (C.H., A.R.M., T.K., E.W., P.H., P.M., S.S.), University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre (C.H., A.R.M., P.M., S.S., B.J.M.), Toronto, Ontario, Canada
| | - Tony Kang
- From the Department of Medical Imaging (C.H., J.B., A.R.M., T.K., E.W., P.H., P.M., S.S.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Medical Imaging (C.H., A.R.M., T.K., E.W., P.H., P.M., S.S.), University of Toronto, Toronto, Ontario, Canada
| | - Erin Wong
- From the Department of Medical Imaging (C.H., J.B., A.R.M., T.K., E.W., P.H., P.M., S.S.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Medical Imaging (C.H., A.R.M., T.K., E.W., P.H., P.M., S.S.), University of Toronto, Toronto, Ontario, Canada
| | - Peter Howard
- From the Department of Medical Imaging (C.H., J.B., A.R.M., T.K., E.W., P.H., P.M., S.S.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Medical Imaging (C.H., A.R.M., T.K., E.W., P.H., P.M., S.S.), University of Toronto, Toronto, Ontario, Canada
| | - Pejman Maralani
- From the Department of Medical Imaging (C.H., J.B., A.R.M., T.K., E.W., P.H., P.M., S.S.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Medical Imaging (C.H., A.R.M., T.K., E.W., P.H., P.M., S.S.), University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre (C.H., A.R.M., P.M., S.S., B.J.M.), Toronto, Ontario, Canada
| | - Sean Symons
- From the Department of Medical Imaging (C.H., J.B., A.R.M., T.K., E.W., P.H., P.M., S.S.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Medical Imaging (C.H., A.R.M., T.K., E.W., P.H., P.M., S.S.), University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre (C.H., A.R.M., P.M., S.S., B.J.M.), Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre (C.H., A.R.M., P.M., S.S., B.J.M.), Toronto, Ontario, Canada
| | - Julia Keith
- Department of Anatomy and Pathology (J.K.), Sunnybrook Health Sciences Centre, Toronto Ontario, Canada
| | - Mary Jane Lim-Fat
- Division of Neurology (M.J.L-F, J.P.), Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - James Perry
- Division of Neurology (M.J.L-F, J.P.), Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology (S.M., J.D., C.-L.T., H.C., A.S., H.S.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Jay Detsky
- Department of Radiation Oncology (S.M., J.D., C.-L.T., H.C., A.S., H.S.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology (S.M., J.D., C.-L.T., H.C., A.S., H.S.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Hanbo Chen
- Department of Radiation Oncology (S.M., J.D., C.-L.T., H.C., A.S., H.S.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology (S.M., J.D., C.-L.T., H.C., A.S., H.S.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Hany Soliman
- Department of Radiation Oncology (S.M., J.D., C.-L.T., H.C., A.S., H.S.), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Wang Y, Bao X, Zhang Y, Wu Q. The current research status of the mechanisms and treatment of radioactive brain injury. Am J Cancer Res 2024; 14:5598-5613. [PMID: 39803653 PMCID: PMC11711531 DOI: 10.62347/beau4974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
Radioactive brain injury, a severe complication ensuing from radiotherapy for head and neck malignancies, frequently manifests as cognitive impairment and substantially diminishes patients' quality of life. Despite its profound impact, the pathogenesis of this condition remains inadequately elucidated, and efficacious treatments are notably absent in clinical practice. Consequently, contemporary interventions predominantly focus on symptom alleviation rather than achieving a radical cure or reversing the injury process. This article provides a comprehensive review of the various pathogenic mechanisms and therapeutic strategies associated with radioactive brain injury, offering insights that may guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yaru Wang
- Department of Oncology, Anhui Medical UniversityHefei 230000, Anhui, China
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
| | - Xiaoqing Bao
- Department of Oncology, Anhui Medical UniversityHefei 230000, Anhui, China
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
| | - Yu Zhang
- Department of Oncology, Anhui Medical UniversityHefei 230000, Anhui, China
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
| | - Qibing Wu
- Department of Oncology, Anhui Medical UniversityHefei 230000, Anhui, China
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230000, Anhui, China
| |
Collapse
|
8
|
Bhatia RK, George J, Siu C, Lee E, Redmond KJ, Baker B, Jackson CM, Bettegowda C, Mukherjee D, Hobbs RF, Weingart J, Lim M, Kleinberg L. Outcomes of Management of Progressive Radiosurgery-Treated Brain Metastasis With Resection Followed by Pathology-Informed Management: A Retrospective Study. NEUROSURGERY PRACTICE 2024; 5:e00117. [PMID: 39959539 PMCID: PMC11809956 DOI: 10.1227/neuprac.0000000000000117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/12/2024] [Indexed: 02/18/2025]
Abstract
BACKGROUND AND OBJECTIVES In patients treated with stereotactic radiosurgery (SRS) for brain metastases, follow-up imaging demonstrating progression may result from treatment effect/radionecrosis (RN) or tumor progression. We report long-term outcomes for a cohort of patients who demonstrated radiological progression on serial imaging after initial radiation and who underwent resection, at which point histology informed further management. METHODS A retrospective chart review identified 76 patients with an associated 82 brain lesions between 2009 and 2022, that were initially treated with SRS, and then demonstrated suspicious imaging developing through at least 2 scan time points with either pathologic confirmation of tumor or RN. RESULTS Of the 82 lesions, 55 lesions (67.1%) were found to be tumor and were treated with repeat radiation and 27 (32.9%) were found to have pathologically confirmed RN and conservatively managed. 14/27 lesions ultimately found to be radionecrotic required steroids preoperatively due to neurological symptoms. None of these lesions required further intervention with median postsurgery follow-up of 24.4 months (range 1-104 months). There were 55 instances (in 51 patients) of confirmed recurrent/progressive tumor who we treated with repeat aggressive radiation with either Cs-131 brachytherapy (12 [21.8%]) or SRS (43 [78.2%]). Among patients treated with reirradiation, the median follow-up to local failure was 15.2 months (95% CI 7.3-26.6 months). The 2-year local control rate was 79.5% (95% CI 68.3%-92.5%). CONCLUSION These results support resection of radiosurgery-treated lesions with progression continuing through serial imaging, and this pathology-informed management results in excellent control of both RN and tumor progression after radiosurgery.
Collapse
Affiliation(s)
- Rohini K. Bhatia
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica George
- Department of Biostatistics, University of Southern California, Los Angeles, California, USA
| | - Catherine Siu
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emerson Lee
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristin J. Redmond
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brock Baker
- Durango Cancer Center, Durango, Colorado, USA
| | - Christopher M. Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Debraj Mukherjee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F. Hobbs
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jon Weingart
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford Medicine, Stanford, California, USA
| | - Lawrence Kleinberg
- Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Liu X, Chen H, Tan G, Zhong L, Jiang H, Smith SM, Wang HZ. A comprehensive neuroimaging review of the primary and metastatic brain tumors treated with immunotherapy: current status, and the application of advanced imaging approaches and artificial intelligence. Front Immunol 2024; 15:1496627. [PMID: 39669560 PMCID: PMC11634813 DOI: 10.3389/fimmu.2024.1496627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/28/2024] [Indexed: 12/14/2024] Open
Abstract
Cancer immunotherapy has emerged as a novel clinical therapeutic option for a variety of solid tumors over the past decades. The application of immunotherapy in primary and metastatic brain tumors continues to grow despite limitations due to the physiological characteristics of the immune system within the central nervous system (CNS) and distinct pathological barriers of malignant brain tumors. The post-immunotherapy treatment imaging is more complex. In this review, we summarize the clinical application of immunotherapies in solid tumors beyond the CNS. We provide an overview of current immunotherapies used in brain tumors, including immune checkpoint inhibitors (ICIs), oncolytic viruses, vaccines, and CAR T-cell therapies. We focus on the imaging criteria for the assessment of treatment response to immunotherapy, and post-immunotherapy treatment imaging patterns. We discuss advanced imaging techniques in the evaluation of treatment response to immunotherapy in brain tumors. The imaging characteristics of immunotherapy treatment-related complications in CNS are described. Lastly, future imaging challenges in this field are explored.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Radiology, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
- Advanced Neuroimaging Laboratory, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
| | - Hongyan Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guirong Tan
- Department of Radiology, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
- Advanced Neuroimaging Laboratory, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
| | - Lijuan Zhong
- Department of Pathology, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
| | - Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Stephen M. Smith
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Henry Z. Wang
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
10
|
Chamseddine I, Shah K, Lee H, Ehret F, Schuemann J, Bertolet A, Shih HA, Paganetti H. Decoding Patient Heterogeneity Influencing Radiation-Induced Brain Necrosis. Clin Cancer Res 2024; 30:4424-4433. [PMID: 39106090 PMCID: PMC11444871 DOI: 10.1158/1078-0432.ccr-24-1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/27/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE In radiotherapy (RT) for brain tumors, patient heterogeneity masks treatment effects, complicating the prediction and mitigation of radiation-induced brain necrosis. Therefore, understanding this heterogeneity is essential for improving outcome assessments and reducing toxicity. EXPERIMENTAL DESIGN We developed a clinically practical pipeline to clarify the relationship between dosimetric features and outcomes by identifying key variables. We processed data from a cohort of 130 patients treated with proton therapy for brain and head and neck tumors, utilizing an expert-augmented Bayesian network to understand variable interdependencies and assess structural dependencies. Critical evaluation involved a three-level grading system for each network connection and a Markov blanket analysis to identify variables directly impacting necrosis risk. Statistical assessments included log-likelihood ratio, integrated discrimination index, net reclassification index, and receiver operating characteristic (ROC). RESULTS The analysis highlighted tumor location and proximity to critical structures such as white matter and ventricles as major determinants of necrosis risk. The majority of network connections were clinically supported, with quantitative measures confirming the significance of these variables in patient stratification (log-likelihood ratio = 12.17; P = 0.016; integrated discrimination index = 0.15; net reclassification index = 0.74). The ROC curve area was 0.66, emphasizing the discriminative value of nondosimetric variables. CONCLUSIONS Key patient variables critical to understanding brain necrosis post-RT were identified, aiding the study of dosimetric impacts and providing treatment confounders and moderators. This pipeline aims to enhance outcome assessments by revealing at-risk patients, offering a versatile tool for broader applications in RT to improve treatment personalization in different disease sites.
Collapse
Affiliation(s)
- Ibrahim Chamseddine
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Keyur Shah
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Hoyeon Lee
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Felix Ehret
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité – Universitätsmedizin Berlin, Germany
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Alejandro Bertolet
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Helen A. Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
11
|
Murai T, Kasai Y, Eguchi Y, Takano S, Kita N, Torii A, Takaoka T, Tomita N, Shibamoto Y, Hiwatashi A. Fractionated Stereotactic Intensity-Modulated Radiotherapy for Large Brain Metastases: Comprehensive Analyses of Dose-Volume Predictors of Radiation-Induced Brain Necrosis. Cancers (Basel) 2024; 16:3327. [PMID: 39409947 PMCID: PMC11482639 DOI: 10.3390/cancers16193327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The objective was to explore dosimetric predictors of brain necrosis (BN) in fractionated stereotactic radiotherapy (SRT). METHODS After excluding collinearities carefully, multivariate logistic models were developed for comprehensive analyses of dosimetric predictors in patients who received first-line fractionated SRT for brain metastases (BMs). The normal brain volume receiving an xx Gy biological dose in 2 Gy fractions (VxxEQD2) was calculated from the retrieved dose-volume parameters. RESULTS Thirty Gy/3 fractions (fr) SRT was delivered to 34 patients with 75 BMs (median target volume, 3.2 cc), 35 Gy/5 fr to 30 patients with 57 BMs (6.4 cc), 37.5 Gy/5 fr to 28 patients with 47 BMs (20.2 cc), and 40 Gy/10 fr to 20 patients with 37 BMs (24.3 cc), according to protocols, depending on the total target volume (p < 0.001). After excluding the three-fraction groups, the incidence of symptomatic BN was significantly higher in patients with a larger V50EQD2 (adjusted odds ratio: 1.07, p < 0.02), V55EQD2 (1.08, p < 0.01), or V60EQD2 (1.09, p < 0.01) in the remaining five- and ten-fraction groups. The incidence of BN was also significantly higher in cases with V55EQD2 > 30 cc or V60EQD2 > 20 cc (p < 0.05). These doses correspond to 28 or 30 Gy/5 fr and 37 or 40 Gy/10 fr, respectively. CONCLUSIONS In five- or ten-fraction SRT, larger V55EQD2 or V60EQD2 are BN risk predictors. These biologically high doses may affect BN incidence. Thus, the planning target volume margin should be minimized as much as possible.
Collapse
Affiliation(s)
- Taro Murai
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura 247-8533, Kanagawa, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-ku, Nagoya 467-8601, Aichi, Japan; (S.T.); (N.K.); (A.T.); (T.T.); (N.T.); (A.H.)
| | - Yuki Kasai
- Department of Radiology, Nagoya City University Hospital, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8602, Aichi, Japan; (Y.K.); (Y.E.)
| | - Yuta Eguchi
- Department of Radiology, Nagoya City University Hospital, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8602, Aichi, Japan; (Y.K.); (Y.E.)
| | - Seiya Takano
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-ku, Nagoya 467-8601, Aichi, Japan; (S.T.); (N.K.); (A.T.); (T.T.); (N.T.); (A.H.)
| | - Nozomi Kita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-ku, Nagoya 467-8601, Aichi, Japan; (S.T.); (N.K.); (A.T.); (T.T.); (N.T.); (A.H.)
| | - Akira Torii
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-ku, Nagoya 467-8601, Aichi, Japan; (S.T.); (N.K.); (A.T.); (T.T.); (N.T.); (A.H.)
| | - Taiki Takaoka
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-ku, Nagoya 467-8601, Aichi, Japan; (S.T.); (N.K.); (A.T.); (T.T.); (N.T.); (A.H.)
| | - Natsuo Tomita
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-ku, Nagoya 467-8601, Aichi, Japan; (S.T.); (N.K.); (A.T.); (T.T.); (N.T.); (A.H.)
| | - Yuta Shibamoto
- Narita Memorial Proton Center, 78 Shirakawa-cho, Toyohashi 441-8021, Aichi, Japan;
| | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-ku, Nagoya 467-8601, Aichi, Japan; (S.T.); (N.K.); (A.T.); (T.T.); (N.T.); (A.H.)
| |
Collapse
|
12
|
You H, He L, Ouyang Z, Yang Y, Xie S, Zhou J, Zhang Y, Shi J. Case report: intracranial lesions in a patient with anxiety and depression: tumor recurrence or radiation encephalopathy? Front Oncol 2024; 14:1422765. [PMID: 39211558 PMCID: PMC11358061 DOI: 10.3389/fonc.2024.1422765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Radiation encephalopathy (REP) is one of the most common complications of radiotherapy for malignant tumors of the head and neck. Symptoms usually appear months to years following radiotherapy, with headache, insomnia, and memory loss as the main clinical features. We report a patient who was admitted to the hospital with anxiety and depressive disorder and was eventually diagnosed with REP. Patients and methods A 48-year-old patient who had undergone over 2 years of radiotherapy for nasopharyngeal carcinoma was admitted to the Department of Psychosomatic Medicine of our hospital because of recurrent fear, low mood, and waking up from dreams. Magnetic resonance imaging (MRI) revealed a mass in the left temporal lobe with a large peripheral edema. After multidisciplinary consultation, the possibility of tumor recurrence could not be excluded. Results Resection of the lesioned brain tissue to obtain pathological tissue showed glial cell proliferation and small focal areas of degeneration and necrosis, which indicated that the lesions were inflammatory. Postoperative MRI showed no abnormal signal, and the patient's condition improved. Conclusion Nasopharyngeal carcinoma patients with a history of radiotherapy and symptoms of increased intracranial pressure and neurological damage should be examined for REP. Furthermore, patients may experience anxiety and depressive disorders as a result of temporal lobe damage caused by REP.
Collapse
Affiliation(s)
- Haiping You
- Department of Psychosomatic Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Lin He
- Department of Psychosomatic Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Zhibo Ouyang
- Department of Psychosomatic Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yao Yang
- Department of Psychosomatic Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Shu Xie
- Department of Psychosomatic Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Jiwei Zhou
- Department of Psychosomatic Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yun Zhang
- Department of Psychosomatic Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Jian Shi
- Department of Psychosomatic Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
13
|
Ajithkumar T, Avanzo M, Yorke E, Tsang DS, Milano MT, Olch AJ, Merchant TE, Dieckmann K, Mahajan A, Fuji H, Paulino AC, Timmermann B, Marks LB, Bentzen SM, Jackson A, Constine LS. Brain and Brain Stem Necrosis After Reirradiation for Recurrent Childhood Primary Central Nervous System Tumors: A PENTEC Comprehensive Review. Int J Radiat Oncol Biol Phys 2024; 119:655-668. [PMID: 38300187 DOI: 10.1016/j.ijrobp.2023.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024]
Abstract
PURPOSE Reirradiation is increasingly used in children and adolescents/young adults (AYA) with recurrent primary central nervous system tumors. The Pediatric Normal Tissue Effects in the Clinic (PENTEC) reirradiation task force aimed to quantify risks of brain and brain stem necrosis after reirradiation. METHODS AND MATERIALS A systematic literature search using the PubMed and Cochrane databases for peer-reviewed articles from 1975 to 2021 identified 92 studies on reirradiation for recurrent tumors in children/AYA. Seventeen studies representing 449 patients who reported brain and brain stem necrosis after reirradiation contained sufficient data for analysis. While all 17 studies described techniques and doses used for reirradiation, they lacked essential details on clinically significant dose-volume metrics necessary for dose-response modeling on late effects. We, therefore, estimated incidences of necrosis with an exact 95% CI and qualitatively described data. Results from multiple studies were pooled by taking the weighted average of the reported crude rates from individual studies. RESULTS Treated cancers included ependymoma (n = 279 patients; 7 studies), medulloblastoma (n = 98 patients; 6 studies), any CNS tumors (n = 62 patients; 3 studies), and supratentorial high-grade gliomas (n = 10 patients; 1 study). The median interval between initial and reirradiation was 2.3 years (range, 1.2-4.75 years). The median cumulative prescription dose in equivalent dose in 2-Gy fractions (EQD22; assuming α/β value = 2 Gy) was 103.8 Gy (range, 55.8-141.3 Gy). Among 449 reirradiated children/AYA, 22 (4.9%; 95% CI, 3.1%-7.3%) developed brain necrosis and 14 (3.1%; 95% CI, 1.7%-5.2%) developed brain stem necrosis with a weighted median follow-up of 1.6 years (range, 0.5-7.4 years). The median cumulative prescription EQD22 was 111.4 Gy (range, 55.8-141.3 Gy) for development of any necrosis, 107.7 Gy (range, 55.8-141.3 Gy) for brain necrosis, and 112.1 Gy (range, 100.2-117 Gy) for brain stem necrosis. The median latent period between reirradiation and the development of necrosis was 5.7 months (range, 4.3-24 months). Though there were more events among children/AYA undergoing hypofractionated versus conventionally fractionated reirradiation, the differences were not statistically significant (P = .46). CONCLUSIONS Existing reports suggest that in children/AYA with recurrent brain tumors, reirradiation with a total EQD22 of about 112 Gy is associated with an approximate 5% to 7% incidence of brain/brain stem necrosis after a median follow-up of 1.6 years (with the initial course of radiation therapy being given with conventional prescription doses of ≤2 Gy per fraction and the second course with variable fractionations). We recommend a uniform approach for reporting dosimetric endpoints to derive robust predictive models of late toxicities following reirradiation.
Collapse
Affiliation(s)
- Thankamma Ajithkumar
- Department of Oncology, Cambridge University Hospitals, Cambridge, United Kingdom.
| | - Michele Avanzo
- Division of Medical Physics, Centro di Riferimento Oncologico Aviano IRCCS, Aviano, Italy
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Derek S Tsang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Arthur J Olch
- Department of Radiation Oncology and Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Karin Dieckmann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Hiroshi Fuji
- National Center for Child Health and Development, Tokyo, Japan
| | - Arnold C Paulino
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen, West German Cancer Center, Essen, Germany
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Soren M Bentzen
- Division of Biostatistics and Bioinformatics, Department of Radiation Oncology, and University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York; Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
14
|
Mayo ZS, Billena C, Suh JH, Lo SS, Chao ST. The dilemma of radiation necrosis from diagnosis to treatment in the management of brain metastases. Neuro Oncol 2024; 26:S56-S65. [PMID: 38437665 PMCID: PMC10911797 DOI: 10.1093/neuonc/noad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Radiation therapy with stereotactic radiosurgery (SRS) or whole brain radiation therapy is a mainstay of treatment for patients with brain metastases. The use of SRS in the management of brain metastases is becoming increasingly common and provides excellent local control. Cerebral radiation necrosis (RN) is a late complication of radiation treatment that can be seen months to years following treatment and is often indistinguishable from tumor progression on conventional imaging. In this review article, we explore risk factors associated with the development of radiation necrosis, advanced imaging modalities used to aid in diagnosis, and potential treatment strategies to manage side effects.
Collapse
Affiliation(s)
- Zachary S Mayo
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cole Billena
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - John H Suh
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Samuel T Chao
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Müller SJ, Khadhraoui E, Ganslandt O, Henkes H, Gihr GA. MRI Treatment Response Assessment Maps (TRAMs) for differentiating recurrent glioblastoma from radiation necrosis. J Neurooncol 2024; 166:513-521. [PMID: 38261142 DOI: 10.1007/s11060-024-04573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND MRI treatment response assessment maps (TRAMs) were introduced to distinguish recurrent malignant glioma from therapy related changes. TRAMs are calculated with two contrast-enhanced T1-weighted sequences and reflect the "late" wash-out (or contrast clearance) and wash-in of gadolinium. Vital tumor cells are assumed to produce a wash-out because of their high turnover rate and the associated hypervascularization, whereas contrast medium slowly accumulates in scar tissue. To examine the real value of this method, we compared TRAMs with the pathology findings obtained after a second biopsy or surgery when recurrence was suspected. METHODS We retrospectively evaluated TRAMs in adult patients with histologically demonstrated glioblastoma, contrast-enhancing tissue and a pre-operative MRI between January 1, 2017, and December 31, 2022. Only patients with a second biopsy or surgery were evaluated. Volumes of the residual tumor, contrast clearance and contrast accumulation before the second surgery were analyzed. RESULTS Among 339 patients with mGBM who underwent MRI, we identified 29 repeated surgeries/biopsies in 27 patients 59 ± 12 (mean ± standard deviation) years of age. Twenty-eight biopsies were from patients with recurrent glioblastoma histology, and only one was from a patient with radiation necrosis. We volumetrically evaluated the 29 pre-surgery TRAMs. In recurrent glioblastoma, the ratio of wash-out volume to tumor volume was 36 ± 17% (range 1-73%), and the ratio of the wash-out volume to the sum of wash-out and wash-in volumes was 48 ± 21% (range 22-92%). For the one biopsy with radiation necrosis, the ratios were 42% and 54%, respectively. CONCLUSIONS Typical recurrent glioblastoma shows a > 20%ratio of the wash-out volume to the sum of wash-out and wash-in volumes. The one biopsy with radiation necrosis indicated that such necrosis can also produce high wash-out in individual cases. Nevertheless, the additional information provided by TRAMs increases the reliability of diagnosis.
Collapse
Affiliation(s)
| | - Eya Khadhraoui
- Klinik Für Neuroradiologie, Klinikum-Stuttgart, Kriegsbergstr. 60, 70174, Stuttgart, Germany
| | - Oliver Ganslandt
- Abteilung Für Neurochirurgie, Klinikum-Stuttgart, Stuttgart, Germany
| | - Hans Henkes
- Klinik Für Neuroradiologie, Klinikum-Stuttgart, Kriegsbergstr. 60, 70174, Stuttgart, Germany
| | - Georg Alexander Gihr
- Klinik Für Neuroradiologie, Klinikum-Stuttgart, Kriegsbergstr. 60, 70174, Stuttgart, Germany
| |
Collapse
|
16
|
Salans M, Ni L, Morin O, Ziemer B, Capaldi DPI, Raleigh DR, Vasudevan HN, Chew J, Nakamura J, Sneed PK, Boreta L, Villanueva-Meyer JE, Theodosopoulos P, Braunstein S. Adverse radiation effect versus tumor progression following stereotactic radiosurgery for brain metastases: Implications of radiologic uncertainty. J Neurooncol 2024; 166:535-546. [PMID: 38316705 PMCID: PMC10876820 DOI: 10.1007/s11060-024-04578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Adverse radiation effect (ARE) following stereotactic radiosurgery (SRS) for brain metastases is challenging to distinguish from tumor progression. This study characterizes the clinical implications of radiologic uncertainty (RU). METHODS Cases reviewed retrospectively at a single-institutional, multi-disciplinary SRS Tumor Board between 2015-2022 for RU following SRS were identified. Treatment history, diagnostic or therapeutic interventions performed upon RU resolution, and development of neurologic deficits surrounding intervention were obtained from the medical record. Differences in lesion volume and maximum diameter at RU onset versus resolution were compared with paired t-tests. Median time from RU onset to resolution was estimated using the Kaplan-Meier method. Univariate and multivariate associations between clinical characteristics and time to RU resolution were assessed with Cox proportional-hazards regression. RESULTS Among 128 lesions with RU, 23.5% had undergone ≥ 2 courses of radiation. Median maximum diameter (20 vs. 16 mm, p < 0.001) and volume (2.7 vs. 1.5 cc, p < 0.001) were larger upon RU resolution versus onset. RU resolution took > 6 and > 12 months in 25% and 7% of cases, respectively. Higher total EQD2 prior to RU onset (HR = 0.45, p = 0.03) and use of MR perfusion (HR = 0.56, p = 0.001) correlated with shorter time to resolution; larger volume (HR = 1.05, p = 0.006) portended longer time to resolution. Most lesions (57%) were diagnosed as ARE. Most patients (58%) underwent an intervention upon RU resolution; of these, 38% developed a neurologic deficit surrounding intervention. CONCLUSIONS RU resolution took > 6 months in > 25% of cases. RU may lead to suboptimal outcomes and symptom burden. Improved characterization of post-SRS RU is needed.
Collapse
Affiliation(s)
- Mia Salans
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
| | - Lisa Ni
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
| | - Olivier Morin
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
| | - Benjamin Ziemer
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
| | - Dante P I Capaldi
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
- Department of Neurosurgery, University of California San Francisco (DRR, JEVM, PT), San Francisco, USA
- Department of Pathology, University of California San Francisco (DRR), San Francisco, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
- Department of Neurosurgery, University of California San Francisco (DRR, JEVM, PT), San Francisco, USA
| | - Jessica Chew
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
| | - Jean Nakamura
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
| | - Penny K Sneed
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
| | - Lauren Boreta
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA
| | - Javier E Villanueva-Meyer
- Department of Neurosurgery, University of California San Francisco (DRR, JEVM, PT), San Francisco, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco (JEVM), San Francisco, USA
| | - Philip Theodosopoulos
- Department of Neurosurgery, University of California San Francisco (DRR, JEVM, PT), San Francisco, USA
| | - Steve Braunstein
- Department of Radiation Oncology, University of California San Francisco (MS, LN, OM, BZ, DPIC, DRR, HNV, JC, JN, PKS, LB, SB), 505 Parnassus Ave, L75, San Francisco, CA, 94158, USA.
| |
Collapse
|
17
|
Wu B, Li S, Wang J, Wang J, Qiu W, Gao H. Bibliometric and visualization analysis of radiation brain injury from 2003 to 2023. Front Neurol 2024; 14:1275836. [PMID: 38298563 PMCID: PMC10828967 DOI: 10.3389/fneur.2023.1275836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
Background Over the past two decades, the field of radiation brain injury has attracted the attention of an increasing number of brain scientists, particularly in the areas of molecular pathology and therapeutic approaches. Characterizing global collaboration networks and mapping development trends over the past 20 years is essential. Objective The aim of this paper is to examine significant issues and future directions while shedding light on collaboration and research status in the field of radiation brain injury. Methods Bibliometric studies were performed using CiteSpaceR-bibliometrix and VOSviewer software on papers regarding radiation brain injury that were published before November 2023 in the Web of Science Core Collection. Results In the final analysis, we found 4,913 records written in 1,219 publications by 21,529 authors from 5,007 institutions in 75 countries. There was a noticeable increase in publications in 2014 and 2021. The majority of records listed were produced by China, the United States, and other high-income countries. The largest nodes in each cluster of the collaboration network were Sun Yat-sen University, University of California-San Francisco, and the University of Toronto. Galldiks N, Barnett GH, Langen KJ and Kim JH are known to be core authors in the field. The top 3 keywords in that time frame are radiation, radiation necrosis, and radiation-therapy. Conclusions The objective and thorough bibliometric analysis also identifies current research hotspots and potential future paths, providing a retrospective perspective on RBI and offering useful advice to researchers choosing research topics. Future development directions include the integration of multi-omics methodologies and novel imaging techniques to improve RBI's diagnostic effectiveness and the search for new therapeutic targets.
Collapse
Affiliation(s)
- Baofang Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Shaojie Li
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Jian Wang
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jiayin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Weizhi Qiu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Hongzhi Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| |
Collapse
|
18
|
Herr J, Stoyanova R, Mellon EA. Convolutional Neural Networks for Glioma Segmentation and Prognosis: A Systematic Review. Crit Rev Oncog 2024; 29:33-65. [PMID: 38683153 DOI: 10.1615/critrevoncog.2023050852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Deep learning (DL) is poised to redefine the way medical images are processed and analyzed. Convolutional neural networks (CNNs), a specific type of DL architecture, are exceptional for high-throughput processing, allowing for the effective extraction of relevant diagnostic patterns from large volumes of complex visual data. This technology has garnered substantial interest in the field of neuro-oncology as a promising tool to enhance medical imaging throughput and analysis. A multitude of methods harnessing MRI-based CNNs have been proposed for brain tumor segmentation, classification, and prognosis prediction. They are often applied to gliomas, the most common primary brain cancer, to classify subtypes with the goal of guiding therapy decisions. Additionally, the difficulty of repeating brain biopsies to evaluate treatment response in the setting of often confusing imaging findings provides a unique niche for CNNs to help distinguish the treatment response to gliomas. For example, glioblastoma, the most aggressive type of brain cancer, can grow due to poor treatment response, can appear to grow acutely due to treatment-related inflammation as the tumor dies (pseudo-progression), or falsely appear to be regrowing after treatment as a result of brain damage from radiation (radiation necrosis). CNNs are being applied to separate this diagnostic dilemma. This review provides a detailed synthesis of recent DL methods and applications for intratumor segmentation, glioma classification, and prognosis prediction. Furthermore, this review discusses the future direction of MRI-based CNN in the field of neuro-oncology and challenges in model interpretability, data availability, and computation efficiency.
Collapse
Affiliation(s)
| | - Radka Stoyanova
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Fl 33136, USA
| | - Eric Albert Mellon
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Fl 33136, USA
| |
Collapse
|
19
|
Sanvito F, Kaufmann TJ, Cloughesy TF, Wen PY, Ellingson BM. Standardized brain tumor imaging protocols for clinical trials: current recommendations and tips for integration. FRONTIERS IN RADIOLOGY 2023; 3:1267615. [PMID: 38152383 PMCID: PMC10751345 DOI: 10.3389/fradi.2023.1267615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023]
Abstract
Standardized MRI acquisition protocols are crucial for reducing the measurement and interpretation variability associated with response assessment in brain tumor clinical trials. The main challenge is that standardized protocols should ensure high image quality while maximizing the number of institutions meeting the acquisition requirements. In recent years, extensive effort has been made by consensus groups to propose different "ideal" and "minimum requirements" brain tumor imaging protocols (BTIPs) for gliomas, brain metastases (BM), and primary central nervous system lymphomas (PCSNL). In clinical practice, BTIPs for clinical trials can be easily integrated with additional MRI sequences that may be desired for clinical patient management at individual sites. In this review, we summarize the general concepts behind the choice and timing of sequences included in the current recommended BTIPs, we provide a comparative overview, and discuss tips and caveats to integrate additional clinical or research sequences while preserving the recommended BTIPs. Finally, we also reflect on potential future directions for brain tumor imaging in clinical trials.
Collapse
Affiliation(s)
- Francesco Sanvito
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Timothy F. Cloughesy
- UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA, United States
| | - Benjamin M. Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
20
|
Kossmann MRP, Ehret F, Roohani S, Winter SF, Ghadjar P, Acker G, Senger C, Schmid S, Zips D, Kaul D. Histopathologically confirmed radiation-induced damage of the brain - an in-depth analysis of radiation parameters and spatio-temporal occurrence. Radiat Oncol 2023; 18:198. [PMID: 38087368 PMCID: PMC10717523 DOI: 10.1186/s13014-023-02385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Radiation-induced damage (RID) after radiotherapy (RT) of primary brain tumors and metastases can be challenging to clinico-radiographically distinguish from tumor progression. RID includes pseudoprogression and radiation necrosis; the latter being irreversible and often associated with severe symptoms. While histopathology constitutes the diagnostic gold standard, biopsy-controlled clinical studies investigating RID remain limited. Whether certain brain areas are potentially more vulnerable to RID remains an area of active investigation. Here, we analyze histopathologically confirmed cases of RID in relation to the temporal and spatial dose distribution. METHODS Histopathologically confirmed cases of RID after photon-based RT for primary or secondary central nervous system malignancies were included. Demographic, clinical, and dosimetric data were collected from patient records and treatment planning systems. We calculated the equivalent dose in 2 Gy fractions (EQD22) and the biologically effective dose (BED2) for normal brain tissue (α/β ratio of 2 Gy) and analyzed the spatial and temporal distribution using frequency maps. RESULTS Thirty-three patients were identified. High-grade glioma patients (n = 18) mostly received one normofractionated RT series (median cumulative EQD22 60 Gy) to a large planning target volume (PTV) (median 203.9 ccm) before diagnosis of RID. Despite the low EQD22 and BED2, three patients with an accelerated hyperfractionated RT developed RID. In contrast, brain metastases patients (n = 15; 16 RID lesions) were often treated with two or more RT courses and with radiosurgery or fractionated stereotactic RT, resulting in a higher cumulative EQD22 (median 162.4 Gy), to a small PTV (median 6.7 ccm). All (n = 34) RID lesions occurred within the PTV of at least one of the preceding RT courses. RID in the high-grade glioma group showed a frontotemporal distribution pattern, whereas, in metastatic patients, RID was observed throughout the brain with highest density in the parietal lobe. The cumulative EQD22 was significantly lower in RID lesions that involved the subventricular zone (SVZ) than in lesions without SVZ involvement (median 60 Gy vs. 141 Gy, p = 0.01). CONCLUSIONS Accelerated hyperfractionated RT can lead to RID despite computationally low EQD22 and BED2 in high-grade glioma patients. The anatomical location of RID corresponded to the general tumor distribution of gliomas and metastases. The SVZ might be a particularly vulnerable area.
Collapse
Affiliation(s)
- Mario R P Kossmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Radiotherapy and Radiation Oncology, Pius-Hospital Oldenburg, Georgstr. 12, 26121, Oldenburg, Germany
| | - Felix Ehret
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Siyer Roohani
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sebastian F Winter
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Pirus Ghadjar
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Güliz Acker
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurosurgery, Charitéplatz 1, 10117, Berlin, Germany
| | - Carolin Senger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Simone Schmid
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Daniel Zips
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Kaul
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
21
|
Dobeson CB, Birkbeck M, Bhatnagar P, Hall J, Pearson R, West S, English P, Butteriss D, Perthen J, Lewis J. Perfusion MRI in the evaluation of brain metastases: current practice review and rationale for study of baseline MR perfusion imaging prior to stereotactic radiosurgery (STARBEAM-X). Br J Radiol 2023; 96:20220462. [PMID: 37660364 PMCID: PMC10646666 DOI: 10.1259/bjr.20220462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Stereotactic radiosurgery is an established focal treatment for brain metastases with high local control rates. An important side-effect of stereotactic radiosurgery is the development of radionecrosis. On conventional MR imaging, radionecrosis and tumour progression often have similar appearances, but have contrasting management approaches. Perfusion MR imaging is often used in the post-treatment setting in order to help distinguish between the two, but image interpretation can be fraught with challenges.Perfusion MR plays an established role in the baseline and post-treatment evaluation of primary brain tumours and a number of studies have concentrated on the value of perfusion imaging in brain metastases. Of the parameters generated, relative cerebral blood volume is the most widely used variable in terms of its clinical value in differentiating between radionecrosis and tumour progression. Although it has been suggested that the relative cerebral blood volume tends to be elevated in active metastatic disease following treatment with radiosurgery, but not with treatment-related changes, the literature available on interpretation of the ratios provided in the context of defining tumour progression is not consistent.This article aims to provide an overview of the role perfusion MRI plays in the assessment of brain metastases and introduces the rationale for the STARBEAM-X study (Study of assessment of radionecrosis in brain metastases using MR perfusion extra imaging), which will prospectively evaluate baseline perfusion imaging in brain metastases. We hope this will allow insight into the vascular appearance of metastases from different primary sites, and aid in the interpretation of post-treatment perfusion imaging.
Collapse
Affiliation(s)
| | - Matthew Birkbeck
- Northern Medical Physics and Clinical Engineering, Freeman Hospital, Newcastle upon Tyne, UK
| | - Priya Bhatnagar
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Julie Hall
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Rachel Pearson
- Department of Oncology, Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| | - Serena West
- Department of Oncology, Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| | - Philip English
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - David Butteriss
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Joanna Perthen
- Department of Neuroradiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Joanne Lewis
- Department of Oncology, Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
22
|
Panagiotou E, Charpidou A, Fyta E, Nikolaidou V, Stournara L, Syrigos A, Gkiozos I. High-dose bevacizumab for radiation-induced brain necrosis: a case report. CNS Oncol 2023; 12:CNS98. [PMID: 37140173 PMCID: PMC10410693 DOI: 10.2217/cns-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
Radiation-induced brain necrosis (RIBN) is a common adverse event from radiation therapy. We present a case of a 56-year-old man, diagnosed with non-small-cell lung cancer with brain metastases 2 years prior, for which he had received whole brain radiotherapy and brain stereotactic radiosurgery, who presented to the oncology unit with headache, dizziness and abnormal gait. MRI of the brain revealed radiological worsening of a cerebellar mass, including edema and mass effect. After a multidisciplinary tumor board meeting, the patient was diagnosed with RIBN and received 4 cycles of high-dose bevacizumab, with complete symptom resolution and significant radiological response. We report the successful use of a high-dose, shorter-duration treatment protocol of bevacizumab for RIBN.
Collapse
Affiliation(s)
- Emmanouil Panagiotou
- Third Department of Medicine, Oncology Unit, Sotiria General Hospital, National & Kapodistrian University of Athens, Athens, 11527, Greece
| | - Andriani Charpidou
- Third Department of Medicine, Oncology Unit, Sotiria General Hospital, National & Kapodistrian University of Athens, Athens, 11527, Greece
| | - Eleni Fyta
- Third Department of Medicine, Oncology Unit, Sotiria General Hospital, National & Kapodistrian University of Athens, Athens, 11527, Greece
| | - Vasiliki Nikolaidou
- Third Department of Medicine, Oncology Unit, Sotiria General Hospital, National & Kapodistrian University of Athens, Athens, 11527, Greece
| | - Lamprini Stournara
- Third Department of Medicine, Oncology Unit, Sotiria General Hospital, National & Kapodistrian University of Athens, Athens, 11527, Greece
| | - Alexandros Syrigos
- Third Department of Medicine, Oncology Unit, Sotiria General Hospital, National & Kapodistrian University of Athens, Athens, 11527, Greece
| | - Ioannis Gkiozos
- Third Department of Medicine, Oncology Unit, Sotiria General Hospital, National & Kapodistrian University of Athens, Athens, 11527, Greece
| |
Collapse
|
23
|
Ji X, Wang L, Tan Y, Shang Y, Huo R, Fang C, Li C, Zhang L. Radionecrosis mimicking pseudo‑progression in a patient with lung cancer and brain metastasis following the combination of anti‑PD‑1 therapy and stereotactic radiosurgery: A case report. Oncol Lett 2023; 26:361. [PMID: 37545620 PMCID: PMC10398635 DOI: 10.3892/ol.2023.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/22/2023] [Indexed: 08/08/2023] Open
Abstract
Brain metastases (BMs) usually develop in patients with non-small cell lung cancer. In addition to systemic therapy, radiation therapy and surgery, anti-programmed cell death-ligand 1 (PD-L1) therapy is another promising clinical anticancer treatment modality. However, the optimal timing and drug-drug interactions of anti-PD-L1 therapy with other combined treatments remain to be elucidated. Treatment with anti-PD-L1 therapy is associated with an increased risk of radionecrosis (RN) regardless of tumor histology. The present study described a case of RN in a patient with lung adenocarcinoma and with BM who received anti-PD-L1 therapy. Before anti-PD-L1 treatment, the patient received whole brain radiotherapy. During durvalumab treatment, the intracranial metastases regressed. The progression of intracranial lesions 9 months later prompted a second-line of therapy with PD-L1 inhibitor durvalumab and stereotactic radiotherapy (SRT). Despite stereotactic irradiation, the lesions progressed further, leading to surgical resection. On examination, RN was detected, but there was no evidence of metastatic lung cancer. The aim of the present study was to present the longitudinal change in magnetic resonance imaging in RN following STR and anti-PD-L1 combined therapy. The atypical image of RN is conditionally important for making an accurate preoperative diagnosis.
Collapse
Affiliation(s)
- Xiaolin Ji
- Department of Neurosurgery, Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei 071000, P.R. China
| | - Luxuan Wang
- Department of Neurological Examination, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yanli Tan
- Department of Pathology, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yanhong Shang
- Department of Oncology, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei 071000, P.R. China
| | - Ran Huo
- Department of Oncology, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei 071000, P.R. China
| | - Chuan Fang
- Department of Neurosurgery, Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei 071000, P.R. China
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei 071000, P.R. China
| | - Chunhui Li
- Department of Neurosurgery, Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei 071000, P.R. China
| | - Lijian Zhang
- Department of Neurosurgery, Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei 071000, P.R. China
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, Hebei 071000, P.R. China
| |
Collapse
|
24
|
Soffietti R, Pellerino A, Bruno F, Mauro A, Rudà R. Neurotoxicity from Old and New Radiation Treatments for Brain Tumors. Int J Mol Sci 2023; 24:10669. [PMID: 37445846 DOI: 10.3390/ijms241310669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Research regarding the mechanisms of brain damage following radiation treatments for brain tumors has increased over the years, thus providing a deeper insight into the pathobiological mechanisms and suggesting new approaches to minimize this damage. This review has discussed the different factors that are known to influence the risk of damage to the brain (mainly cognitive disturbances) from radiation. These include patient and tumor characteristics, the use of whole-brain radiotherapy versus particle therapy (protons, carbon ions), and stereotactic radiotherapy in various modalities. Additionally, biological mechanisms behind neuroprotection have been elucidated.
Collapse
Affiliation(s)
- Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, 10126 Turin, Italy
| | - Alessia Pellerino
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, 10126 Turin, Italy
| | - Francesco Bruno
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, 10126 Turin, Italy
| | - Alessandro Mauro
- Department of Neuroscience "Rita Levi Montalcini", University of Turin and City of Health and Science University Hospital, 10126 Turin, Italy
- I.R.C.C.S. Istituto Auxologico Italiano, Division of Neurology and Neuro-Rehabilitation, San Giuseppe Hospital, 28824 Piancavallo, Italy
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, 10126 Turin, Italy
| |
Collapse
|
25
|
Tijtgat J, Calliauw E, Dirven I, Vounckx M, Kamel R, Vanbinst AM, Everaert H, Seynaeve L, Van Den Berge D, Duerinck J, Neyns B. Low-Dose Bevacizumab for the Treatment of Focal Radiation Necrosis of the Brain (fRNB): A Single-Center Case Series. Cancers (Basel) 2023; 15:cancers15092560. [PMID: 37174026 PMCID: PMC10177060 DOI: 10.3390/cancers15092560] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Focal radiation necrosis of the brain (fRNB) is a late adverse event that can occur following the treatment of benign or malignant brain lesions with stereotactic radiation therapy (SRT) or stereotactic radiosurgery (SRS). Recent studies have shown that the incidence of fRNB is higher in cancer patients who received immune checkpoint inhibitors. The use of bevacizumab (BEV), a monoclonal antibody that targets the vascular endothelial growth factor (VEGF), is an effective treatment for fRNB when given at a dose of 5-7.5 mg/kg every two weeks. In this single-center retrospective case series, we investigated the effectiveness of a low-dose regimen of BEV (400 mg loading dose followed by 100 mg every 4 weeks) in patients diagnosed with fRNB. A total of 13 patients were included in the study; twelve of them experienced improvement in their existing clinical symptoms, and all patients had a decrease in the volume of edema on MRI scans. No clinically significant treatment-related adverse effects were observed. Our preliminary findings suggest that this fixed low-dose regimen of BEV can be a well-tolerated and cost-effective alternative treatment option for patients diagnosed with fRNB, and it is deserving of further investigation.
Collapse
Affiliation(s)
- Jens Tijtgat
- Department of Medical Oncology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Evan Calliauw
- Department of Medical Oncology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Iris Dirven
- Department of Medical Oncology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Manon Vounckx
- Department of Medical Oncology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Randa Kamel
- Department of Radiotherapy, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Anne Marie Vanbinst
- Department of Medical Imaging, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Hendrik Everaert
- Department of Nuclear Medicine, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Laura Seynaeve
- Department of Neurology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Dirk Van Den Berge
- Department of Radiotherapy, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Johnny Duerinck
- Department of Neurosurgery, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Bart Neyns
- Department of Medical Oncology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
26
|
Delery W, Savjani RR. Radiation Necrosis Versus Tumor Progression: The Path Toward an Optimal Discriminator. Radiol Imaging Cancer 2023; 5:e239004. [PMID: 36897223 PMCID: PMC10077090 DOI: 10.1148/rycan.239004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|