1
|
Sabir SM, Abbas SR, Shahida S, Khan MF. In-Vitro antioxidant, anti-lipid peroxidative activities and In-Silico study of Terminalia chebula bioactive compounds. CLINICAL PHYTOSCIENCE 2020. [DOI: 10.1186/s40816-020-00233-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Objective
To evaluate the antioxidant activities and to identify the bioactive compounds in hot water extracts of Terminalia chebula fruit.
Methods
The antioxidant activities were determined by DPPH assay, lipid peroxidation assay, iron chelation and total antioxidant assay. The phenolic composition was determined by HPLC-DAD. Human Rab8b Protein was used for the validation of compounds as anti-inflammation. String analysis for protein synergism was used.
Results
The analysis of Terminalia chebula Retzius (Combretaceae) phenolics showed anti-inflammatory effect. The specific phenolic compositions were determined by high performance liquid chromatography (HPLC) and resulted in the identification of rutin, catechin, caffeic acid, gallicacid, ellagic acid, epicatechin, and quercetin as antioxidant compounds. Human Rab8b protein is selected for protein docking and all compounds except rutin showed good results. ADMET properties were checked by using AdmetSar and all seven compounds showed validation for AMET properties. The synergisms of compounds were analyzed by STRING analysis and our ligands shows strong binding with human Rab8b proteins. The aqueous extract was capable of inhibiting the lipid peroxidation in egg yolk phospholipid homogenate. The extract scavenged the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) (IC50,71.5 ± 2.1 μg/ml). The extract displayed the high metal chelation activities and reducing abilities on the phosphomolybdenum assay.
Conclusions
It is concluded that extracts of T. chebula have good antioxidant and anti-inflammation activities and are rich in phenolics.
Collapse
|
2
|
Kumar TP, Antony S, Gireesh G, George N, Paulose CS. Curcumin modulates dopaminergic receptor, CREB and phospholipase C gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats. J Biomed Sci 2010; 17:43. [PMID: 20513244 PMCID: PMC2890658 DOI: 10.1186/1423-0127-17-43] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 05/31/2010] [Indexed: 12/18/2022] Open
Abstract
Curcumin, an active principle component in rhizome of Curcuma longa, has proved its merit for diabetes through its anti-oxidative and anti-inflammatory properties. This study aims at evaluating the effect of curcumin in modulating the altered dopaminergic receptors, CREB and phospholipase C in the cerebral cortex and cerebellum of STZ induced diabetic rats. Radioreceptor binding assays and gene expression was done in the cerebral cortex and cerebellum of male Wistar rats using specific ligands and probes. Total dopaminergic receptor binding parameter, Bmax showed an increase in cerebral cortex and decrease in the cerebellum of diabetic rats. Gene expression studies using real time PCR showed an increased expression of dopamine D1 and D2 receptor in the cerebral cortex of diabetic rats. In cerebellum dopamine D1 receptor was down regulated and D2 receptor showed an up regulation. Transcription factor CREB and phospholipase C showed a significant down regulation in cerebral cortex and cerebellum of diabetic rats. We report that curcumin supplementation reduces diabetes induced alteration of dopamine D1, D2 receptors, transcription factor CREB and phospholipase C to near control. Our results indicate that curcumin has a potential to regulate diabetes induced malfunctions of dopaminergic signalling, CREB and Phospholipase C expression in cerebral cortex and cerebellum and thereby improving the cognitive and emotional functions associated with these regions. Furthermore, in line with these studies an interaction between curcumin and dopaminergic receptors, CREB and phospholipase C is suggested, which attenuates the cortical and cerebellar dysfunction in diabetes. These results suggest that curcumin holds promise as an agent to prevent or treat CNS complications in diabetes.
Collapse
Affiliation(s)
- T Peeyush Kumar
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Cochin University of Science and Technology, Cochin-682022, Kerala, India
| | | | | | | | | |
Collapse
|
3
|
Cholinergic, dopaminergic and insulin receptors gene expression in the cerebellum of streptozotocin-induced diabetic rats: Functional regulation with Vitamin D3 supplementation. Pharmacol Biochem Behav 2010; 95:216-22. [DOI: 10.1016/j.pbb.2010.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/09/2010] [Accepted: 01/18/2010] [Indexed: 01/08/2023]
|
4
|
Enhanced NMDAR1, NMDA2B and mGlu5 receptors gene expression in the cerebellum of insulin induced hypoglycaemic and streptozotocin induced diabetic rats. Eur J Pharmacol 2010; 630:61-8. [DOI: 10.1016/j.ejphar.2009.12.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 11/29/2009] [Accepted: 12/15/2009] [Indexed: 11/15/2022]
|
5
|
Peeyush KT, Gireesh G, Jobin M, Paulose CS. Neuroprotective role of curcumin in the cerebellum of streptozotocin-induced diabetic rats. Life Sci 2009; 85:704-10. [PMID: 19804785 DOI: 10.1016/j.lfs.2009.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
Abstract
AIMS Chronic hyperglycaemia in diabetes involves a direct neuronal damage caused by intracellular glucose which leads to altered neurotransmitter functions and reduced motor activity. The present study investigated the effect of curcumin in the functional regulation of muscarinic and alpha7 nicotinic acetylcholine receptors, insulin receptors, acetylcholine esterase and Glut3 in the cerebellum of streptozotocin (STZ)-induced diabetic rats. MAIN METHODS All studies were done in the cerebellum of male Wistar rats. Radioreceptor binding assays were done for total muscarinic, M(1) and M(3) receptors using specific ligands, and the gene expression was also studied using specific probes. KEY FINDINGS Our results showed an increased gene expression of acetylcholine esterase, Glut3, muscarinic M1, M3, alpha7 nicotinic acetylcholine and insulin receptors in the cerebellum of diabetic rats in comparison to control. Scatchard analysis of total muscarinic, M1 and M3 receptors showed an increased binding parameter, B(max) in diabetic rats compared to control. Curcumin and insulin inhibited diabetes-induced elevation in the gene expression of acetylcholine esterase, Glut3, insulin and cholinergic receptors in the cerebellum of diabetic rats. SIGNIFICANCE Our studies suggest that curcumin plays a vital role in regulating the activity of cholinergic and insulin receptors and mechanism of glucose transportation through Glut3, which results in normalizing the diabetes-mediated cerebellar disorders. Thus, curcumin has a significant role in a therapeutic application for the prevention or progression of diabetic complications in the cerebellum.
Collapse
Affiliation(s)
- Kumar T Peeyush
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Cochin University of Science and Technology, Cochin - 682 022, Kerala, India
| | | | | | | |
Collapse
|
6
|
Gireesh G, Kumar TP, Mathew J, Paulose CS. Enhanced muscarinic M1 receptor gene expression in the corpus striatum of streptozotocin-induced diabetic rats. J Biomed Sci 2009; 16:38. [PMID: 19344500 PMCID: PMC2682793 DOI: 10.1186/1423-0127-16-38] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 04/03/2009] [Indexed: 12/05/2022] Open
Abstract
Acetylcholine (ACh), the first neurotransmitter to be identified, regulate the activities of central and peripheral functions through interactions with muscarinic receptors. Changes in muscarinic acetylcholine receptor (mAChR) have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS). Previous reports from our laboratory on streptozotocin (STZ) induced diabetic rats showed down regulation of muscarinic M1 receptors in the brainstem, hypothalamus, cerebral cortex and pancreatic islets. In this study, we have investigated the changes of acetylcholine esterase (AChE) enzyme activity, total muscarinic and muscarinic M1 receptor binding and gene expression in the corpus striatum of STZ--diabetic rats and the insulin treated diabetic rats. The striatum, a neuronal nucleus intimately involved in motor behaviour, is one of the brain regions with the highest acetylcholine content. ACh has complex and clinically important actions in the striatum that are mediated predominantly by muscarinic receptors. We observed that insulin treatment brought back the decreased maximal velocity (Vmax) of acetylcholine esterase in the corpus striatum during diabetes to near control state. In diabetic rats there was a decrease in maximal number (Bmax) and affinity (Kd) of total muscarinic receptors whereas muscarinic M1 receptors were increased with decrease in affinity in diabetic rats. We observed that, in all cases, the binding parameters were reversed to near control by the treatment of diabetic rats with insulin. Real-time PCR experiment confirmed the increase in muscarinic M1 receptor gene expression and a similar reversal with insulin treatment. These results suggest the diabetes-induced changes of the cholinergic activity in the corpus striatum and the regulatory role of insulin on binding parameters and gene expression of total and muscarinic M1 receptors.
Collapse
Affiliation(s)
- G Gireesh
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Cochin University of Science and Technology, Cochin- 682 022, Kerala, India
| | - T Peeyush Kumar
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Cochin University of Science and Technology, Cochin- 682 022, Kerala, India
| | - Jobin Mathew
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Cochin University of Science and Technology, Cochin- 682 022, Kerala, India
| | - CS Paulose
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Cochin University of Science and Technology, Cochin- 682 022, Kerala, India
| |
Collapse
|
7
|
Joseph A, Antony S, Paulose C. Increased glutamate receptor gene expression in the cerebral cortex of insulin induced hypoglycemic and streptozotocin-induced diabetic rats. Neuroscience 2008; 156:298-304. [DOI: 10.1016/j.neuroscience.2008.07.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/03/2008] [Accepted: 07/08/2008] [Indexed: 11/24/2022]
|
8
|
Gamma-aminobutyric acid A receptor functional decrease in the hypothalamus during pancreatic regeneration in rats. Pancreas 2008; 37:e20-30. [PMID: 18580435 DOI: 10.1097/mpa.0b013e3181661af4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE In the present study, we investigated the alteration of gamma-aminobutyric acid A (GABAA) receptors in the hypothalamus of rats during pancreatic regeneration. METHODS Three groups of rats were used for the study: sham operated, 72 hours partially pancreatectomized, and 7 days partially pancreatectomized. The GABA receptor assay was performed by using the [H]GABA as ligand to the Triton X-100-treated membranes, and displacement with unlabeled GABA and [H]bicuculline binding to the GABAA receptors was assayed in Triton X-100-treated synaptic membranes and displacement with unlabeled bicuculline. RESULTS The GABA content in the brain regions and pancreas of the sham and experimental rat groups was quantified by displacement method. In the hypothalamus, the high-affinity GABAA receptor binding showed a significant decrease in maximal binding (P < 0.01) and equilibrium dissociation constant (P < 0.05) in 72 hours and 7 days partially pancreatectomized rats. The content of GABA has significantly decreased in the hypothalamus during the regeneration of pancreas. CONCLUSIONS This effect of GABAA receptors in hypothalamus suggests a regulatory role during active regeneration of pancreas that will have significance in insulin secretion.
Collapse
|
9
|
Gireesh G, Reas SK, Jobin M, Paulose CS. Decreased muscarinic M1 receptor gene expression in the cerebral cortex of streptozotocin-induced diabetic rats and Aegle marmelose leaf extract's therapeutic function. JOURNAL OF ETHNOPHARMACOLOGY 2008; 116:296-304. [PMID: 18201849 DOI: 10.1016/j.jep.2007.11.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 10/24/2007] [Accepted: 11/20/2007] [Indexed: 05/25/2023]
Abstract
AIM In the present study we have investigated the changes in the total muscarinic and muscarinic M1 receptor ([(3)H]QNB) binding and gene expression in the cerebral cortex of streptozotocin (STZ) induced diabetic, insulin and aqueous extract of Aegle marmelose leaf treated diabetic rats. MATERIALS AND METHODS Diabetes was induced in rats by intrafemoral injection of streptozotocin. Aegle marmelose leaves was given orally to one group of rats at a dosage of 1g/kg body weight per day for fourteen days. Blood glucose and plasma insulin level were measured. Muscarinic and Muscarinic M1 receptor binding studies were done in the cerebral cortex of experimental rats. Muscarinic M1 receptor gene expression was studied using real-time PCR. RESULTS Scatchard analysis for total muscarinic receptors in cerebral cortex showed that the B(max) was decreased significantly (p<0.001) in diabetic rats with a significant decrease (p<0.01) in the K(d) when compared to control group. Binding analysis of Muscarinic M1 receptors showed that B(max) was decreased significantly (p<0.001) in diabetic group when compared to control group. The K(d) also decreased significantly (p<0.01) when compared to control group. The binding parameters were reversed to near control by the treatment of diabetic rats with Aegle marmelose. Real-Time PCR analysis also showed a similar change in the mRNA levels of muscarinic M1 receptors. CONCLUSION The results showed that there is decrease in total muscarinic and muscarinic M1 receptors during diabetes which is up regulated by insulin and Aegle marmelose leaf extract treatment. This has clinical significance in therapeutic management of diabetes.
Collapse
Affiliation(s)
- Gangadharan Gireesh
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Cochin University of Science and Technology, Cochin 682 022, Kerala, India
| | | | | | | |
Collapse
|
10
|
Gireesh G, Kaimal SB, Kumar TP, Paulose C. Decreased muscarinic M1 receptor gene expression in the hypothalamus, brainstem, and pancreatic islets of streptozotocin-induced diabetic rats. J Neurosci Res 2008; 86:947-53. [DOI: 10.1002/jnr.21544] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Sulaiman P, Joseph B, Kaimal SB, Paulose CS. Decreased Hepatic 5-HT1A Receptors During Liver Regeneration and Neoplasia in Rats. Neurochem Res 2007; 33:444-9. [PMID: 17721726 DOI: 10.1007/s11064-007-9452-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 07/20/2007] [Indexed: 11/25/2022]
Abstract
In the present study we investigated the role of 5-hydroxytryptamine (5-HT) and 5-HT1A receptor during liver regeneration after partial hepatectomy (PH) and N-nitrosodiethylamine (NDEA) induced hepatocellular carcinoma in male Wistar rats. 5-HT content was significantly increased during liver regeneration after PH and NDEA induced hepatocellular carcinoma. Scatchard analysis using 8-OH-DPAT, a 5-HT1A specific agonist showed a decreased receptor during liver regeneration after PH and NDEA induced hepatocellular carcinoma. 5-HT when added alone to primary hepatocyte culture did not increase DNA synthesis but was able to increase the EGF mediated DNA synthesis and inhibit the TGF beta 1 mediated DNA synthesis suppression in vitro. This confirmed the co-mitogenic activity of 5-HT. 8-OH-DPAT at a concentration of 10(-4) M inhibited the basal and EGF-mediated DNA synthesis in primary hepatocyte cultures. It also suppressed the TGF beta 1-mediated DNA synthesis suppression. This clearly showed that activated 5-HT1A receptor inhibited hepatocyte DNA synthesis. Our results suggest that decreased hepatic 5-HT1A receptor function during hepatocyte regeneration and neoplasia has clinical significance in the control of cell proliferation.
Collapse
Affiliation(s)
- Pyroja Sulaiman
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala 682 022, India
| | | | | | | |
Collapse
|
12
|
Shankar PNE, Joseph A, Paulose CS. Decreased [3H] YM-09151-2 binding to dopamine D2 receptors in the hypothalamus, brainstem and pancreatic islets of streptozotocin-induced diabetic rats. Eur J Pharmacol 2006; 557:99-105. [PMID: 17174299 DOI: 10.1016/j.ejphar.2006.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 11/06/2006] [Accepted: 11/09/2006] [Indexed: 11/22/2022]
Abstract
In the present study dopamine was measured in the hypothalamus, brainstem, pancreatic islets and plasma, using HPLC. Dopamine D2 receptor changes in the hypothalamus, brainstem and pancreatic islets were studied using [3H] YM-09151-2 in streptozotocin-induced diabetic and insulin-treated diabetic rats. There was a significant decrease in dopamine content in the hypothalamus (P<0.001), brainstem (P<0.001), pancreatic islets (P<0.001) and plasma (P<0.001) in diabetic rats when compared to control. Scatchard analysis of [3H] YM-09151-2 in the hypothalamus of diabetic rats showed a significant decrease in Bmax (P<0.001) and Kd, showing an increased affinity of D2 receptors when compared to control. Insulin treatment did not completely reverse the changes that occurred during diabetes. There was a significant decrease in Bmax (P<0.01) with decreased affinity in the brainstem of diabetic rats. The islet membrane preparation of diabetic rats showed a significant decrease (P<0.001) in the binding of [3H] YM-09151-2 with decreased Kd (P<0.001) compared to control. The increase in affinity of D2 receptors in hypothalamus and pancreatic islets and the decreased affinity in brainstem were confirmed by competition analysis. Thus our results suggest that the decreased dopamine D2 receptor function in the hypothalamus, brainstem and pancreas affects insulin secretion in diabetic rats, which has immense clinical relevance to the management of diabetes.
Collapse
Affiliation(s)
- P N Eswar Shankar
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin-682 022, Kerala, India
| | | | | |
Collapse
|
13
|
Ani Das V, Savitha B, Paulose CS. Decreased alpha1-adrenergic receptor binding in the cerebral cortex and brain stem during pancreatic regeneration in rats. Neurochem Res 2006; 31:727-34. [PMID: 16791475 DOI: 10.1007/s11064-006-9073-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to investigate the role of brain alpha1-adrenergic receptor binding in the rat model of pancreatic regeneration using 60-70% pancreatectomy. The alpha1-adrenergic receptors kinetics was studied in the cerebral cortex and brain stem of sham operated, 72 h pancreatectomised and 7 days pancreatectomised rats. Scatchard analysis with [3H]prazosin in cerebral cortex and brain stem showed a significant decrease (P < 0.01), (P < 0.05) in maximal binding (Bmax) with a significant decrease (P < 0.001), (P < 0.01) in the Kd in 72 h pancreatectomised rats compared with sham respectively. Competition analysis in cerebral cortex and brain stem showed a shift in affinity during pancreatic regeneration. The sympathetic activity was decreased as indicated by the significantly decreased norepinephrine level in the plasma (P < 0.001), cerebral cortex (P < 0.01) and brain stem (P < 0.001) of 72 h pancreatectomised rats compared to sham. Thus, from our results it is suggested that the central alpha1-adrenergic receptors have a functional role in the pancreatic regeneration mediated through the sympathetic pathway.
Collapse
Affiliation(s)
- V Ani Das
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682 022 Kerala, India
| | | | | |
Collapse
|
14
|
Das VA, Chathu F, Paulose CS. Decreased alpha2-adrenergic receptor in the brain stem and pancreatic islets during pancreatic regeneration in weanling rats. Life Sci 2006; 79:1507-13. [PMID: 16737719 DOI: 10.1016/j.lfs.2006.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 04/17/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
Sympathetic stimulation inhibits insulin secretion. alpha(2)-Adrenergic receptor is known to have a regulatory role in the sympathetic function. We investigated the changes in the alpha(2)-adrenergic receptors in the brain stem and pancreatic islets using [(3)H]Yohimbine during pancreatic regeneration in weanling rats. Brain stem and pancreatic islets of experimental rats showed a significant decrease (p<0.001) in norepinephrine (NE) content at 72 h after partial pancreatectomy. The epinephrine (EPI) content showed a significant decrease (p<0.001) in pancreatic islets while it was not detected in brain stem at 72 h after partial pancreatectomy. Scatchard analysis of [(3)H]Yohimbine showed a significant decrease (p<0.05) in B(max) and K(d) at 72 h after partial pancreatectomy in the brain stem. In the pancreatic islets, Scatchard analysis of [(3)H]Yohimbine showed a significant decrease (p<0.001) in B(max) and K(d) (p<0.05) at 72 h after partial pancreatectomy. The binding parameters reversed to near sham by 7 days after pancreatectomy both in brain stem and pancreatic islets. This shows that pancreatic insulin secretion is influenced by central nervous system inputs from the brain stem. In vitro studies with yohimbine showed that the alpha(2)-adrenergic receptors are inhibitory to islet DNA synthesis and insulin secretion. Thus our results suggest that decreased alpha(2)-adrenergic receptors during pancreatic regeneration functionally regulate insulin secretion and pancreatic beta-cell proliferation in weanling rats.
Collapse
Affiliation(s)
- V Ani Das
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin-682 022, Kerala, India
| | | | | |
Collapse
|
15
|
Renuka TR, Robinson R, Paulose CS. Increased insulin secretion by muscarinic M1 and M3 receptor function from rat pancreatic islets in vitro. Neurochem Res 2006; 31:313-20. [PMID: 16733808 DOI: 10.1007/s11064-005-9022-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2005] [Indexed: 10/24/2022]
Abstract
Parasympathetic system plays an important role in insulin secretion from the pancreas. Cholinergic effect on pancreatic beta cells exerts primarily through muscarinic receptors. In the present study we investigated the specific role of muscarinic M1 and M3 receptors in glucose induced insulin secretion from rat pancreatic islets in vitro. The involvement of muscarinic receptors was studied using the antagonist atropine. The role of muscarinic M1 and M3 receptor subtypes was studied using subtype specific antagonists. Acetylcholine agonist, carbachol, stimulated glucose induced insulin secretion at low concentrations (10(-8)-10(-5) M) with a maximum stimulation at 10(-7) M concentration. Carbachol-stimulated insulin secretion was inhibited by atropine confirming the role of muscarinic receptors in cholinergic induced insulin secretion. Both M1 and M3 receptor antagonists blocked insulin secretion induced by carbachol. The results show that M3 receptors are functionally more prominent at 20 mM glucose concentration when compared to M1 receptors. Our studies suggest that muscarinic M1 and M3 receptors function differentially regulate glucose induced insulin secretion, which has clinical significance in glucose homeostasis.
Collapse
Affiliation(s)
- T R Renuka
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, 682 022, Cochin , Kerala, India
| | | | | |
Collapse
|
16
|
Das VA, Robinson R, Paulose CS. Enhanced β-adrenergic receptors in the brain and pancreas during pancreatic regeneration in weanling rats. Mol Cell Biochem 2006; 289:11-9. [PMID: 16583134 DOI: 10.1007/s11010-006-9142-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 01/23/2006] [Indexed: 10/24/2022]
Abstract
Adrenergic stimulation has an important role in the pancreatic beta-cell proliferation and insulin secretion. In the present study, we have investigated how sympathetic system regulates the pancreatic regeneration by analyzing Epinephrine (EPI), Norepinephrine (NE) and beta-adrenergic receptor changes in the brain as well as in the pancreas. EPI and NE showed a significant decrease in the brain regions, pancreas and plasma at 72 hrs after partial pancreatectomy. We observed an increase in the circulating insulin levels at 72 hrs. Scatchard analysis using [(3)H] propranolol showed a significant increase in the number of both the low affinity and high affinity beta-adrenergic receptors in cerebral cortex and hypothalamus of partially pancreatectomised rats during peak DNA synthesis. The affinity of the receptors decreased significantly in the low and high affinity receptors of cerebral cortex and the high affinity hypothalamic receptors. In the brain stem, low affinity receptors were increased significantly during regeneration whereas there was no change in the high affinity receptors. The pancreatic beta-adrenergic receptors were also up regulated at 72 hrs after partial pancreatectomy. In vitro studies showed that beta-adrenergic receptors are positive regulators of islet cell proliferation and insulin secretion. Thus our results suggest that the beta-adrenergic receptors are functionally enhanced during pancreatic regeneration, which in turn increases pancreatic beta-cell proliferation and insulin secretion in weanling rats.
Collapse
Affiliation(s)
- V Ani Das
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022 Kerala, India
| | | | | |
Collapse
|
17
|
Mohanan VV, Khan R, Paulose CS. Hypothalamic 5-HT functional regulation through 5-HT1A and 5-HT2C receptors during pancreatic regeneration. Life Sci 2005; 78:1603-9. [PMID: 16253282 DOI: 10.1016/j.lfs.2005.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2005] [Accepted: 07/26/2005] [Indexed: 01/21/2023]
Abstract
5-HT receptors are predominantly located in the brain and are involved in pancreatic function and cell proliferation through sympathetic nervous system. The objective of this study was to investigate the role of hypothalamic 5-HT, 5-HT1A and 5-HT2C receptor binding and gene expression in rat model of pancreatic regeneration using 60% pancreatectomy. The pancreatic regeneration was evaluated by 5-HT content, 5-HT1A and 5-HT2C receptor gene expression in the hypothalamus of sham operated, 72 h and 7 days pancreatectomised rats. 5-HT content was quantified by HPLC. 5-HT1A receptor assay was done by using specific agonist [3H]8-OH DPAT. 5-HT2C receptor assay was done by using specific antagonist [3H]mesulergine. The expression of 5-HT1A and 5-HT2C receptor gene was analyzed by RT-PCR. 5-HT content was higher in the hypothalamus of 72 h pancreatectomised rats. 5-HT1A and 5-HT2C receptors were down-regulated in the hypothalamus. RT-PCR analysis revealed decreased 5-HT1A and 5-HT2C receptor mRNA expression. The 5-HT1A and 5-HT2C receptors gene expression in the 7 days pancreatectomised rats reversed to near sham level. This study is the first to identify 5-HT1A and 5-HT2C receptor gene expression in the hypothalamus during pancreatic regeneration in rats. Our results suggest the hypothalamic serotonergic receptor functional regulation during pancreatic regeneration.
Collapse
Affiliation(s)
- Valiya Veettil Mohanan
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin-682 022, Kerala, India
| | | | | |
Collapse
|
18
|
Mohanan VV, Chathu F, Paulose CS. Decreased 5-HT2C receptor binding in the cerebral cortex and brain stem during pancreatic regeneration in rats. Mol Cell Biochem 2005; 272:165-70. [PMID: 16010984 DOI: 10.1007/s11010-005-7030-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to investigate the role of central 5-HT2C receptor binding in rat model of pancreatic regeneration using 60-70% pancreatectomy. The 5-HT and 5-HT2C receptor kinetics were studied in cerebral cortex and brain stem of sham operated, 72 h pancreatectomised and 7 days pancreatectomised rats. Scatchard analysis with [3H] mesulergine in cerebral cortex showed a significant decrease (p < 0.05) in maximal binding (Bmax) without any change in Kd in 72 h pancreatectomised rats compared with sham. The decreased Bmax reversed to sham level by 7 days after pancreatectomy. In brain stem, Scatchard analysis showed a significant decrease (p < 0.01) in Bmax with a significant increase (p < 0.01) in Kd. Competition analysis in brain stem showed a shift in affinity towards a low affinity. These parameters were reversed to sham level by 7 days after pancreatectomy. Thus the results suggest that 5-HT through the 5-HT2C receptor in the brain has a functional regulatory role in the pancreatic regeneration.
Collapse
Affiliation(s)
- Valiya Veettil Mohanan
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, India
| | | | | |
Collapse
|
19
|
Renuka TR, Savitha B, Paulose CS. Muscarinic M1 and M3 receptor binding alterations in pancreas during pancreatic regeneration of young rats. Endocr Res 2005; 31:259-70. [PMID: 16433246 DOI: 10.1080/07435800500406163] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The importance of muscarinic receptors in proliferation of different cell types and in insulin secretion from pancreatic beta cells has been extensively studied. However, the role of pancreatic muscarinic receptors during pancreatic regeneration has not yet been studied. For the first time, the functional status of the muscarinic M1 and M3 receptors in regeneration of the pancreas is investigated here. It is observed that the number and affinity of high-affinity muscarinic M3 receptors increased at the time of regeneration. The low-affinity M3 receptors also showed a similar trend. In the case of muscarinic M1 receptors, the receptor number increased with a decrease in affinity. We also observed an increase in the circulating insulin levels at the time of active regeneration. The in vitro studies confirmed that muscarinic receptors are stimulatory to insulin secretion. Our results suggest that the increased muscarinic M1 and M3 receptor subtypes stimulate insulin secretion and islet cell proliferation during the regeneration of pancreas.
Collapse
Affiliation(s)
- T R Renuka
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, 682 022, Kerala, India
| | | | | |
Collapse
|