1
|
Carvalho WA, Bahia CP, Teixeira JC, Gomes-Leal W, Pereira A. Interlimb Dynamic after Unilateral Focal Lesion of the Cervical Dorsal Corticospinal Tract with Endothelin-1. Front Neuroanat 2017; 11:89. [PMID: 29081738 PMCID: PMC5645515 DOI: 10.3389/fnana.2017.00089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/21/2017] [Indexed: 11/23/2022] Open
Abstract
Handedness is one of the most recognized lateralized behavior in humans. Usually, it is associated with manual superiority regarding performance proficiency. For instance, more than 90% of the human population is considered more skilled with the right hand, which is controlled by the left hemisphere, than with the left. However, during the performance of bimanual tasks, the two hands usually assume asymmetric roles, with one hand acting on objects while the other provides support, stabilizing the object. Traditionally, the role of the two hands is viewed as fixed. However, several studies support an alternate view with flexible assignments for the two hands depending on the task. The supporting role of the hand depends on a closed loop pathway based on proprioceptive inputs from the periphery. The circuit’s efferent arm courses through the dorsal corticospinal tract (dCST) in rodents and terminate on spinal cord interneurons which modulate the excitability of motoneurons in the ventral horn. In the present work, we developed an experimental model of unilateral lesion targeting the cervical dCST with microinjections of the vasoconstrictor endothelin-1 (ET-1) to evaluate the degree of flexibility of forelimb assignment during a food manipulation task. Our results show that just 3 days after unilateral corticospinal tract (CST) injury in the cervical region, rats display severe motor impairment of the ipsilateral forepaw together with a remarkable reversal of motor assignment between the forelimbs.
Collapse
Affiliation(s)
- Walther A Carvalho
- Pará State University Center, Belém, Brazil.,Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Carlomagno P Bahia
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Jéssica C Teixeira
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Walace Gomes-Leal
- Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Antonio Pereira
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará (UFPA), Belém, Brazil.,Institute of Technology, Federal University of Pará (UFPA), Belém, Brazil
| |
Collapse
|
2
|
Vascular Pathology as a Potential Therapeutic Target in SCI. Transl Stroke Res 2011; 2:556-74. [PMID: 24323683 DOI: 10.1007/s12975-011-0128-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
Abstract
Acute traumatic spinal cord injury (SCI) is characterized by a progressive secondary degeneration which exacerbates the loss of penumbral tissue and neurological function. Here, we first provide an overview of the known pathophysiological mechanisms involving injured microvasculature and molecular regulators that contribute to the loss and dysfunction of existing and new blood vessels. We also highlight the differences between traumatic and ischemic injuries which may yield clues as to the more devastating nature of traumatic injuries, possibly involving toxicity associated with hemorrhage. We also discuss known species differences with implications for choosing models, their relevance and utility to translate new treatments towards the clinic. Throughout this review, we highlight the potential opportunities and proof-of-concept experimental studies for targeting therapies to endothelial cell-specific responses. Lastly, we comment on the need for vascular mechanisms to be included in drug development and non-invasive diagnostics such as serum and cerebrospinal fluid biomarkers and imaging of spinal cord pathology.
Collapse
|
3
|
Fassbender JM, Myers SA, Whittemore SR. Activating Notch signaling post-SCI modulates angiogenesis in penumbral vascular beds but does not improve hindlimb locomotor recovery. Exp Neurol 2011; 227:302-13. [PMID: 21156172 PMCID: PMC3035984 DOI: 10.1016/j.expneurol.2010.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 11/02/2010] [Accepted: 12/03/2010] [Indexed: 01/23/2023]
Abstract
Manipulation of Notch signaling has led to significant tumor shrinkage as well as recovery from several traumatic and ischemic injury models indicating its potential clinical application. We have tested both an agonist and antagonist of Notch signaling to study the effects of Notch-mediated angiogenesis on spinal cord vascular pathology following traumatic injury. Initial neonatal retinal vascularization assays showed their respective bioactivities in vivo. Mice were treated with either the antagonist Jagged1-Fc chimera (Jag1-Fc) or agonist Notch1 antibody (N1 Ab) immediately following a mid-thoracic contusive injury through an initial jugular bolus and tail vein injections for 3 days post-injury. After 14 days, activating Notch signaling decreased the overall vascular density within the penumbral gray matter compared to controls while maintaining the density of perfused vessels. Inhibiting Notch signaling did not change the density or perfusion of microvessels within the lesion penumbra. Furthermore, neither activation nor inhibition of Notch signaling significantly altered inflammation, hypoxia, and lesion volume in the epicenter and penumbra. Importantly, neither treatment changed locomotor function. In postnatal retinal vascular assays, administration of Jag1-Fc and N1 Ab increased and decreased both tip cell numbers and branch points in each treatment, respectively. However, these agents did not modulate primary CNS EC proliferation in vitro in spite of sufficient Notch ligand expression. We conclude that Notch signaling, while an important part of developmental angiogenesis, may play a lesser role in mediating vascular recovery following traumatic injury to the CNS.
Collapse
Affiliation(s)
- Janelle M. Fassbender
- M.D./Ph.D. Program, University of Louisville, School of Medicine
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine
- Department of Anatomical Sciences and Neurobiology University of Louisville, School of Medicine
| | - Scott A. Myers
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine
- Department of Neurological Surgery, University of Louisville, School of Medicine
| | - Scott R. Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine
- Department of Anatomical Sciences and Neurobiology University of Louisville, School of Medicine
- Department of Neurological Surgery, University of Louisville, School of Medicine
| |
Collapse
|
4
|
Benton RL, Maddie MA, Dincman TA, Hagg T, Whittemore SR. Transcriptional activation of endothelial cells by TGFβ coincides with acute microvascular plasticity following focal spinal cord ischaemia/reperfusion injury. ASN Neuro 2009; 1:e00015. [PMID: 19663807 PMCID: PMC2810814 DOI: 10.1042/an20090008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 08/07/2009] [Accepted: 08/10/2009] [Indexed: 11/17/2022] Open
Abstract
Microvascular dysfunction, loss of vascular support, ischaemia and sub-acute vascular instability in surviving blood vessels contribute to secondary injury following SCI (spinal cord injury). Neither the precise temporal profile of the cellular dynamics of spinal microvasculature nor the potential molecular effectors regulating this plasticity are well understood. TGFβ (transforming growth factor β) isoforms have been shown to be rapidly increased in response to SCI and CNS (central nervous system) ischaemia, but no data exist regarding their contribution to microvascular dysfunction following SCI. To examine these issues, in the present study we used a model of focal spinal cord ischaemia/reperfusion SCI to examine the cellular response(s) of affected microvessels from 30 min to 14 days post-ischaemia. Spinal endothelial cells were isolated from affected tissue and subjected to focused microarray analysis of TGFβ-responsive/related mRNAs 6 and 24 h post-SCI. Immunohistochemical analyses of histopathology show neuronal disruption/loss and astroglial regression from spinal microvessels by 3 h post-ischaemia, with complete dissolution of functional endfeet (loss of aquaporin-4) by 12 h post-ischaemia. Coincident with this microvascular plasticity, results from microarray analyses show 9 out of 22 TGFβ-responsive mRNAs significantly up-regulated by 6 h post-ischaemia. Of these, serpine 1/PAI-1 (plasminogen-activator inhibitor 1) demonstrated the greatest increase (>40-fold). Furthermore, uPA (urokinase-type plasminogen activator), another member of the PAS (plasminogen activator system), was also significantly increased (>7.5-fold). These results, along with other select up-regulated mRNAs, were confirmed biochemically or immunohistochemically. Taken together, these results implicate TGFβ as a potential molecular effector of the anatomical and functional plasticity of microvessels following SCI.
Collapse
Key Words
- endothelin
- insulin-like growth factor binding protein 3 (igfbp-3)
- interleukin-6 (il-6)
- matrix metalloproteinase 9 (mmp-9)
- plasminogen-activator inhibitor 1 (pai-1)
- urokinase-type plasminogen activator (upa)
- aqp-4, aquaporin-4
- bmp, bone morphogenetic protein
- bscb, blood-spinal cord-barrier
- cns, central nervous system
- ec, endothelial cell
- et, endothelin
- gfap, glial fibrillary acidic protein
- huvec, human umbilical vein endothelial cell
- igf, insulin-like growth factor
- igfbp-3, igf-binding protein 3
- il, interleukin
- lea, lycopersicon esculentum agglutinin
- llc, large latent complex
- map2, microtubule-associated protein 2
- mcao, middle cerebral artery occlusion
- mmp, matrix metalloproteinase
- nvu, neurovascular unit
- pa, plasminogen activator
- pai, pa inhibitor
- pas, pa system
- sci, spinal cord injury
- smvec, spinal microvascular ec
- tbs, tris-buffered saline
- tgfβ, transforming growth factor β
- tpa, tissue-type pa
- tsp-1, thrombospondin-1
- upa, urokinase-type pa
- upar, upa receptor
- vegf, vascular endothelial growth factor
Collapse
Affiliation(s)
- Richard L Benton
- daggerKentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|
5
|
FURMANSKI ORION, GAJAVELLI SHYAM, LEE JEUNGWOON, COLLADO MARIAE, JERGOVA STANISLAVA, SAGEN JACQUELINE. Combined extrinsic and intrinsic manipulations exert complementary neuronal enrichment in embryonic rat neural precursor cultures: an in vitro and in vivo analysis. J Comp Neurol 2009; 515:56-71. [PMID: 19399893 PMCID: PMC2745258 DOI: 10.1002/cne.22027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Numerous central nervous system (CNS) disorders share a common pathology in dysregulation of gamma-aminobutyric acid (GABA) inhibitory signaling. Transplantation of GABA-releasing cells at the site of disinhibition holds promise for alleviating disease symptoms with fewer side effects than traditional drug therapies. We manipulated fibroblast growth factor (FGF)-2 deprivation and mammalian achaete-scute homolog (MASH)1 transcription factor levels in an attempt to amplify the default GABAergic neuronal fate in cultured rat embryonic neural precursor cells (NPCs) for use in transplantation studies. Naïve and MASH1 lentivirus-transduced NPCs were maintained in FGF-2 or deprived of FGF-2 for varying lengths of time. Immunostaining and quantitative analysis showed that GABA- and beta-III-tubulin-immunoreactive cells generally decreased through successive passages, suggesting a loss of neurogenic potential in rat neurospheres expanded in vitro. However, FGF-2 deprivation resulted in a small, but significantly increased population of GABAergic cells derived from passaged neurospheres. In contrast to naïve and GFP lentivirus-transduced clones, MASH1 transduction resulted in increased bromodeoxyuridine (BrdU) incorporation and clonal colony size. Western blotting showed that MASH1 overexpression and FGF-2 deprivation additively increased beta-III-tubulin and decreased cyclic nucleotide phosphodiesterase (CNPase) expression, whereas FGF-2 deprivation alone attenuated glial fibrillary acidic protein (GFAP) expression. These results suggest that low FGF-2 signaling and MASH1 activity can operate in concert to enrich NPC cultures for a GABA neuronal phenotype. When transplanted into the adult rat spinal cord, this combination also yielded GABAergic neurons. These findings indicate that, even for successful utilization of the default GABAergic neuronal precursor fate, a combination of both extrinsic and intrinsic manipulations will likely be necessary to realize the full potential of NSC grafts in restoring function.
Collapse
Affiliation(s)
- ORION FURMANSKI
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL, 33136
- Neuroscience Program, University of Miami, Miller School of Medicine, Miami, FL, 33136
| | - SHYAM GAJAVELLI
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL, 33136
| | - JEUNG WOON LEE
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL, 33136
- Department of Biology, William Paterson University, Wayne, NJ, 07470
| | - MARIA. E. COLLADO
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL, 33136
| | - STANISLAVA JERGOVA
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL, 33136
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
| | - JACQUELINE SAGEN
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL, 33136
- Neuroscience Program, University of Miami, Miller School of Medicine, Miami, FL, 33136
| |
Collapse
|
6
|
|
7
|
Onifer SM, Rabchevsky AG, Scheff SW. Rat Models of Traumatic Spinal Cord Injury to Assess Motor Recovery. ILAR J 2007; 48:385-95. [PMID: 17712224 DOI: 10.1093/ilar.48.4.385] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Devastating motor, sensory, and autonomic dysfunctions render long-term personal hardships to the survivors of traumatic spinal cord injury (SCI). The suffering also extends to the survivors' families and friends, who endure emotional, physical, and financial burdens in providing for necessary surgeries, care, and rehabilitation. After the primary mechanical SCI, there is a complex secondary injury cascade that leads to the progressive death of otherwise potentially viable axons and cells and that impairs endogenous recovery processes. Investigations of possible cures and of ways to alleviate the hardships of traumatic SCI include those of interventions that attenuate or overcome the secondary injury cascade, enhance the endogenous repair mechanisms, regenerate axons, replace lost cells, and rehabilitate. These investigations have led to the creation of laboratory animal models of the different types of traumatic human SCI and components of the secondary injury cascade. However, no particular model completely addresses all aspects of traumatic SCI. In this article, we describe adult rat SCI models and the motor, and in some cases sensory and autonomic, deficits that each produces. Importantly, as researchers in this area move toward clinical trials to alleviate the hardships of traumatic SCI, there is a need for standardized small and large animal SCI models as well as quantitative behavioral and electrophysiological assessments of their outcomes so that investigators testing various interventions can directly compare their results and correlate them with the molecular, biochemical, and histological alterations.
Collapse
Affiliation(s)
- Stephen M Onifer
- Spinal Cord and Brain Injury Research Center, Biomedical and Biological Sciences Research Building, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536-0509, USA.
| | | | | |
Collapse
|
8
|
Enzmann GU, Benton RL, Talbott JF, Cao Q, Whittemore SR. Functional considerations of stem cell transplantation therapy for spinal cord repair. J Neurotrauma 2006; 23:479-95. [PMID: 16629631 DOI: 10.1089/neu.2006.23.479] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stem cells hold great promise for therapeutic repair after spinal cord injury (SCI). This review compares the current experimental approaches taken towards a stem cell-based therapy for SCI. It critically evaluates stem cell sources, injury paradigms, and functional measurements applied to detect behavioral changes after transplantation into the spinal cord. Many of the documented improvements do not exclusively depend on lineage-specific cellular differentiation. In most of the studies, the functional tests used cannot unequivocally demonstrate how differentiation of the transplanted cells contributes to the observed effects. Standardized cell isolation and transplantation protocols could facilitate the assessment of the true contribution of various experimental parameters on recovery. We conclude that at present embryonic stem (ES)-derived cells hold the most promise for therapeutic utility, but that non-neural cells may ultimately be optimal if the mechanism of possible transdifferentiation can be elucidated.
Collapse
Affiliation(s)
- Gaby U Enzmann
- Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky 40202, USA
| | | | | | | | | |
Collapse
|
9
|
Sieber-Blum M, Schnell L, Grim M, Hu YF, Schneider R, Schwab ME. Characterization of epidermal neural crest stem cell (EPI-NCSC) grafts in the lesioned spinal cord. Mol Cell Neurosci 2006; 32:67-81. [PMID: 16626970 DOI: 10.1016/j.mcn.2006.02.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 02/14/2006] [Accepted: 02/21/2006] [Indexed: 02/07/2023] Open
Abstract
We have characterized in the contusion-lesioned murine spinal cord the behavior of acutely implanted epidermal neural crest stem cells (EPI-NCSC, formerly eNCSC). EPI-NCSC, a novel type of multipotent adult stem cell, are remnants of the embryonic neural crest. They reside in the bulge of hair follicles and have the ability to differentiate into all major neural crest derivatives (Sieber-Blum, M., Grim, M., Hu, Y.F., Szeder, V., 2004. Pluripotent neural crest stem cells in the adult hair follicle. Dev. Dyn. 231, 258-269). Grafted EPI-NCSC survived, integrated, and intermingled with host neurites in the lesioned spinal cord. EPI-NCSC were non-migratory. They did not proliferate and did not form tumors. Significant subsets expressed neuron-specific beta-III tubulin, the GABAergic marker glutamate decarboxylase 67 (GAD67), the oligodendrocyte marker, RIP, or myelin basic protein (MBP). Close physical association of non-neuronal EPI-NCSC with host neurites was observed. Glial fibrillary acidic protein (GFAP) immunofluorescence was not detected. Collectively, our data indicate that intraspinal EPI-NCSC demonstrate several desirable characteristics that may include local neural replacement and re-myelination.
Collapse
Affiliation(s)
- Maya Sieber-Blum
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Enzmann GU, Benton RL, Woock JP, Howard RM, Tsoulfas P, Whittemore SR. Consequences of noggin expression by neural stem, glial, and neuronal precursor cells engrafted into the injured spinal cord. Exp Neurol 2005; 195:293-304. [PMID: 16087174 DOI: 10.1016/j.expneurol.2005.04.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 03/30/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
Bone morphogenetic proteins (BMPs) are a large class of secreted factors, which serve as modulators of development in multiple organ systems, including the CNS. Studies investigating the potential of stem cell transplantation for restoration of function and cellular replacement following traumatic spinal cord injury (SCI) have demonstrated that the injured adult spinal cord is not conducive to neurogenesis or oligodendrogenesis of engrafted CNS precursors. In light of recent findings that BMP expression is modulated by SCI, we hypothesized that they may play a role in lineage restriction of multipotent grafts. To test this hypothesis, neural stem or precursor cells were engineered to express noggin, an endogenous antagonist of BMP action, prior to transplantation or in vitro challenge with recombinant BMPs. Adult rats were subjected to both contusion and focal ischemic SCI. One week following injury, the animals were transplanted with either EGFP- or noggin-expressing neural stem or precursor cells. Results demonstrate that noggin expression does not antagonize terminal astroglial differentiation in the engrafted stem cells. Furthermore, neutralizing endogenous BMP in the injured spinal cord significantly increased both the lesion volume and the number of infiltrating macrophages in injured spinal cords receiving noggin-expressing stem cell grafts compared with EGFP controls. These data strongly suggest that endogenous factors in the injured spinal microenvironment other than the BMPs restrict the differentiation of engrafted pluripotent neural stem cells as well as suggest other roles for BMPs in tissue protection in the injured CNS.
Collapse
Affiliation(s)
- Gaby U Enzmann
- Kentucky Spinal Cord Injury Research Center (KSCIRC), 511 South Floyd Street, MDR 617, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|