1
|
Pandya CD, Vekaria H, Joseph B, Slone SA, Gensel JC, Sullivan PG, Miller BA. Hemoglobin induces oxidative stress and mitochondrial dysfunction in oligodendrocyte progenitor cells. Transl Res 2021; 231:13-23. [PMID: 33460824 PMCID: PMC8016702 DOI: 10.1016/j.trsl.2021.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/11/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) in the infant brain give rise to mature oligodendrocytes that myelinate CNS axons. OPCs are particularly vulnerable to oxidative stress that occurs in many forms of brain injury. One common cause of infant brain injury is neonatal intraventricular hemorrhage (IVH), which releases blood into the CSF and brain parenchyma of preterm infants. Although blood contains the powerful oxidant hemoglobin, the direct effects of hemoglobin on OPCs have not been studied. We utilized a cell culture system to test if hemoglobin induced free radical production and mitochondrial dysfunction in OPCs. We also tested if phenelzine (PLZ), an FDA-approved antioxidant drug, could protect OPCs from hemoglobin-induced oxidative stress. OPCs were isolated from Sprague Dawley rat pups and exposed to hemoglobin with and without PLZ. Outcomes assessed included intracellular reactive oxygen species levels using 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA) fluorescent dye, oxygen consumption using the XFe96 Seahorse assay, and proliferation measured by BrdU incorporation assay. Hemoglobin induced oxidative stress and impaired mitochondrial function in OPCs. PLZ treatment reduced hemoglobin-induced oxidative stress and improved OPC mitochondrial bioenergetics. The effects of hemoglobin and PLZ on OPC proliferation were not statistically significant, but showed trends towards hemoglobin reducing OPC proliferation and PLZ increasing OPC proliferation (P=0.06 for both effects). Collectively, our results indicate that hemoglobin induces mitochondrial dysfunction in OPCs and that antioxidant therapy reduces these effects. Therefore, antioxidant therapy may hold promise for white matter diseases in which hemoglobin plays a role, such as neonatal IVH.
Collapse
Affiliation(s)
- Chirayu D Pandya
- Department of Neurosurgery, University of Kentucky, Lexington, Kentucky; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Hemendra Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Binoy Joseph
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky; Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Stacey A Slone
- Department of Statistics, University of Kentucky, Lexington, Kentucky
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky; Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky; Department of Neuroscience, University of Kentucky, Lexington, Kentucky; Lexington VA Health Care System, Lexington, Kentucky
| | - Brandon A Miller
- Department of Neurosurgery, University of Kentucky, Lexington, Kentucky; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
2
|
Evonuk KS, Doyle RE, Moseley CE, Thornell IM, Adler K, Bingaman AM, Bevensee MO, Weaver CT, Min B, DeSilva TM. Reduction of AMPA receptor activity on mature oligodendrocytes attenuates loss of myelinated axons in autoimmune neuroinflammation. SCIENCE ADVANCES 2020; 6:eaax5936. [PMID: 31934627 PMCID: PMC6949032 DOI: 10.1126/sciadv.aax5936] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Glutamate dysregulation occurs in multiple sclerosis (MS), but whether excitotoxic mechanisms in mature oligodendrocytes contribute to demyelination and axonal injury is unexplored. Although current treatments modulate the immune system, long-term disability ensues, highlighting the need for neuroprotection. Glutamate is elevated before T2-visible white matter lesions appear in MS. We previously reported that myelin-reactive T cells provoke microglia to release glutamate from the system xc - transporter promoting myelin degradation in experimental autoimmune encephalomyelitis (EAE). Here, we explore the target for glutamate in mature oligodendrocytes. Most glutamate-stimulated calcium influx into oligodendrocyte somas is AMPA receptor (AMPAR)-mediated, and genetic deletion of AMPAR subunit GluA4 decreased intracellular calcium responses. Inducible deletion of GluA4 on mature oligodendrocytes attenuated EAE and loss of myelinated axons was selectively reduced compared to unmyelinated axons. These data link AMPAR signaling in mature oligodendrocytes to the pathophysiology of myelinated axons, demonstrating glutamate regulation as a potential neuroprotective strategy in MS.
Collapse
Affiliation(s)
- Kirsten S. Evonuk
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ryan E. Doyle
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Carson E. Moseley
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- University of California, San Francisco, CA, USA
| | - Ian M. Thornell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Keith Adler
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Amanda M. Bingaman
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mark O. Bevensee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Booki Min
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Tara M. DeSilva
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
3
|
Wu X, Walker CL, Lu Q, Wu W, Eddelman DB, Parish JM, Xu XM. RhoA/Rho Kinase Mediates Neuronal Death Through Regulating cPLA 2 Activation. Mol Neurobiol 2016; 54:6885-6895. [PMID: 27771900 DOI: 10.1007/s12035-016-0187-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022]
Abstract
Activation of RhoA/Rho kinase leads to growth cone collapse and neurite retraction. Although RhoA/Rho kinase inhibition has been shown to improve axon regeneration, remyelination and functional recovery, its role in neuronal cell death remains unclear. To determine whether RhoA/Rho kinase played a role in neuronal death after injury, we investigated the relationship between RhoA/Rho kinase and cytosolic phospholipase A2 (cPLA2), a lipase that mediates inflammation and cell death, using an in vitro neuronal death model and an in vivo contusive spinal cord injury model performed at the 10th thoracic (T10) vertebral level. We found that co-administration of TNF-α and glutamate induced spinal neuron death, and activation of RhoA, Rho kinase and cPLA2. Inhibition of RhoA, Rho kinase and cPLA2 significantly reduced TNF-α/glutamate-induced cell death by 33, 52 and 43 %, respectively (p < 0.001). Inhibition of RhoA and Rho kinase also significantly downregulated cPLA2 activation by 66 and 60 %, respectively (p < 0.01). Furthermore, inhibition of RhoA and Rho kinase reduced the release of arachidonic acid, a downstream substrate of cPLA2. The immunofluorescence staining showed that ROCK1 or ROCK2, two isoforms of Rho kinase, was co-localized with cPLA2 in neuronal cytoplasm. Interestingly, co-immunoprecipitation (Co-IP) assay showed that ROCK1 or ROCK2 bonded directly with cPLA2 and phospho-cPLA2. When the Rho kinase inhibitor Y27632 was applied in mice with T10 contusion injury, it significantly decreased cPLA2 activation and expression and reduced injury-induced apoptosis at and close to the lesion site. Taken together, our results reveal a novel mechanism of RhoA/Rho kinase-mediated neuronal death through regulating cPLA2 activation.
Collapse
Affiliation(s)
- Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, NB 500E, Indianapolis, IN, 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chandler L Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, NB 500E, Indianapolis, IN, 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Qingbo Lu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, NB 500E, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, NB 500E, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Daniel B Eddelman
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jonathan M Parish
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, NB 500E, Indianapolis, IN, 46202, USA.
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
4
|
Miller BA, Roy AK, Boucher AB, Pradilla G, Ahmad FU. Subacute Posttraumatic Ascending Myelopathy After an Incomplete Spinal Cord Injury from a Gunshot Wound to the Spine: Case Report and Review of the Literature. World Neurosurg 2016; 88:687.e13-687.e17. [DOI: 10.1016/j.wneu.2015.11.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/11/2015] [Accepted: 11/14/2015] [Indexed: 10/22/2022]
|
5
|
Gensel JC, Tovar CA, Bresnahan JC, Beattie MS. Topiramate treatment is neuroprotective and reduces oligodendrocyte loss after cervical spinal cord injury. PLoS One 2012; 7:e33519. [PMID: 22428066 PMCID: PMC3302770 DOI: 10.1371/journal.pone.0033519] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 02/15/2012] [Indexed: 11/21/2022] Open
Abstract
Excess glutamate release and associated neurotoxicity contributes to cell death after spinal cord injury (SCI). Indeed, delayed administration of glutamate receptor antagonists after SCI in rodents improves tissue sparing and functional recovery. Despite their therapeutic potential, most glutamate receptor antagonists have detrimental side effects and have largely failed clinical trials. Topiramate is an AMPA-specific, glutamate receptor antagonists that is FDA-approved to treat CNS disorders. In the current study we tested whether topiramate treatment is neuroprotective after cervical contusion injury in rats. We report that topiramate, delivered 15-minutes after SCI, increases tissue sparing and preserves oligodendrocytes and neurons when compared to vehicle treatment. In addition, topiramate is more effective than the AMPA-receptor antagonist, NBQX. To the best of our knowledge, this is the first report documenting a neuroprotective effect of topiramate treatment after spinal cord injury.
Collapse
Affiliation(s)
- John C Gensel
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, United States of America.
| | | | | | | |
Collapse
|
6
|
Kigerl KA, Ankeny DP, Garg SK, Wei P, Guan Z, Lai W, McTigue DM, Banerjee R, Popovich PG. System x(c)(-) regulates microglia and macrophage glutamate excitotoxicity in vivo. Exp Neurol 2011; 233:333-41. [PMID: 22079587 DOI: 10.1016/j.expneurol.2011.10.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 10/05/2011] [Accepted: 10/28/2011] [Indexed: 12/21/2022]
Abstract
It is widely believed that microglia and monocyte-derived macrophages (collectively referred to as central nervous system (CNS) macrophages) cause excitotoxicity in the diseased or injured CNS. This view has evolved mostly from in vitro studies showing that neurotoxic concentrations of glutamate are released from CNS macrophages stimulated with lipopolysaccharide (LPS), a potent inflammogen. We hypothesized that excitotoxic killing by CNS macrophages is more rigorously controlled in vivo, requiring both the activation of the glutamate/cystine antiporter (system x(c)(-)) and an increase in extracellular cystine, the substrate that drives glutamate release. Here, we show that non-traumatic microinjection of low-dose LPS into spinal cord gray matter activates CNS macrophages but without causing overt neuropathology. In contrast, neurotoxic inflammation occurs when LPS and cystine are co-injected. Simultaneous injection of NBQX, an antagonist of AMPA glutamate receptors, reduces the neurotoxic effects of LPS+cystine, implicating glutamate as a mediator of neuronal cell death in this model. Surprisingly, neither LPS nor LPS+cystine adversely affects survival of oligodendrocytes or oligodendrocyte progenitor cells. Ex vivo analyses show that redox balance in microglia and macrophages is controlled by induction of system x(c)(-) and that high GSH:GSSG ratios predict the neurotoxic potential of these cells. Together, these data indicate that modulation of redox balance in CNS macrophages, perhaps through regulating system x(c)(-), could be a novel approach for attenuating injurious neuroinflammatory cascades.
Collapse
Affiliation(s)
- Kristina A Kigerl
- Center for Brain and Spinal Cord Repair, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sun F, Lin CLG, McTigue D, Shan X, Tovar CA, Bresnahan JC, Beattie MS. Effects of axon degeneration on oligodendrocyte lineage cells: dorsal rhizotomy evokes a repair response while axon degeneration rostral to spinal contusion induces both repair and apoptosis. Glia 2010; 58:1304-19. [PMID: 20607865 PMCID: PMC3045846 DOI: 10.1002/glia.21009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wallerian degeneration in the dorsal columns (DC) after spinal cord injury (SCI) is associated with microglial activation and prolonged oligodendrocyte (OL) apoptosis that may contribute to demyelination and dysfunction after SCI. But, there is an increase in OL lineage cells after SCI that may represent a reparative response, and there is evidence for remyelination after SCI. To assess the role of axonal degeneration per se in OL apoptosis and proliferation, we cut the L2-S2 dorsal roots producing massive axonal degeneration and microglial activation in the DC, and found no evidence of OL loss or apoptosis. Rather, the numbers of OL-lineage cells positive for NG2 and APC (CC1) increased, and BrdU studies suggested new OL formation. We then tested contusion SCI (cSCI) that results in comparable degeneration in the DC rostral to the injury, microglial activation, and apoptosis of DC OLs by eight days. NG2+ cell proliferation and oligodendrogenesis was seen as after rhizotomy. The net result of this combination of proliferation and apoptosis was a reduction in DC OLs, confirming earlier studies. Using an antibody to oxidized nucleic acids, we found rapid and prolonged RNA oxidation in OLs rostral to cSCI, but no evidence of oxidative stress in DC OLs after rhizotomy. These results suggest that signals associated with axonal degeneration are sufficient to induce OL proliferation, and that secondary injury processes associated with the central SCI, including oxidative stress, rather than axonal degeneration per se, are responsible for OL apoptosis.
Collapse
Affiliation(s)
- Fang Sun
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, 43210
- Neuroscience Graduate Studies Program, The Ohio State University College of Medicine, Columbus, Ohio, 43210
- Children’s Hospital, Harvard Medical School, Boston, MA
| | - Chien-Liang Glenn Lin
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, 43210
| | - Dana McTigue
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, 43210
- Spinal Trauma and Repair Laboratories, The Ohio State University College of Medicine, Columbus, Ohio, 43210
| | - Xiu Shan
- Department of Pathology, Division of Neuropathology, Johns Hopkins University, Baltimore Maryland, 21205
| | - C Amy Tovar
- Spinal Trauma and Repair Laboratories, The Ohio State University College of Medicine, Columbus, Ohio, 43210
| | - Jacqueline C. Bresnahan
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, 43210
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Michael S. Beattie
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, 43210
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
8
|
Whitaker CM, Beaumont E, Wells MJ, Magnuson DS, Hetman M, Onifer SM. Rolipram attenuates acute oligodendrocyte death in the adult rat ventrolateral funiculus following contusive cervical spinal cord injury. Neurosci Lett 2008; 438:200-4. [PMID: 18455876 PMCID: PMC2530896 DOI: 10.1016/j.neulet.2008.03.087] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 01/25/2008] [Accepted: 03/19/2008] [Indexed: 11/29/2022]
Abstract
Rolipram, an inhibitor of phosphodiesterase 4 (PDE4) proteins that hydrolyze cAMP, increases axonal regeneration following spinal cord injury (SCI). Recent evidence indicate that rolipram also protects against a multitude of apoptotic signals, many of which are implicated in secondary cell death post-SCI. In the present study, we used immunohistochemistry and morphometry to determine potential spinal cord targets of rolipram and to test its protective potential in rats undergoing cervical spinal cord contusive injury. We found that 3 PDE4 subtypes (PDE4A, B, D) were expressed by spinal cord oligodendrocytes. OX-42 immunopositive microglia only expressed the PDE4B subtype. Oligodendrocyte somata were quantified within the cervical ventrolateral funiculus, a white matter region critical for locomotion, at varying time points after SCI in rats receiving rolipram or vehicle treatments. We show that rolipram significantly attenuated oligodendrocyte death at 24 h post-SCI continuing through 72 h, the longest time point examined. These results demonstrate for the first time that spinal cord glial cells express PDE4 subtypes and that the PDE4 inhibitor rolipram protects oligodendrocytes from secondary cell death following contusive SCI. They also indicate that further investigations into neuroprotection and axonal regeneration with rolipram are warranted for treating SCI.
Collapse
Affiliation(s)
- Christopher M. Whitaker
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY, 40292
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, Louisville, KY, 40292
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY, 40292
| | - Eric Beaumont
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY, 40292
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY, 40292
| | - Michael J. Wells
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY, 40292
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY, 40292
| | - David S.K. Magnuson
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY, 40292
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, Louisville, KY, 40292
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY, 40292
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY, 40292
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY, 40292
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40292
| | - Stephen M. Onifer
- Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, KY, 40292
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, Louisville, KY, 40292
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY, 40292
| |
Collapse
|
9
|
Miller BA, Crum JM, Tovar CA, Ferguson AR, Bresnahan JC, Beattie MS. Developmental stage of oligodendrocytes determines their response to activated microglia in vitro. J Neuroinflammation 2007; 4:28. [PMID: 18039385 PMCID: PMC2214724 DOI: 10.1186/1742-2094-4-28] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 11/26/2007] [Indexed: 12/20/2022] Open
Abstract
Background Oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes are both lost in central nervous system injury and disease. Activated microglia may play a role in OPC and oligodendrocyte loss or replacement, but it is not clear how the responses of OPCs and oligodendrocytes to activated microglia differ. Methods OPCs and microglia were isolated from rat cortex. OPCs were induced to differentiate into oligodendrocytes with thyroid hormone in defined medium. For selected experiments, microglia were added to OPC or oligodendrocyte cultures. Lipopolysaccharide was used to activate microglia and microglial activation was confirmed by TNFα ELISA. Cell survival was assessed with immunocytochemistry and cell counts. OPC proliferation and oligodendrocyte apoptosis were also assessed. Results OPCs and oligodendrocytes displayed phenotypes representative of immature and mature oligodendrocytes, respectively. Activated microglia reduced OPC survival, but increased survival and reduced apoptosis of mature oligodendrocytes. Activated microglia also underwent cell death themselves. Conclusion Activated microglia may have divergent effects on OPCs and mature oligodendrocytes, reducing OPC survival and increasing mature oligodendrocyte survival. This may be of importance because activated microglia are present in several disease states where both OPCs and mature oligodendrocytes are also reacting to injury. Activated microglia may simultaneously have deleterious and helpful effects on different cells after central nervous system injury.
Collapse
Affiliation(s)
- Brandon A Miller
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California San Francisco, 1001 Potrero Ave, Building 1, Room 101, San Francisco, CA 94143, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Newcombe J, Uddin A, Dove R, Patel B, Turski L, Nishizawa Y, Smith T. Glutamate receptor expression in multiple sclerosis lesions. Brain Pathol 2007; 18:52-61. [PMID: 17924980 DOI: 10.1111/j.1750-3639.2007.00101.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Blockade of receptors for the excitatory neurotransmitter glutamate ameliorates neurological clinical signs in models of the CNS inflammatory demyelinating disease multiple sclerosis (MS). To investigate whether glutamate excitoxicity may play a role in MS pathogenesis, the cellular localization of glutamate and its receptors, transporters and enzymes was examined. Expression of glutamate receptor (GluR) 1, a Ca(++)-permeable ionotropic AMPA receptor subunit, was up-regulated on oligodendrocytes in active MS lesion borders, but Ca(++)-impermeable AMPA GluR2 subunit levels were not increased. Reactive astrocytes in active plaques expressed AMPA GluR3 and metabotropic mGluR1, 2/3 and 5 receptors and the GLT-1 transporter, and a subpopulation was immunostained with glutamate antibodies. Activated microglia and macrophages were immunopositive for GluR2, GluR4 and NMDA receptor subunit 1. Kainate receptor GluR5-7 immunostaining showed endothelial cells and dystrophic axons. Astrocyte and macrophage populations expressed glutamate metabolizing enzymes and unexpectedly the EAAC1 transporter, which may play a role in glutamate uptake in lesions. Thus, reactive astrocytes in MS white matter lesions are equipped for a protective role in sequestering and metabolizing extracellular glutamate. However, they may be unable to maintain glutamate at levels low enough to protect oligodendrocytes rendered vulnerable to excitotoxic damage because of GluR1 up-regulation.
Collapse
Affiliation(s)
- Jia Newcombe
- Department of Neuroinflammation, Institute of Neurology, University College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
11
|
Nguyen HX, O'Barr TJ, Anderson AJ. Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-α. J Neurochem 2007; 102:900-12. [PMID: 17561941 DOI: 10.1111/j.1471-4159.2007.04643.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As the first immune cells to infiltrate the nervous system after traumatic PNS and CNS injury, neutrophils (polymorphonuclear leukocytes, PMNs) may promote injury by releasing toxic soluble factors that may affect neuronal survival. Direct neurotoxicity of matrix metalloproteinases (MMPs), reactive oxygen species (ROS), and cytokines released by PMNs was investigated by culturing dorsal root ganglion (DRG) cells with PMN-conditioned media containing MMP inhibitor (GM6001), ROS scavengers, or tumor necrosis factor alphaR (TNF-alphaR) neutralizing antibody. Although DRGs exposed to PMN-conditioned media had 53% fewer surviving neurons than controls, neuronal cell loss was prevented by GM6001 (20 micromol/L), catalase (1000 U/mL), or TNF-alphaR neutralizing antibody (1.5 microg/mL), elevating survival to 77%, 94%, and 95%, respectively. In accordance with protection by GM6001, conditioned media collected from MMP-9 null PMNs was less neurotoxic than that collected from wild-type PMNs. Additionally, MMP inhibition reduced PMN-derived ROS; removal of ROS reduced PMN-derived MMP-9 activity; and TNF-alpha inhibition reduced both PMN-derived MMP-9 activity and ROS in PMN cultures. Our data provide the first direct evidence that PMN-driven neurotoxicity is dependent on MMPs, ROS, and TNF-alpha, and that these factors may regulate PMN release of these soluble factors or interact with one another to mediate PMN-driven neurotoxicity.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Brain Injuries/immunology
- Brain Injuries/metabolism
- Brain Injuries/physiopathology
- Cell Survival/drug effects
- Cell Survival/physiology
- Cells, Cultured
- Chemotaxis, Leukocyte/immunology
- Culture Media, Conditioned/pharmacology
- Encephalitis/immunology
- Encephalitis/metabolism
- Encephalitis/physiopathology
- Enzyme Inhibitors/pharmacology
- Female
- Ganglia, Spinal/cytology
- Ganglia, Spinal/immunology
- Ganglia, Spinal/metabolism
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Matrix Metalloproteinase Inhibitors
- Matrix Metalloproteinases/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Degeneration/immunology
- Nerve Degeneration/metabolism
- Nerve Degeneration/physiopathology
- Neurons, Afferent/drug effects
- Neurons, Afferent/immunology
- Neurons, Afferent/metabolism
- Neurotoxins/immunology
- Neurotoxins/metabolism
- Neutrophils/immunology
- Neutrophils/metabolism
- Oxidative Stress/physiology
- Reactive Oxygen Species/metabolism
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Hal X Nguyen
- Department of Physical Medicine & Rehabilitation, University of California, Irvine, California, USA
| | | | | |
Collapse
|
12
|
Nakazawa T, Nakazawa C, Matsubara A, Noda K, Hisatomi T, She H, Michaud N, Hafezi-Moghadam A, Miller JW, Benowitz LI. Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J Neurosci 2006; 26:12633-41. [PMID: 17151265 PMCID: PMC6674838 DOI: 10.1523/jneurosci.2801-06.2006] [Citation(s) in RCA: 347] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glaucoma is a widespread ocular disease characterized by a progressive loss of retinal ganglion cells (RGCs). Previous studies suggest that the cytokine tumor necrosis factor-alpha (TNF-alpha) may contribute to the disease process, although its role in vivo and its mechanism of action are unclear. To investigate pathophysiological mechanisms in glaucoma, we induced ocular hypertension (OH) in mice by angle closure via laser irradiation. This treatment resulted in a rapid upregulation of TNF-alpha, followed sequentially by microglial activation, loss of optic nerve oligodendrocytes, and delayed loss of RGCs. Intravitreal TNF-alpha injections in normal mice mimicked these effects. Conversely, an anti-TNF-alpha-neutralizing antibody or deleting the genes encoding TNF-alpha or its receptor, TNFR2, blocked the deleterious effects of OH. Deleting the CD11b/CD18 gene prevented microglial activation and also blocked the pathophysiological effects of OH. Thus TNF-alpha provides an essential, although indirect, link between OH and RGC loss in vivo. Blocking TNF-alpha signaling or inflammation, therefore, may be helpful in treating glaucoma.
Collapse
Affiliation(s)
- Toru Nakazawa
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Department of Neurosurgery and Neurobiology Program, Children's Hospital Boston, Boston, Massachusetts 02115, and
- Departments of Ophthalmology and
- Surgery and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| | - Chifuyu Nakazawa
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Akihisa Matsubara
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Kousuke Noda
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Toshio Hisatomi
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Haicheng She
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Norman Michaud
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Ali Hafezi-Moghadam
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Joan W. Miller
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
- Departments of Ophthalmology and
| | - Larry I. Benowitz
- Department of Neurosurgery and Neurobiology Program, Children's Hospital Boston, Boston, Massachusetts 02115, and
- Surgery and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|