1
|
Briot J, Pons C, Foucher A, Goudounèche D, Gaudenzio N, Donovan M, Bernard D, Méchin MC, Simon M. Prolyl Endopeptidase Is Involved in Filaggrinolysis and Cornification. J Invest Dermatol 2025; 145:98-108.e15. [PMID: 38879153 DOI: 10.1016/j.jid.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 08/12/2024]
Abstract
FLG is a well-known biomarker of atopic dermatitis and skin dryness. Its full proteolysis (or filaggrinolysis) produces the major constituents of the natural moisturizing factor. Some proteases/peptidases remain to be identified in this multistep process. Mining 16 omics analyses, we identified prolyl endopeptidase (PREP) as a candidate peptidase. Indirect immunofluorescence and confocal analysis demonstrated its localization in the granular and deep cornified layers, where it colocalized with FLG. Tandem mass spectroscopy and fluorescent quenching activity assays showed that PREP cleaved several synthetic peptides derived from the FLG sequence, at the carboxyl side of an internal proline. Deimination of these peptides increased PREP enzymatic efficiency. Specific inhibition of PREP in reconstructed human epidermis using benzyloxycarbonyl-pro-prolinal induced the accumulation of FLG monomers. Downregulation of PREP expression in reconstructed human epidermis using RNA interference confirmed the impact of PREP on FLG metabolism and highlighted a more general role of PREP in keratinocyte differentiation. Indeed, quantitative global proteomic, western blotting, and RT-qPCR analyses showed a strong reduction in the expression of bleomycin hydrolase, known to be involved in filaggrinolysis, and of several other actors of cornification such as loricrin. Consequently, at the functional level, the transepidermal electric resistance was drastically reduced.
Collapse
Affiliation(s)
- Julie Briot
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France
| | - Carole Pons
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France
| | - Aude Foucher
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | - Dominique Goudounèche
- Centre de Microscopie Electronique Appliquée à la Biologie (CMEAB), Toulouse III University, Toulouse, France
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France; Genoskin SAS, Toulouse, France
| | - Mark Donovan
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | | | - Marie-Claire Méchin
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France
| | - Michel Simon
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France.
| |
Collapse
|
2
|
Okumura H, Mizuno A, Iwamoto E, Sakuma R, Nishio S, Nishijima KI, Matsuda T, Ujita M. New insights into the role of microheterogeneity of ZP3 during structural maturation of the avian equivalent of mammalian zona pellucida. PLoS One 2023; 18:e0283087. [PMID: 36943849 PMCID: PMC10030024 DOI: 10.1371/journal.pone.0283087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 02/11/2023] [Indexed: 03/23/2023] Open
Abstract
The egg coat including mammalian zona pellucida (ZP) and the avian equivalent, i.e., inner-perivitelline layer (IPVL), is a specialized extracellular matrix being composed of the ZP glycoproteins and surrounds both pre-ovulatory oocytes and ovulated egg cells in vertebrates. The egg coat is well known for its potential importance in both the reproduction and early development, although the underlying molecular mechanisms remain to be fully elucidated. Interestingly, ZP3, one of the ZP-glycoprotein family members forming scaffolds of the egg-coat matrices with other ZP glycoproteins, exhibits extreme but distinctive microheterogeneity to form a large number of isoelectric-point isoforms at least in the chicken IPVL. In the present study, we performed three-dimensional confocal imaging and two-dimensional polyacrylamide-gel electrophoresis (2D-PAGE) of chicken IPVLs that were isolated from the ovarian follicles at different growth stages before ovulation. The results suggest that the relative proportions of the ZP3 isoforms are differentially altered during the structural maturation of the egg-coat matrices. Furthermore, tandem mass spectrometry (MS/MS) analyses and ZP1 binding assays against separated ZP3 isoforms demonstrated that each ZP3 isoform contains characteristic modifications, and there are large differences among ZP3 isoforms in the ZP1 binding affinities. These results suggest that the microheterogeneity of chicken ZP3 might be regulated to be associated with the formation of egg-coat matrices during the structural maturation of chicken IPVL. Our findings may provide new insights into molecular mechanisms of egg-coat assembly processes.
Collapse
Affiliation(s)
- Hiroki Okumura
- Department of Applied Biological Chemistry, Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Ayaka Mizuno
- Department of Applied Biological Chemistry, Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Eri Iwamoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Rio Sakuma
- Department of Applied Biological Chemistry, Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Shunsuke Nishio
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ken-Ichi Nishijima
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Tsukasa Matsuda
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Minoru Ujita
- Department of Applied Biological Chemistry, Faculty of Agriculture, Meijo University, Nagoya, Japan
| |
Collapse
|
3
|
He Q, Chen B, Chen S, Zhang M, Duan L, Feng X, Chen J, Zhou L, Chen L, Duan Y. MBP-activated autoimmunity plays a role in arsenic-induced peripheral neuropathy and the potential protective effect of mecobalamin. ENVIRONMENTAL TOXICOLOGY 2021; 36:1243-1253. [PMID: 33739591 DOI: 10.1002/tox.23122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Intake excessive arsenic (As) is related to the occurrence of peripheral neuropathy. However, both the underlying mechanism and the preventive approach remain largely unknown. In the present study, As treatment significantly decreased the mechanical withdrawal threshold and increased the titer of anti-myelin basic protein antibody in rats, accompanied with damaged BNB. The levels of inflammatory cytokines and proteolytic enzymes were also significantly upregulated. However, administration of MeCbl in As-treated rats significantly reversed the decline in hindfoot mechanical withdrawal threshold, as well as BNB failure and sciatic nerve inflammation. Repeated As treatment in athymic nude mice indicated that sciatic nerve inflammation and mechanical hyperalgesia were T cell-dependent. These data implicated that MBP-activated autoimmunity and the related neuroinflammation probably contributed to As-induced mechanical hyperalgesia and MeCbl exerted a protective role probably via maintenance the integrity of BNB and inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Qican He
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Bingzhi Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Shaoyi Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Muyang Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lidan Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiangling Feng
- Experimental Center for Preventive Medicine, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jihua Chen
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lezhou Zhou
- Central Laboratory, Occupational Disease Prevention and Control Hospital of Hunan Province, Changsha, China
| | - Lv Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yanying Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
4
|
Pentz R, Iulita MF, Mikutra-Cencora M, Ducatenzeiler A, Bennett DA, Cuello AC. A new role for matrix metalloproteinase-3 in the NGF metabolic pathway: Proteolysis of mature NGF and sex-specific differences in the continuum of Alzheimer's pathology. Neurobiol Dis 2021; 148:105150. [PMID: 33130223 PMCID: PMC7856186 DOI: 10.1016/j.nbd.2020.105150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinase-3 (MMP-3) has been associated with risk of Alzheimer's disease (AD). In this study we introduce a novel role for MMP-3 in degrading nerve growth factor (NGF) in vivo and examine its mRNA and protein expression across the continuum of AD pathology. We provide evidence that MMP-3 participates in the degradation of mature NGF in vitro and in vivo and that it is secreted from the rat cerebral cortex in an activity-dependent manner. We show that cortical MMP-3 is upregulated in the McGill-R-Thy1-APP transgenic rat model of AD-like amyloidosis. A similar upregulation was found in AD and MCI brains as well as in cognitively normal individuals with elevated amyloid deposition. We also observed that frontal cortex MMP-3 protein levels are higher in males. MMP-3 protein correlated with more AD neuropathology, markers of NGF metabolism, and lower cognitive scores in males but not in females. These results suggest that MMP-3 upregulation in AD might contribute to NGF dysmetabolism, and therefore to cholinergic atrophy and cognitive deficits, in a sex-specific manner. MMP-3 should be further investigated as a biomarker candidate or as a therapeutic target in AD.
Collapse
Affiliation(s)
- Rowan Pentz
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
| | - M Florencia Iulita
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Maya Mikutra-Cencora
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
| | - A Claudio Cuello
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.
| |
Collapse
|
5
|
Titus HE, Chen Y, Podojil JR, Robinson AP, Balabanov R, Popko B, Miller SD. Pre-clinical and Clinical Implications of "Inside-Out" vs. "Outside-In" Paradigms in Multiple Sclerosis Etiopathogenesis. Front Cell Neurosci 2020; 14:599717. [PMID: 33192332 PMCID: PMC7654287 DOI: 10.3389/fncel.2020.599717] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated neurological disorder, characterized by central nervous system (CNS) inflammation, oligodendrocyte loss, demyelination, and axonal degeneration. Although autoimmunity, inflammatory demyelination and neurodegeneration underlie MS, the initiating event has yet to be clarified. Effective disease modifying therapies need to both regulate the immune system and promote restoration of neuronal function, including remyelination. The challenge in developing an effective long-lived therapy for MS requires that three disease-associated targets be addressed: (1) self-tolerance must be re-established to specifically inhibit the underlying myelin-directed autoimmune pathogenic mechanisms; (2) neurons must be protected from inflammatory injury and degeneration; (3) myelin repair must be engendered by stimulating oligodendrocyte progenitors to remyelinate CNS neuronal axons. The combined use of chronic and relapsing remitting experimental autoimmune encephalomyelitis (C-EAE, R-EAE) (“outside-in”) as well as progressive diphtheria toxin A chain (DTA) and cuprizone autoimmune encephalitis (CAE) (“inside-out”) mouse models allow for the investigation and specific targeting of all three of these MS-associated disease parameters. The “outside-in” EAE models initiated by myelin-specific autoreactive CD4+ T cells allow for the evaluation of both myelin-specific tolerance in the absence or presence of neuroprotective and/or remyelinating agents. The “inside-out” mouse models of secondary inflammatory demyelination are triggered by toxin-induced oligodendrocyte loss or subtle myelin damage, which allows evaluation of novel therapeutics that could promote remyelination and neuroprotection in the CNS. Overall, utilizing these complementary pre-clinical MS models will open new avenues for developing therapeutic interventions, tackling MS from the “outside-in” and/or “inside-out”.
Collapse
Affiliation(s)
- Haley E Titus
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yanan Chen
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Cour Pharmaceutical Development Company, Inc., Northbrook, IL, United States
| | - Andrew P Robinson
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Roumen Balabanov
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brian Popko
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Cour Pharmaceutical Development Company, Inc., Northbrook, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
6
|
Gorter RP, Baron W. Matrix metalloproteinases shape the oligodendrocyte (niche) during development and upon demyelination. Neurosci Lett 2020; 729:134980. [PMID: 32315713 DOI: 10.1016/j.neulet.2020.134980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The oligodendrocyte lineage cell is crucial to proper brain function. During central nervous system development, oligodendrocyte progenitor cells (OPCs) migrate and proliferate to populate the entire brain and spinal cord, and subsequently differentiate into mature oligodendrocytes that wrap neuronal axons in an insulating myelin layer. When damage occurs to the myelin sheath, OPCs are activated and recruited to the demyelinated site, where they differentiate into oligodendrocytes that remyelinate the denuded axons. The process of OPC attraction and differentiation is influenced by a multitude of factors from the cell's niche. Matrix metalloproteinases (MMPs) are powerful and versatile enzymes that do not only degrade extracellular matrix proteins, but also cleave cell surface receptors, growth factors, signaling molecules, proteases and other precursor proteins, leading to their activation or degradation. MMPs are markedly upregulated during brain development and upon demyelinating injury, where their broad functions influence the behavior of neural progenitor cells (NPCs), OPCs and oligodendrocytes. In this review, we focus on the role of MMPs in (re)myelination. We will start out in the developing brain with describing the effects of MMPs on NPCs, OPCs and eventually oligodendrocytes. Then, we will outline their functions in oligodendrocyte process extension and developmental myelination. Finally, we will review their potential role in demyelination, describe their significance in remyelination and discuss the evidence for a role of MMPs in remyelination failure, focusing on multiple sclerosis. In conclusion, MMPs shape the oligodendrocyte (niche) both during development and upon demyelination, and thus are important players in directing the fate and behavior of oligodendrocyte lineage cells throughout their life cycle.
Collapse
Affiliation(s)
- Rianne P Gorter
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
7
|
Raasakka A, Kursula P. Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease. Cells 2020; 9:cells9020470. [PMID: 32085570 PMCID: PMC7072810 DOI: 10.3390/cells9020470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Myelin ensheathes selected axonal segments within the nervous system, resulting primarily in nerve impulse acceleration, as well as mechanical and trophic support for neurons. In the central and peripheral nervous systems, various proteins that contribute to the formation and stability of myelin are present, which also harbor pathophysiological roles in myelin disease. Many myelin proteins have common attributes, including small size, hydrophobic segments, multifunctionality, longevity, and regions of intrinsic disorder. With recent advances in protein biophysical characterization and bioinformatics, it has become evident that intrinsically disordered proteins (IDPs) are abundant in myelin, and their flexible nature enables multifunctionality. Here, we review known myelin IDPs, their conservation, molecular characteristics and functions, and their disease relevance, along with open questions and speculations. We place emphasis on classifying the molecular details of IDPs in myelin, and we correlate these with their various functions, including susceptibility to post-translational modifications, function in protein–protein and protein–membrane interactions, as well as their role as extended entropic chains. We discuss how myelin pathology can relate to IDPs and which molecular factors are potentially involved.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland
- Correspondence:
| |
Collapse
|
8
|
Chopra S, Overall CM, Dufour A. Matrix metalloproteinases in the CNS: interferons get nervous. Cell Mol Life Sci 2019; 76:3083-3095. [PMID: 31165203 PMCID: PMC11105576 DOI: 10.1007/s00018-019-03171-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) have been investigated in context of chronic inflammatory diseases and demonstrated to degrade multiple components of the extracellular matrix (ECM). However, following several disappointing MMP clinical trials, recent studies have demonstrated unexpected novel functions of MMPs in viral infections and autoimmune inflammatory diseases in unanticipated locations. Thus, MMPs play additional functions in inflammation than just ECM degradation. They can regulate the activity of chemokines and cytokines of the immune response by precise proteolytic processing resulting in activation or inactivation of signaling pathways. MMPs have been demonstrated to cleave multiple substrates of the central nervous systems (CNS) and contribute to promoting and dampening diseases of the CNS. Initially, believed to be solely promoting pathologies, more than 10 MMPs to date have been shown to have protective functions. Here, we present some of the beneficial and destructive roles of MMPs in CNS pathologies and discuss strategies for the use of MMP inhibitors.
Collapse
Affiliation(s)
- Sameeksha Chopra
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Christopher M Overall
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Centre for Blood Research, Vancouver, BC, V6T 1Z3, Canada
| | - Antoine Dufour
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
9
|
Kudriaeva A, Kuzina ES, Zubenko O, Smirnov IV, Belogurov A. Charge‐mediated proteasome targeting. FASEB J 2019; 33:6852-6866. [DOI: 10.1096/fj.201802237r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
| | - Ekaterina S. Kuzina
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
| | - Oleg Zubenko
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
| | - Ivan V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
- Kazan Federal UniversityKazanRussian Federation
| | - Alexey Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
- Department of Fundamental MedicineLomonosov Moscow State UniversityMoscowRussian Federation
| |
Collapse
|
10
|
Remacle AG, Dolkas J, Angert M, Hullugundi SK, Chernov AV, Jones RCW, Shubayev VI, Strongin AY. A sensitive and selective ELISA methodology quantifies a demyelination marker in experimental and clinical samples. J Immunol Methods 2018; 455:80-87. [PMID: 29428829 PMCID: PMC5886741 DOI: 10.1016/j.jim.2018.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/05/2018] [Indexed: 12/29/2022]
Abstract
Sciatic nerve chronic constriction injury (CCI) in rodents produces nerve demyelination via proteolysis of myelin basic protein (MBP), the major component of myelin sheath. Proteolysis releases the cryptic MBP epitope, a demyelination marker, which is hidden in the native MBP fold. It has never been established if the proteolytic release of this cryptic MBP autoantigen stimulates the post-injury increase in the respective circulating autoantibodies. To measure these autoantibodies, we developed the ELISA that employed the cryptic 84-104 MBP sequence (MBP84-104) as bait. This allowed us, for the first time, to quantify the circulating anti-MBP84-104 autoantibodies in rat serum post-CCI. The circulating IgM (but not IgG) autoantibodies were detectable as soon as day 7 post-CCI. The IgM autoantibody level continually increased between days 7 and 28 post-injury. Using the rat serum samples, we established that the ELISA intra-assay (precision) and inter-assay (repeatability) variability parameters were 2.87% and 4.58%, respectively. We also demonstrated the ELISA specificity by recording the autoantibodies to the liberated MBP84-104 epitope alone, but not to intact MBP in which the 84-104 region is hidden. Because the 84-104 sequence is conserved among mammals, we tested if the ELISA was applicable to detect demyelination and quantify the respective autoantibodies in humans. Our limited pilot study that involved 16 female multiple sclerosis and fibromyalgia syndrome patients demonstrated that the ELISA was efficient in measuring both the circulating IgG- and IgM-type autoantibodies in patients exhibiting demyelination. We believe that the ELISA measurements of the circulating autoantibodies against the pathogenic MBP84-104 peptide may facilitate the identification of demyelination in both experimental and clinical settings. In clinic, these measurements may assist neurologists to recognize patients with painful neuropathy and demyelinating diseases, and as a result, to personalize their treatment regimens.
Collapse
Affiliation(s)
- Albert G Remacle
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA
| | - Mila Angert
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA
| | - Swathi K Hullugundi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA
| | - Andrei V Chernov
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - R Carter W Jones
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; Center for Pain Medicine, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA
| | - Veronica I Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, La Jolla, CA 92037, USA.
| | - Alex Y Strongin
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Raasakka A, Ruskamo S, Kowal J, Barker R, Baumann A, Martel A, Tuusa J, Myllykoski M, Bürck J, Ulrich AS, Stahlberg H, Kursula P. Membrane Association Landscape of Myelin Basic Protein Portrays Formation of the Myelin Major Dense Line. Sci Rep 2017; 7:4974. [PMID: 28694532 PMCID: PMC5504075 DOI: 10.1038/s41598-017-05364-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/26/2017] [Indexed: 01/06/2023] Open
Abstract
Compact myelin comprises most of the dry weight of myelin, and its insulative nature is the basis for saltatory conduction of nerve impulses. The major dense line (MDL) is a 3-nm compartment between two cytoplasmic leaflets of stacked myelin membranes, mostly occupied by a myelin basic protein (MBP) phase. MBP is an abundant myelin protein involved in demyelinating diseases, such as multiple sclerosis. The association of MBP with lipid membranes has been studied for decades, but the MBP-driven formation of the MDL remains elusive at the biomolecular level. We employed complementary biophysical methods, including atomic force microscopy, cryo-electron microscopy, and neutron scattering, to investigate the formation of membrane stacks all the way from MBP binding onto a single membrane leaflet to the organisation of a stable MDL. Our results support the formation of an amorphous protein phase of MBP between two membrane bilayers and provide a molecular model for MDL formation during myelination, which is of importance when understanding myelin assembly and demyelinating conditions.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Julia Kowal
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Robert Barker
- School of Physical Sciences, University of Kent, Canterbury, Kent, United Kingdom
- Institut Laue-Langevin (ILL), Grenoble, France
| | - Anne Baumann
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Anne Martel
- Institut Laue-Langevin (ILL), Grenoble, France
| | - Jussi Tuusa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Matti Myllykoski
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
12
|
Cieplak P, Strongin AY. Matrix metalloproteinases - From the cleavage data to the prediction tools and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1952-1963. [PMID: 28347746 DOI: 10.1016/j.bbamcr.2017.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 11/29/2022]
Abstract
Understanding the physiological role of any protease requires identification of both its cleavage substrates and their relative cleavage efficacy as compared with other substrates and other proteinases. Our review manuscript is focused on the cleavage preferences of the individual matrix metalloproteinases (MMPs) and the cleavage similarity and distinction that exist in the human MMP family. The recent in-depth analysis of MMPs by us and many others greatly increased knowledge of the MMP biology and structural-functional relationships among this protease family members. A better knowledge of cleavage preferences of MMPs has led us to the development of the prediction tools that are now capable of the high throughput reliable prediction and ranking the MMP cleavage sites in the peptide sequences in silico. Our software unifies and consolidates volumes of the pre-existing data. Now this prediction-ranking in silico tool is ready to be used by others. The software we developed may facilitate both the identification of the novel proteolytic regulatory pathways and the discovery of the previously uncharacterized substrates of the individual MMPs. Because now the MMP research may be based on the mathematical probability parameters rather than on either random luck or common sense alone, the researchers armed with this novel in silico tool will be better equipped to fine-tune or, at least, to sharply focus their wet chemistry experiments. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Piotr Cieplak
- Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | - Alex Y Strongin
- Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Deimination of Human Hornerin Enhances its Processing by Calpain-1 and its Cross-Linking by Transglutaminases. J Invest Dermatol 2017; 137:422-429. [DOI: 10.1016/j.jid.2016.09.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/01/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022]
|
14
|
Hong S, Remacle AG, Shiryaev SA, Choi W, Hullugundi SK, Dolkas J, Angert M, Nishihara T, Yaksh TL, Strongin AY, Shubayev VI. Reciprocal relationship between membrane type 1 matrix metalloproteinase and the algesic peptides of myelin basic protein contributes to chronic neuropathic pain. Brain Behav Immun 2017; 60:282-292. [PMID: 27833045 PMCID: PMC5214638 DOI: 10.1016/j.bbi.2016.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/21/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022] Open
Abstract
Myelin basic protein (MBP) is an auto-antigen able to induce intractable pain from innocuous mechanical stimulation (mechanical allodynia). The mechanisms provoking this algesic MBP activity remain obscure. Our present study demonstrates that membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14) releases the algesic MBP peptides from the damaged myelin, which then reciprocally enhance the expression of MT1-MMP in nerve to sustain a state of allodynia. Specifically, MT1-MMP expression and activity in rat sciatic nerve gradually increased starting at day 3 after chronic constriction injury (CCI). Inhibition of the MT1-MMP activity by intraneural injection of the function-blocking human DX2400 monoclonal antibody at day 3 post-CCI reduced mechanical allodynia and neuropathological signs of Wallerian degeneration, including axon demyelination, degeneration, edema and formation of myelin ovoids. Consistent with its role in allodynia, the MT1-MMP proteolysis of MBP generated the MBP69-86-containing epitope sequences in vitro. In agreement, the DX2400 therapy reduced the release of the MBP69-86 epitope in CCI nerve. Finally, intraneural injection of the algesic MBP69-86 and control MBP2-18 peptides differentially induced MT1-MMP and MMP-2 expression in the nerve. With these data we offer a novel, self-sustaining mechanism of persistent allodynia via the positive feedback loop between MT1-MMP and the algesic MBP peptides. Accordingly, short-term inhibition of MT1-MMP activity presents a feasible pharmacological approach to intervene in this molecular circuit and the development of neuropathic pain.
Collapse
Affiliation(s)
- Sanghyun Hong
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA; Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, South Korea
| | - Albert G Remacle
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sergei A Shiryaev
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Wonjun Choi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA; Department of Anesthesiology and Pain Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, South Korea
| | - Swathi K Hullugundi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Mila Angert
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Tasuku Nishihara
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Alex Y Strongin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Veronica I Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|
15
|
Substitutions mimicking deimination and phosphorylation of 18.5-kDa myelin basic protein exert local structural effects that subtly influence its global folding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1262-77. [DOI: 10.1016/j.bbamem.2016.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/30/2016] [Accepted: 02/17/2016] [Indexed: 11/20/2022]
|
16
|
Myelin Basic Protein Citrullination in Multiple Sclerosis: A Potential Therapeutic Target for the Pathology. Neurochem Res 2016; 41:1845-56. [PMID: 27097548 DOI: 10.1007/s11064-016-1920-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/02/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Multiple sclerosis (MS) is a multifactorial demyelinating disease characterized by neurodegenerative events and autoimmune response against myelin component. Citrullination or deimination, a post-translational modification of protein-bound arginine into citrulline, catalyzed by Ca(2+) dependent peptidylarginine deiminase enzyme (PAD), plays an essential role in physiological processes include gene expression regulation, apoptosis and the plasticity of the central nervous system, while aberrant citrullination can generate new epitopes, thus involving in the initiation and/or progression of autoimmune disorder like MS. Myelin basic protein (MBP) is the major myelin protein and is generally considered to maintain the stability of the myelin sheath. This review describes the MBP citrullination and its consequence, as well as offering further support for the "inside-out" hypothesis that MS is primarily a neurodegenerative disease with secondary inflammatory demyelination. In addition, it discusses the role of MBP citrullination in the immune inflammation and explores the potential of inhibition of PAD enzymes as a therapeutic strategy for the disease.
Collapse
|
17
|
Krajnak K, Raju SG, Miller GR, Johnson C, Waugh S, Kashon ML, Riley DA. Long-term daily vibration exposure alters current perception threshold (CPT) sensitivity and myelinated axons in a rat-tail model of vibration-induced injury. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:101-111. [PMID: 26852665 DOI: 10.1080/15287394.2015.1104272] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Repeated exposure to hand-transmitted vibration through the use of powered hand tools may result in pain and progressive reductions in tactile sensitivity. The goal of the present study was to use an established animal model of vibration-induced injury to characterize changes in sensory nerve function and cellular mechanisms associated with these alterations. Sensory nerve function was assessed weekly using the current perception threshold test and tail-flick analgesia test in male Sprague-Dawley rats exposed to 28 d of tail vibration. After 28 d of exposure, Aβ fiber sensitivity was reduced. This reduction in sensitivity was partly attributed to structural disruption of myelin. In addition, the decrease in sensitivity was also associated with a reduction in myelin basic protein and 2',3'- cyclic nucleotide phosphodiasterase (CNPase) staining in tail nerves, and an increase in circulating calcitonin gene-related peptide (CGRP) concentrations. Changes in Aβ fiber sensitivity and CGRP concentrations may serve as early markers of vibration-induced injury in peripheral nerves. It is conceivable that these markers may be utilized to monitor sensorineural alterations in workers exposed to vibration to potentially prevent additional injury.
Collapse
Affiliation(s)
- Kristine Krajnak
- a Engineering and Control Technology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Sandya G Raju
- b Department of Cell Biology, Neurobiology & Anatomy , Medical College of Wisconsin , Milwaukee , Wisconsin , USA
| | - G Roger Miller
- a Engineering and Control Technology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Claud Johnson
- a Engineering and Control Technology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Stacey Waugh
- a Engineering and Control Technology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Michael L Kashon
- c Biostatistics and Epidemiology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Danny A Riley
- b Department of Cell Biology, Neurobiology & Anatomy , Medical College of Wisconsin , Milwaukee , Wisconsin , USA
| |
Collapse
|
18
|
Zhuo F, Qiu G, Xu J, Yang M, Wang K, Liu H, Huang J, Lu W, Liu Q, Xu S, Huang S, Sun S. Both endoplasmic reticulum and mitochondrial pathways are involved in oligodendrocyte apoptosis induced by capsular hemorrhage. Mol Cell Neurosci 2016; 72:64-71. [PMID: 26808219 DOI: 10.1016/j.mcn.2016.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 12/23/2015] [Accepted: 01/21/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The white matter injury caused by intracerebral hemorrhage (ICH) includes demyelination and axonal injury. Oligodendrocyte apoptosis is reported to be involved in triggering demyelination. Experimental observations indicate that both endoplasmic reticulum and mitochondrial pathways could mediate cell apoptosis. The purpose of this study was to investigate the demyelination and the possible mechanisms in an autologous blood-injected rat model of internal capsule hemorrhage. METHODS Transmission electron microscope was applied to examine the pathological changes of myelinated nerve fibers in internal capsule. Western blotting was used to detect the myelin basic protein (MBP) which was an important component of myelin sheath. Double immunofluorescence and Western blotting were used to determine the apoptosis and apoptotic pathways. The levels of caspase-12 (a representative protein of endoplasmic reticulum stress) and cytochrome c (an apoptosis factor released from mitochondria) were assessed in this study. RESULTS Demyelination occurred on day 1, 3, and 7 after ICH onset. Myelin sheaths of internal capsule nerve fibers were swollen and broken down in ICH groups. MBP expression showed a downregulation after ICH with its minimum value occurred on day 7 post-ICH. Besides, neuron and oligodendrocyte apoptosis were observed at different time intervals post-ICH accompanied with an upregulated caspase-12 expression and enhanced cytochrome c release. CONCLUSIONS These results suggested that oligodendrocyte and neuron apoptosis may contribute to the demyelination induced by internal capsule hemorrhage and oligodendrocyte apoptosis is positively mediated through both endoplasmic reticulum and mitochondrial pathways.
Collapse
Affiliation(s)
- Fei Zhuo
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - GuoPing Qiu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jin Xu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Mei Yang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - KeJian Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Juan Huang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - WeiTian Lu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qian Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - ShiYe Xu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - SiQin Huang
- Traditional Chinese Medical College, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - ShanQuan Sun
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
19
|
MyelStones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochem J 2015; 472:17-32. [DOI: 10.1042/bj20150710] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The classic isoforms of myelin basic protein (MBP, 14–21.5 kDa) are essential to formation of the multilamellar myelin sheath of the mammalian central nervous system (CNS). The predominant 18.5-kDa isoform links together the cytosolic surfaces of oligodendrocytes, but additionally participates in cytoskeletal turnover and membrane extension, Fyn-mediated signalling pathways, sequestration of phosphoinositides and maintenance of calcium homoeostasis. All MBP isoforms are intrinsically disordered proteins (IDPs) that interact via molecular recognition fragments (MoRFs), which thereby undergo local disorder-to-order transitions. Their conformations and associations are modulated by environment and by a dynamic barcode of post-translational modifications, particularly phosphorylation by mitogen-activated and other protein kinases and deimination [a hallmark of demyelination in multiple sclerosis (MS)]. The MBPs are thus to myelin what basic histones are to chromatin. Originally thought to be merely structural proteins forming an inert spool, histones are now known to be dynamic entities involved in epigenetic regulation and diseases such as cancer. Analogously, the MBPs are not mere adhesives of compact myelin, but active participants in oligodendrocyte proliferation and in membrane process extension and stabilization during myelinogenesis. A central segment of these proteins is pivotal in membrane-anchoring and SH3 domain (Src homology 3) interaction. We discuss in the present review advances in our understanding of conformational conversions of this classic basic protein upon membrane association, including new thermodynamic analyses of transitions into different structural ensembles and how a shift in the pattern of its post-translational modifications is associated with the pathogenesis and potentially onset of demyelination in MS.
Collapse
|
20
|
Kan QC, Lv P, Zhang XJ, Xu YM, Zhang GX, Zhu L. Matrine protects neuro-axon from CNS inflammation-induced injury. Exp Mol Pathol 2015; 98:124-30. [PMID: 25576296 DOI: 10.1016/j.yexmp.2015.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/05/2015] [Indexed: 11/20/2022]
Abstract
Neuro-axonal injury in the central nervous system (CNS) is one of the major pathological hallmarks of experimental autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis (MS). Matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae Flave, has recently been shown to effectively suppress EAE through an anti-inflammatory mechanism. However, whether MAT can also protect myelin/axons from damage is not known. In the present study we show that, while untreated rats developed severe clinical disease, CNS inflammatory demyelination, and axonal damage, these clinical and pathological signs were significantly reduced by MAT treatment. Consistently, MAT treatment reduced the concentration of myelin basic protein in serum and downregulated expression of β-amyloid (Aβ) and B-site APP cleaving enzyme 1 (BACE-1) in the CNS. Further, the CNS of MAT-treated rats exhibited increased expression of brain-derived neurotrophic factor (BDNF), an important factor for neuronal survival and axonal growth. Together, these results demonstrate that MAT effectively prevented neuro-axonal injury, which can likely be attributed to inhibiting risk factors such as BACE-1 and upregulating neuroprotective factors such as BDNF. We conclude that this novel natural reagent, MAT, which effectively protects neuro-axons from CNS inflammation-induced damage, could be a potential candidate for the treatment of neurodegenerative diseases such as MS.
Collapse
Affiliation(s)
- Quan-Cheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Peng Lv
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xiao-Jian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yu-Ming Xu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Lin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
21
|
Localisation of citrullinated proteins in normal appearing white matter and lesions in the central nervous system in multiple sclerosis. J Neuroimmunol 2014; 273:85-95. [DOI: 10.1016/j.jneuroim.2014.05.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/29/2014] [Accepted: 05/15/2014] [Indexed: 01/07/2023]
|
22
|
Belogurov A, Kudriaeva A, Kuzina E, Smirnov I, Bobik T, Ponomarenko N, Kravtsova-Ivantsiv Y, Ciechanover A, Gabibov A. Multiple sclerosis autoantigen myelin basic protein escapes control by ubiquitination during proteasomal degradation. J Biol Chem 2014; 289:17758-66. [PMID: 24739384 PMCID: PMC4067209 DOI: 10.1074/jbc.m113.544247] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The vast majority of cellular proteins are degraded by the 26S proteasome after their ubiquitination. Here, we report that the major component of the myelin multilayered membrane sheath, myelin basic protein (MBP), is hydrolyzed by the 26S proteasome in a ubiquitin-independent manner both in vitro and in mammalian cells. As a proteasomal substrate, MBP reveals a distinct and physiologically relevant concentration range for ubiquitin-independent proteolysis. Enzymatic deimination prevents hydrolysis of MBP by the proteasome, suggesting that an abnormally basic charge contributes to its susceptibility toward proteasome-mediated degradation. To our knowledge, our data reveal the first case of a pathophysiologically important autoantigen as a ubiquitin-independent substrate of the 26S proteasome.
Collapse
Affiliation(s)
- Alexey Belogurov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow V-437, Russia, the Institute of Gene Biology, Russian Academy of Sciences, 117334 Moscow, Russia
| | - Anna Kudriaeva
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow V-437, Russia
| | - Ekaterina Kuzina
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow V-437, Russia, the Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia, and
| | - Ivan Smirnov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow V-437, Russia, the Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia, and
| | - Tatyana Bobik
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow V-437, Russia
| | - Natalia Ponomarenko
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow V-437, Russia
| | - Yelena Kravtsova-Ivantsiv
- the Cancer and Vascular Biology Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Aaron Ciechanover
- the Cancer and Vascular Biology Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Alexander Gabibov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow V-437, Russia, the Institute of Gene Biology, Russian Academy of Sciences, 117334 Moscow, Russia, the Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia, and
| |
Collapse
|
23
|
Weaver-Mikaere L, Gunn AJ, Bennet L, Mitchell MD, Fraser M. Inhibition of matrix metalloproteinases-2/-9 transiently reduces pre-oligodendrocyte loss during lipopolysaccharide- but not tumour necrosis factor-alpha-induced inflammation in fetal ovine glial culture. Dev Neurosci 2013; 35:461-73. [PMID: 24193164 DOI: 10.1159/000354862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 08/07/2013] [Indexed: 11/19/2022] Open
Abstract
To determine whether increased matrix metalloproteinase (MMP) proteolytic activity plays a pathological role in infection/inflammation-induced preterm brain injury, primary cultures of preterm (day 90 of gestation; term 145 days) fetal ovine mixed glia were exposed to 24-96 h of lipopolysaccharide (LPS, 1 μg/ml) or tumour necrosis factor-α (TNF-α, 100 ng/ml). MMP-2 mRNA levels were significantly increased after TNF-α (96 h) and LPS exposure (48 and 96 h), and MMP-9 mRNA levels were significantly increased at 48 and 96 h after TNF-α. On zymography, the active form of secreted MMP-2 was significantly increased 24 h after LPS, but not TNF-α. Both active and latent forms of MMP-9 gelatinolytic activity were significantly increased by TNF-α (96 h) and LPS (72 and 96 h). On reverse zymography, inhibitory activity of TIMP-1 but not TIMP-2 was significantly increased by TNF-α and LPS. SB-3CT-mediated MMP-2 and MMP-9 inhibition transiently reduced LPS-induced oligodendrocyte cell death but had no effect during TNF-α exposure. Collectively, these observations suggest a limited, transient effect of MMPs on immature white matter damage associated with infection but not TNF-α-mediated inflammation.
Collapse
|
24
|
D'Aversa TG, Eugenin EA, Lopez L, Berman JW. Myelin basic protein induces inflammatory mediators from primary human endothelial cells and blood-brain barrier disruption: implications for the pathogenesis of multiple sclerosis. Neuropathol Appl Neurobiol 2013; 39:270-83. [PMID: 22524708 DOI: 10.1111/j.1365-2990.2012.01279.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, characterized by demyelination of white matter, loss of myelin forming oligodendrocytes, changes in the blood-brain barrier (BBB) and leucocyte infiltration. Myelin basic protein (MBP) is a component of the myelin sheath. Degradation of myelin is believed to be an important step that leads to MS pathology. Transmigration of leucocytes across the vasculature, and a compromised BBB participate in the neuroinflammation of MS. We examined the expression and regulation of the chemokine (C-C motif) ligand 2 (CCL2) and the cytokine interleukin-6 (IL-6) in human endothelial cells (EC), a component of the BBB, after treatment with MBP. METHODS EC were treated with full-length MBP. CCL2 and IL-6 protein were determined by ELISA. Western blot analysis was used to determine signalling pathways. A BBB model was treated with MBP and permeability was assayed using albumin conjugated to Evan's blue dye. The levels of the tight junction proteins occludin and claudin-1, and matrix metalloprotease (MMP)-2 were assayed by Western blot. RESULTS MBP significantly induced CCL2 and IL-6 protein from EC. This induction was partially mediated by the p38 MAPK pathway as there was phosphorylation after MBP treatment. MBP treatment of a BBB model caused an increase in permeability that correlated with a decrease in occludin and claudin-1, and an induction of MMP2. CONCLUSION These data demonstrate that MBP induces chemotactic and inflammatory mediators. MBP also alters BBB permeability and tight junction expression, indicating additional factors that may contribute to the BBB breakdown characteristic of MS.
Collapse
Affiliation(s)
- T G D'Aversa
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | | | |
Collapse
|
25
|
Huang SQ, Tang CL, Sun SQ, Yang C, Xu J, Wang KJ, Lu WT, Huang J, Zhuo F, Qiu GP, Wu XY, Qi W. Demyelination initiated by oligodendrocyte apoptosis through enhancing endoplasmic reticulum-mitochondria interactions and Id2 expression after compressed spinal cord injury in rats. CNS Neurosci Ther 2013; 20:20-31. [PMID: 23937638 DOI: 10.1111/cns.12155] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Demyelination is one of the most important pathological factors of spinal cord injury. Oligodendrocyte apoptosis is involved in triggering demyelination. However, fewer reports on pathological changes and mechanism of demyelination have been presented from compressed spinal cord injury (CSCI). The relative effect of oligodendrocyte apoptosis on CSCI-induced demyelination and the mechanism of apoptosis remain unclear. AIMS In this study, a custom-designed model of CSCI was used to determine whether or not demyelination and oligodendrocyte apoptosis occur after CSCI. The pathological changes in axonal myelinated fibers were investigated by osmic acid staining and transmission electron microscopy. Myelin basic protein (MBP), which is used in myelin formation in the central nervous system, was detected by immunofluorescence and Western blot assays. Oligodendrocyte apoptosis was revealed by in situ terminal-deoxytransferase-mediated dUTP nick-end labeling. To analyze the mechanism of oligodendrocyte apoptosis, we detected caspase-12 [a representative of endoplasmic reticulum (ER) stress], cytochrome c (an apoptotic factor and hallmark of mitochondria), and inhibitor of DNA binding 2 (Id2, an oligodendrocyte lineage gene) by immunofluorescence and Western blot assays. RESULTS The custom-designed model of CSCI was successfully established. The rats were spastic, paralyzed, and incontinent. The Basso, Beattie, and Bresnahan (BBB) locomotor rating scale scores were decreased as time passed. The compressed spinal cord slices were ischemic. Myelin sheaths became swollen and degenerative; these sheaths were broken down as time passed after CSCI. MBP expression was downregulated after CSCI and consistent with the degree of demyelination. Oligodendrocyte apoptosis occurred at 1 day after CSCI and increased as caspase-12 expression was enhanced and cytochrome c was released. Id2 was distributed widely in the white matter. Id2 expression increased with time after CSCI. CONCLUSION Demyelination occurred after CSCI and might be partly caused by oligodendrocyte apoptosis, which was positively correlated with ER-mitochondria interactions and enhanced Id2 expression after CSCI in rats.
Collapse
Affiliation(s)
- Si-Qin Huang
- Traditional Chinese Medicine College, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Van Hove I, Lemmens K, Van de Velde S, Verslegers M, Moons L. Matrix metalloproteinase-3 in the central nervous system: a look on the bright side. J Neurochem 2012; 123:203-16. [PMID: 22862420 DOI: 10.1111/j.1471-4159.2012.07900.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/11/2012] [Accepted: 07/27/2012] [Indexed: 01/03/2023]
Abstract
Matrix metalloproteinases (MMPs) are a large family of proteases involved in many cell-matrix and cell-cell signalling processes through activation, inactivation or release of extracellular matrix (ECM) and non-ECM molecules, such as growth factors and receptors. Uncontrolled MMP activities underlie the pathophysiology of many disorders. Also matrix metalloproteinase-3 (MMP-3) or stromelysin-1 contributes to several pathologies, such as cancer, asthma and rheumatoid arthritis, and has also been associated with neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and multiple sclerosis. However, based on defined MMP spatiotemporal expression patterns, the identification of novel candidate molecular targets and in vitro and in vivo studies, a beneficial role for MMPs in CNS physiology and recovery is emerging. The main purpose of this review is to shed light on the recently identified roles of MMP-3 in normal brain development and in plasticity and regeneration after CNS injury and disease. As such, MMP-3 is correlated with neuronal migration and neurite outgrowth and guidance in the developing CNS and contributes to synaptic plasticity and learning in the adult CNS. Moreover, a strict spatiotemporal MMP-3 up-regulation in the injured or diseased CNS might support remyelination and neuroprotection, as well as genesis and migration of stem cells in the damaged brain.
Collapse
Affiliation(s)
- Inge Van Hove
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
27
|
Liu H, Shiryaev SA, Chernov AV, Kim Y, Shubayev I, Remacle AG, Baranovskaya S, Golubkov VS, Strongin AY, Shubayev VI. Immunodominant fragments of myelin basic protein initiate T cell-dependent pain. J Neuroinflammation 2012; 9:119. [PMID: 22676642 PMCID: PMC3416717 DOI: 10.1186/1742-2094-9-119] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/23/2012] [Indexed: 12/11/2022] Open
Abstract
Background The myelin sheath provides electrical insulation of mechanosensory Aβ-afferent fibers. Myelin-degrading matrix metalloproteinases (MMPs) damage the myelin sheath. The resulting electrical instability of Aβ-fibers is believed to activate the nociceptive circuitry in Aβ-fibers and initiate pain from innocuous tactile stimulation (mechanical allodynia). The precise molecular mechanisms, responsible for the development of this neuropathic pain state after nerve injury (for example, chronic constriction injury, CCI), are not well understood. Methods and results Using mass spectrometry of the whole sciatic nerve proteome followed by bioinformatics analyses, we determined that the pathways, which are classified as the Infectious Disease and T-helper cell signaling, are readily activated in the nerves post-CCI. Inhibition of MMP-9/MMP-2 suppressed CCI-induced mechanical allodynia and concomitant TNF-α and IL-17A expression in nerves. MMP-9 proteolysis of myelin basic protein (MBP) generated the MBP84-104 and MBP68-86 digest peptides, which are prominent immunogenic epitopes. In agreement, the endogenous MBP69-86 epitope co-localized with MHCII and MMP-9 in Schwann cells and along the nodes of Ranvier. Administration of either the MBP84-104 or MBP68-86 peptides into the naïve nerve rapidly produced robust mechanical allodynia with a concomitant increase in T cells and MHCII-reactive cell populations at the injection site. As shown by the genome-wide expression profiling, a single intraneural MBP84-104 injection stimulated the inflammatory, immune cell trafficking, and antigen presentation pathways in the injected naïve nerves and the associated spinal cords. Both MBP84-104-induced mechanical allodynia and characteristic pathway activation were remarkably less prominent in the T cell-deficient athymic nude rats. Conclusions These data implicate MBP as a novel mediator of pain. Furthermore, the action of MMPs expressed within 1 day post-injury is critical to the generation of tactile allodynia, neuroinflammation, and the immunodominant MBP digest peptides in nerve. These MBP peptides initiate mechanical allodynia in both a T cell-dependent and -independent manner. In the course of Wallerian degeneration, the repeated exposure of the cryptic MBP epitopes, which are normally sheltered from immunosurveillance, may induce the MBP-specific T cell clones and a self-sustaining immune reaction, which may together contribute to the transition of acute pain into a chronic neuropathic pain state.
Collapse
Affiliation(s)
- Huaqing Liu
- Department of Anesthesiology, University of California, San Diego, 9500 Gilman Dr., Mail Box 0629, La Jolla, CA 92093-0629, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Matrix metalloproteinases and their tissue inhibitors in cuprizone-induced demyelination and remyelination of brain white and gray matter. J Neuropathol Exp Neurol 2011; 70:758-69. [PMID: 21865884 DOI: 10.1097/nen.0b013e3182294fad] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Apart from their involvement in the pathogenesis of demyelinating diseases such as multiple sclerosis, there is emerging evidence that matrix metalloproteinases (MMPs) also promote remyelination. We investigated region-specific expression patterns of 11 MMPs and 4 tissueinhibitors of metalloproteinases (TIMPs) in the cuprizone murine demyelination model. Messenger RNA (mRNA) was extracted at different time points of exposure to cuprizone from microdissected samples of corpus callosum, cortex, and ex vivo isolated microglia and analyzedusing quantitative reverse transcription-polymerase chain reaction.Matrix metalloproteinase 12 and TIMP-1 mRNA were significantly upregulated versus age-matched controls in both areas during demyelination and remyelination. Matrix metalloproteinases 3, 11, and 14 mRNA were upregulated only in white matter during remyelination. Matrix metalloproteinase 24 mRNA was downregulated during both demyelination and remyelination. To identify potential cellular sources of the MMPs and TIMPs, we isolated microglia and detected high MMP-12and TIMP-2 mRNA upregulation at the peak of demyelination.By immunohistochemistry, MMP-3 protein was localized in astrocytes and MMP-12 was identified in microglia, astrocytes, and cells of oligodendrocyte lineage. These findings suggest that MMPs and TIMPs have roles in the regulation of demyelination and remyelination in thismodel. Moreover, differences in the expression levels of these genesbetween white and gray matter reveal region-specific molecularmechanisms.
Collapse
|
29
|
Bradford CM, Cross AK, Haddock G, Woodroofe N, Sharrack B. Citrullination of CNS proteins in the pathogenesis of multiple sclerosis. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis is a chronic immune-mediated disease of the CNS. Although it is a predominantly T-cell mediated condition, B cells and autoreactive antibodies play an important role in its pathogenesis, with the presence of oligoclonal immunoglobulins in the cerebrospinal fluid being an important diagnostic indicator. The target of these immunoglobulins has not yet been fully characterized. However, post-translational modifications of CNS-specific proteins are thought to contribute to their production through the generation of novel epitopes. One post-translational modification in particular, the conversion of the amino acid arginine to the nonstandard amino acid, citrulline, has been increasingly described in the literature as a factor in the pathogenesis of this condition. In this article, we summarize and discuss the current knowledge on citrullination in multiple sclerosis, the importance of this in relation to its pathogenesis and, potentially, its diagnosis.
Collapse
Affiliation(s)
| | - Alison Kay Cross
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Gail Haddock
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Nicola Woodroofe
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Basil Sharrack
- Department of Neurology, The Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK
| |
Collapse
|
30
|
Bacheva AV, Belogurov AA, Kuzina ES, Serebriakova MV, Ponomarenko NA, Knorre VD, Govorun VM, Gabibov AG. [Functional degradation of myelin basic protein. Proteomic approach]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:45-54. [PMID: 21460880 DOI: 10.1134/s1068162011010031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteolytic degradation of autoantigens is of prime importance in current biochemistry and immunology. The most fundamental issue in this field is the functional role of peptides produced when the specificity of hydrolysis changes during the shift from health to disease and from normal state to pathology. The identification of specific peptide fragments in many cases proposes the diagnostic and prognostic criterion in the pathology progression. The aim of this work is comparative study of the degradation peculiarities of one of the main neuroantigen, myelin basic protein by proteases, activated during progress of pathological demyelinating process, and by proteasome of different origin. The comparison of specificity of different studied biocatalysts gives reason to discuss the critical change in the set of myelin basic protein fragments capable to be presented by major histocompatibility complex class I during neurodegeneration, which can promote the progress of autoimmune pathological process.
Collapse
|
31
|
Hsu CY, Henry J, Raymond AA, Méchin MC, Pendaries V, Nassar D, Hansmann B, Balica S, Burlet-Schiltz O, Schmitt AM, Takahara H, Paul C, Serre G, Simon M. Deimination of human filaggrin-2 promotes its proteolysis by calpain 1. J Biol Chem 2011; 286:23222-33. [PMID: 21531719 DOI: 10.1074/jbc.m110.197400] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Filaggrin-2 (FLG2), a member of the S100-fused type protein family, shares numerous features with filaggrin (FLG), a key protein implicated in the epidermal barrier functions. Both display a related structural organization, an identical pattern of expression and localization in human epidermis, and proteolytic processing of a large precursor. Here, we tested whether FLG2 was a substrate of calpain 1, a calcium-dependent protease directly involved in FLG catabolism. In addition, deimination being critical for FLG degradation, we analyzed whether FLG2 deimination interfered with its proteolytic processing. With this aim, we first produced a recombinant form of FLG2 corresponding to subunits B7 to B10 fused to a COOH-terminal His tag. Incubation with calpain 1 in the presence of calcium induced a rapid degradation of the recombinant protein and the production of several peptides, as shown by Coomassie Blue-stained gels and Western blotting with anti-FLG2 or anti-His antibodies. MALDI-TOF mass spectrometry confirmed this result and further evidenced the production of non-immunoreactive smaller peptides. The degradation was not observed when a calpain 1-specific inhibitor was added. The calpain cleavage sites identified by Edman degradation were regularly present in the B-type repeats of FLG2. Moreover, immunohistochemical analysis of normal human skin revealed colocalization of FLG2 and calpain 1 in the upper epidermis. Finally, the FLG2 deiminated by human peptidylarginine deiminases was shown to be more susceptible to calpain 1 than the unmodified protein. Altogether, these data demonstrate that calpain 1 is essential for the proteolytic processing of FLG2 and that deimination accelerates this process.
Collapse
|
32
|
Xie W, Uchida H, Nagai J, Ueda M, Chun J, Ueda H. Calpain-mediated down-regulation of myelin-associated glycoprotein in lysophosphatidic acid-induced neuropathic pain. J Neurochem 2010; 113:1002-11. [PMID: 20420580 DOI: 10.1111/j.1471-4159.2010.06664.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lysophosphatidic acid receptor (LPA(1)) signaling initiates neuropathic pain through demyelination of the dorsal root (DR). Although LPA is found to cause down-regulation of myelin proteins underlying demyelination, the detailed mechanism remains to be determined. In the present study, we found that a single intrathecal injection of LPA evoked a dose- and time-dependent down-regulation of myelin-associated glycoprotein (MAG) in the DR through LPA(1) receptor. A similar event was also observed in ex vivo DR cultures. Interestingly, LPA-induced down-regulation of MAG was significantly inhibited by calpain inhibitors (calpain inhibitor X, E-64 and E-64d) and LPA markedly induced calpain activation in the DR. The pre-treatment with calpain inhibitors attenuated LPA-induced neuropathic pain behaviors such as hyperalgesia and allodynia. Moreover, we found that sciatic nerve injury activates calpain activity in the DR in a LPA(1) receptor-dependent manner. The E-64d treatments significantly blocked nerve injury-induced MAG down-regulation and neuropathic pain. However, there was no significant calpain activation in the DR by complete Freund's adjuvant treatment, and E-64d failed to show anti-hyperalgesic effects in this inflammation model. The present study provides strong evidence that LPA-induced calpain activation plays a crucial role in the manifestation of neuropathic pain through MAG down-regulation in the DR.
Collapse
Affiliation(s)
- Weijiao Xie
- Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Méchin MC, Sebbag M, Arnaud J, Nachat R, Foulquier C, Adoue V, Coudane F, Duplan H, Schmitt AM, Chavanas S, Guerrin M, Serre G, Simon M. Update on peptidylarginine deiminases and deimination in skin physiology and severe human diseases. Int J Cosmet Sci 2010; 29:147-68. [PMID: 18489346 DOI: 10.1111/j.1467-2494.2007.00377.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Deimination (or citrullination) is a recently described post-translational modification, but its consequences are not yet well understood. It is catalysed by peptidylarginine deiminases (PADs). These enzymes transform arginyl residues involved in a peptidyl link into citrullyl residues in a calcium-dependent manner. Several PAD substrates have already been identified like filaggrin and keratins K1 and K10 in the epidermis, trichohyalin in hair follicles, but also ubiquitous proteins like histones. PADs act in a large panel of physiological functions as cellular differentiation or gene regulation. It has been suggested that deimination plays a role in many major diseases such as rheumatoid arthritis, multiple sclerosis, Alzheimer's disease and psoriasis. Five human genes (PADIs), encoding five highly conserved paralogous enzymes (PAD1-4 and 6), have been characterized. These genes are clustered in a single locus, at 1p35-36 in man. Only PAD1-3 are expressed in human epidermis. PADs seem to be controlled at transcriptional, translational and activity levels and they present particular substrate specificities. In this review, we shall discuss these main biochemical, genetic and functional aspects of PADs together with their pathophysiological implications.
Collapse
Affiliation(s)
- M-C Méchin
- University of Toulouse III, UMR5165, Institut Fédératif de Recherche Claude de Préval, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Walker EJ, Rosenberg GA. Divergent role for MMP-2 in myelin breakdown and oligodendrocyte death following transient global ischemia. J Neurosci Res 2010; 88:764-73. [PMID: 19830840 DOI: 10.1002/jnr.22257] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transient global ischemia causes delayed white matter injury to the brain with oligodendrocyte (OLG) death and myelin breakdown. There is increasing evidence that hypoxia may be involved in several diseases of the white matter, including multiple sclerosis, vascular dementia, and ischemia. Matrix metalloproteinases (MMPs) are increased in rat and mouse models of hypoxic hypoperfusion and have been associated with OLG death. However, whether the MMPs act on myelin or OLGs remains unresolved. We hypothesized that delayed expression of MMPs caused OLG death and myelin breakdown. To test the hypothesis, adult mice underwent hypoxic hypoperfusion with transient bilateral occlusion of the carotid arteries. After 3 days of reperfusion, ischemic white matter had increased reactivity of astrocytes and microglia, MMP-2 localization in astrocytes, and increased protein expression and activity of MMP-2. In addition, there was a significant loss of myelin basic protein (MBP) by Western blot and caspase-3- mediated OLG death. Treatment with the broad-spectrum MMP inhibitor, BB-94, significantly decreased astrocyte reactivity and MMP-2 activity. More importantly, it reduced MBP breakdown. However, MMP inhibition had no effect on OLG loss. Our results implicate MMPs released by reactive astrocytes in delayed myelin degradation, while OLG death occurs by an MMP-independent mechanism. We propose that MMP-mediated myelin loss is important in hypoxic injury to the white matter.
Collapse
Affiliation(s)
- Espen J Walker
- Departments of Neurology, Neurosciences, and Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | |
Collapse
|
35
|
Belogurov A, Kozyr A, Ponomarenko N, Gabibov A. Catalytic antibodies: balancing between Dr. Jekyll and Mr. Hyde. Bioessays 2010; 31:1161-71. [PMID: 19795406 DOI: 10.1002/bies.200900020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The immunoglobulin molecule is a perfect template for the de novo generation of biocatalytic functions. Catalytic antibodies, or abzymes, obtained by the structural mimicking of enzyme active sites have been shown to catalyze numerous chemical reactions. Natural enzyme analogs for some of these reactions have not yet been found or possibly do not exist at all. Nowadays, the dramatic breakthrough in antibody engineering and expression technologies has promoted a considerable expansion of immunoglobulin's medical applications and is offering abzymes a unique chance to become a promising source of high-precision "catalytic vaccines." At the same time, the discovery of natural abzymes on the background of autoimmune disease revealed their beneficial and pathogenic roles in the disease progression. Thus, the conflicting Dr. Jekyll and Mr. Hyde protective and destructive essences of catalytic antibodies should be carefully considered in the development of therapeutic abzyme applications.
Collapse
Affiliation(s)
- Alexey Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | | | | | | |
Collapse
|
36
|
Uysal H, Nandakumar KS, Kessel C, Haag S, Carlsen S, Burkhardt H, Holmdahl R. Antibodies to citrullinated proteins: molecular interactions and arthritogenicity. Immunol Rev 2010; 233:9-33. [DOI: 10.1111/j.0105-2896.2009.00853.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Belogurov AA, Ponomarenko NA, Govorun VM, Gabibov AG, Bacheva AV. Site-specific degradation of myelin basic protein by the proteasome. DOKL BIOCHEM BIOPHYS 2009; 425:68-72. [PMID: 19496324 DOI: 10.1134/s1607672909020033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- A A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | | | | | | | | |
Collapse
|
38
|
Matrix metalloproteinase proteolysis of the myelin basic protein isoforms is a source of immunogenic peptides in autoimmune multiple sclerosis. PLoS One 2009; 4:e4952. [PMID: 19300513 PMCID: PMC2654159 DOI: 10.1371/journal.pone.0004952] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/18/2009] [Indexed: 01/09/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) play a significant role in the fragmentation of myelin basic protein (MBP) and demyelination leading to autoimmune multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). The classic MBP isoforms are predominantly expressed in the oligodendrocytes of the CNS. The splice variants of the single MBP gene (Golli-MBP BG21 and J37) are widely expressed in the neurons and also in the immune cells. The relative contribution of the individual MMPs to the MBP cleavage is not known. Methodology/Principal Findings To elucidate which MMP plays the primary role in cleaving MBP, we determined the efficiency of MMP-2, MMP-8, MMP-9, MMP-10, MMP-12, MT1-MMP, MT2-MMP, MT3-MMP, MT4-MMP, MT5-MMP and MT6-MMP in the cleavage of the MBP, BG21 and J37 isoforms in the in vitro cleavage reactions followed by mass-spectroscopy analysis of the cleavage fragments. As a result, we identified the MMP cleavage sites and the sequence of the resulting fragments. We determined that MBP, BG21 and J37 are highly sensitive to redundant MMP proteolysis. MT6-MMP (initially called leukolysin), however, was superior over all of the other MMPs in cleaving the MBP isoforms. Using the mixed lymphocyte culture assay, we demonstrated that MT6-MMP proteolysis of the MBP isoforms readily generated, with a near quantitative yield, the immunogenic N-terminal 1–15 MBP peptide. This peptide selectively stimulated the proliferation of the PGPR7.5 T cell clone isolated from mice with EAE and specific for the 1–15 MBP fragment presented in the MHC H-2U context. Conclusions/Significance In sum, our biochemical observations led us to hypothesize that MT6-MMP, which is activated by furin and associated with the lipid rafts, plays an important role in MS pathology and that MT6-MMP is a novel and promising drug target in MS especially when compared with other individual MMPs.
Collapse
|
39
|
Musse AA, Li Z, Ackerley CA, Bienzle D, Lei H, Poma R, Harauz G, Moscarello MA, Mastronardi FG. Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. Dis Model Mech 2008; 1:229-40. [PMID: 19093029 DOI: 10.1242/dmm.000729] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 08/12/2008] [Indexed: 11/20/2022] Open
Abstract
Demyelination in the central nervous system is the hallmark feature in multiple sclerosis (MS). The mechanism resulting in destabilization of myelin is a complex multi-faceted process, part of which involves deimination of myelin basic protein (MBP). Deimination, the conversion of protein-bound arginine to citrulline, is mediated by the peptidylarginine deiminase (PAD) family of enzymes, of which the PAD2 and PAD4 isoforms are present in myelin. To test the hypothesis that PAD contributes to destabilization of myelin in MS, we developed a transgenic mouse line (PD2) containing multiple copies of the cDNA encoding PAD2, under the control of the MBP promoter. Using previously established criteria, clinical signs were more severe in PD2 mice than in their normal littermates. The increase in PAD2 expression and activity in white matter was demonstrated by immunohistochemistry, reverse transcriptase-PCR, enzyme activity assays, and increased deimination of MBP. Light and electron microscopy revealed more severe focal demyelination and thinner myelin in the PD2 homozygous mice compared with heterozygous PD2 mice. Quantitation of the disease-associated molecules GFAP and CD68, as measured by immunoslot blots, were indicative of astrocytosis and macrophage activation. Concurrently, elevated levels of the pro-inflammatory cytokine TNF-alpha and nuclear histone deimination support initiation of demyelination by increased PAD activity. These data support the hypothesis that elevated PAD levels in white matter represents an early change that precedes demyelination.
Collapse
Affiliation(s)
- Abdiwahab A Musse
- Department of Molecular and Cellular Biology and Biophysics Interdepartmental Group, University of Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Casaccia-Bonnefil P, Pandozy G, Mastronardi F. Evaluating epigenetic landmarks in the brain of multiple sclerosis patients: a contribution to the current debate on disease pathogenesis. Prog Neurobiol 2008; 86:368-78. [PMID: 18930111 DOI: 10.1016/j.pneurobio.2008.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 09/05/2008] [Indexed: 12/31/2022]
Abstract
The evidence suggesting a role of epigenetics in the definition of complex trait diseases is rapidly increasing. The gender prevalence of multiple sclerosis, the low level concordance in homozygous twins and the linkage to several genetic loci, suggest an epigenetic component to the definition of this demyelinating disorder. While the immune etio-pathogenetic mechanism of disease progression has been well characterized, still relatively little is known about the initial events contributing to onset and progression of the demyelinating lesion. This article addresses the challenging question of whether loss of the mechanisms of epigenetic regulation of gene expression in the myelinating cells may contribute to the pathogenesis of multiple sclerosis, by affecting the repair process and by modulating the levels of enzymes involved in neo-epitope formation. The role of altered post-translational modifications of nucleosomal histones and DNA methylation in white matter oligodendroglial cells are presented in terms of pathogenetic concepts and the relevance to therapeutic intervention is then discussed.
Collapse
Affiliation(s)
- Patrizia Casaccia-Bonnefil
- Department of Neuroscience, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY10029, USA.
| | | | | |
Collapse
|
41
|
Kobayashi H, Chattopadhyay S, Kato K, Dolkas J, Kikuchi SI, Myers RR, Shubayev VI. MMPs initiate Schwann cell-mediated MBP degradation and mechanical nociception after nerve damage. Mol Cell Neurosci 2008; 39:619-27. [PMID: 18817874 DOI: 10.1016/j.mcn.2008.08.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 07/17/2008] [Accepted: 08/18/2008] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) emerge as modulators of neuropathic pain. Because myelin protects Abeta afferents from ectopic hyperexcitability and nociception from innocuous mechanical stimuli (or mechanical allodynia), we analyzed the role of MMPs in the development of mechanical allodynia through myelin protein degradation after rat and MMP-9-/- mouse L5 spinal nerve crush (L5 SNC). MMPs were shown to promote selective degradation of myelin basic protein (MBP), with MMP-9 regulating initial Schwann cell-mediated MBP processing after L5 SNC. Acute and long-term therapy with GM6001 (broad-spectrum MMP inhibitor) protected from injury-induced MBP degradation, caspase-mediated apoptosis, macrophage infiltration in the spinal nerve and inhibited astrocyte activation in the spinal cord. The effect of GM6001 therapy on attenuation of mechanical allodynia was robust, immediate and sustained through the course of L5 SNC. In conclusion, MMPs mediate the initiation and maintenance of mechanical nociception through Schwann cell-mediated MBP processing and support of neuroinflammation.
Collapse
Affiliation(s)
- Hideo Kobayashi
- Department of Anesthesiology, University of California, San Diego, CA 92093-0629, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Myelin localization of peptidylarginine deiminases 2 and 4: comparison of PAD2 and PAD4 activities. J Transl Med 2008; 88:354-64. [PMID: 18227806 DOI: 10.1038/labinvest.3700748] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
An understanding of the structure and composition of the myelin sheath is essential to understand the pathogenesis of demyelinating diseases such as multiple sclerosis (MS). The presence of citrulline in myelin proteins in particular myelin basic protein (MBP) causes an important change in myelin structure, which destabilizes myelin. The peptidylarginine deiminases (PADs) are responsible for converting arginine in proteins to citrulline. Two of these, PAD2 and PAD4, were localized to the myelin sheath by immunogold electron microscopy. Deimination of MBP by the recombinant forms of these enzymes showed that it was extensive, that is, PAD2 deiminated 18 of 19 arginyl residues in MBP, whereas PAD4 deiminated 14 of 19 residues. In the absence of PAD2 (the PAD2-knockout mouse) PAD4 remained active with limited deimination of arginyl residues. In myelin isolated from patients with MS, the amounts of both PAD2 and PAD4 enzymes were increased compared with that in normals, and the citrullinated proteins were also increased. These data support the view that an increase in citrullinated proteins resulting from increased PAD2 and 4 is an important change in the pathogenesis of MS.
Collapse
|
43
|
Belogurov AA, Kurkova IN, Friboulet A, Thomas D, Misikov VK, Zakharova MY, Suchkov SV, Kotov SV, Alehin AI, Avalle B, Souslova EA, Morse HC, Gabibov AG, Ponomarenko NA. Recognition and degradation of myelin basic protein peptides by serum autoantibodies: novel biomarker for multiple sclerosis. THE JOURNAL OF IMMUNOLOGY 2008; 180:1258-67. [PMID: 18178866 DOI: 10.4049/jimmunol.180.2.1258] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pathologic role of autoantibodies in autoimmune disease is widely accepted. Recently, we reported that anti-myelin basic protein (MBP) serum Abs from multiple sclerosis (MS) patients exhibit proteolytic activity toward the autoantigen. The aim of this study is to determine MBP epitopes specific for the autoantibodies in MS and compare these data with those from other neuronal disorders (OND), leading to the generation of new diagnostic and prognostic criteria. We constructed a MBP-derived recombinant "epitope library" covering the entire molecule. We used ELISA and PAGE/surface-enhanced laser desorption/ionization mass spectroscopy assays to define the epitope binding/cleaving activities of autoantibodies isolated from the sera of 26 MS patients, 22 OND patients, and 11 healthy individuals. The levels of autoantibodies to MBP fragments 48-70 and 85-170 as well as to whole MBP and myelin oligodendrocyte glycoprotein molecules were significantly higher in the sera of MS patients than in those of healthy donors. In contrast, selective reactivity to the two MBP fragments 43-68 and 146-170 distinguished the OND and MS patients. Patients with MS (77% of progressive and 85% of relapsing-remitting) but only 9% of patients with OND and no healthy donors were positive for catalysis, showing pronounced epitope specificity to the encephalitogenic MBP peptide 81-103. This peptide retained its substrate properties when flanked with two fluorescent proteins, providing a novel fluorescent resonance energy transfer approach for MS studies. Thus, anti-MBP autoantibody-mediated, epitope-specific binding and cleavage may be regarded as a specific characteristic of MS compared with OND and healthy donors and may serve as an additional biomarker of disease progression.
Collapse
Affiliation(s)
- Alexey A Belogurov
- Institute of Bioorganic Chemistry, Clinical Hospital, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Milward E, Kim KJ, Szklarczyk A, Nguyen T, Melli G, Nayak M, Deshpande D, Fitzsimmons C, Hoke A, Kerr D, Griffin JW, Calabresi PA, Conant K. Cleavage of myelin associated glycoprotein by matrix metalloproteinases. J Neuroimmunol 2007; 193:140-8. [PMID: 18063113 DOI: 10.1016/j.jneuroim.2007.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 09/12/2007] [Accepted: 11/02/2007] [Indexed: 01/03/2023]
Abstract
Derivative myelin associated glycoprotein (dMAG) results from proteolysis of transmembrane MAG and can inhibit axonal growth. We have tested the ability of certain matrix metalloproteinases (MMPs) elevated with inflammatory and demyelinating diseases to cleave MAG. We show MMP-2, MMP-7 and MMP-9, but not MMP-1, cleave recombinant human MAG. Cleavage by MMP-7 occurs at Leu 509, just distal to the transmembrane domain and, to a lesser extent, at Met 234. We also show that MMP-7 cleaves MAG expressed on the external surface of CHO cells, releasing fragments that accumulate in the medium over periods of up to 48 h or more and that are able to inhibit outgrowth by dorsal root ganglion (DRG) neurons. We conclude that MMPs may have the potential both to disrupt MAG dependent axon-glia communication and to generate bioactive fragments that can inhibit neurite growth.
Collapse
Affiliation(s)
- Elizabeth Milward
- School of Biomedical Sciences, The University of Newcastle and the Hunter Medical Research Institute, Callaghan, New South Wales 2308, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Association of the MMP-3 5A/6A gene polymorphism with multiple sclerosis in patients from Serbia. J Neurol Sci 2007; 267:62-5. [PMID: 17942123 DOI: 10.1016/j.jns.2007.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 09/05/2007] [Accepted: 09/27/2007] [Indexed: 01/17/2023]
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes involved in remodeling of the extracellular matrix. MMPs are suggested to play a role in the influx of inflammatory cells into the CNS, disruption of the blood brain barrier, and to degrade myelin in vitro. In this study, we have investigated the possible association of MMP-3 5A/6A gene polymorphism with MS susceptibility and/or severity in patients from Serbia. A total of 184 MS patients (150 RR, 34 SP) and 236 controls have been studied. Results show that the distribution of MMP-3 5A/6A genotype frequencies between MS patients and controls were not significantly different. In bout onset patients, carriers of MMP-3 6A/6A genotype had significantly higher mean MSSS values compared to the carriers of 5A allele (6.29+/-1.89 vs. 5.29+/-2.62, respectively, ANCOVA, p=0.01 Scheffe post-hoc test). In conclusion, our results indicate association of MMP-3 6A/6A genotype with significantly higher mean MSSS values. Thus, the obtained results suggest that it should be carefully considered during follow up of patients with MS. Further genetic and functional studies are needed to resolve the complex role of MMPs and their tissue inhibitors in MS pathology and/or regeneration.
Collapse
|
46
|
Chattopadhyay S, Myers RR, Janes J, Shubayev V. Cytokine regulation of MMP-9 in peripheral glia: implications for pathological processes and pain in injured nerve. Brain Behav Immun 2007; 21:561-8. [PMID: 17189680 PMCID: PMC2865892 DOI: 10.1016/j.bbi.2006.10.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Revised: 10/20/2006] [Accepted: 10/20/2006] [Indexed: 01/29/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is an extracellular protease that is induced in Schwann cells hours after peripheral nerve injury and controls axonal degeneration and macrophage recruitment to the lesion. Here, we report a robust (90-fold) increase in MMP-9 mRNA within 24 h after rat sciatic nerve crush (1 to 60 days time-course). Using direct injection into a normal sciatic nerve, we identify the proinflammatory cytokines TNF-alpha and IL-1beta as potent regulators of MMP-9 expression (Taqman qPCR, zymography). Myelinating Schwann cells produced MMP-9 in response to cytokine injection and crush nerve injury. MMP-9 gene deletion reduced unstimulated neuropathic nociceptive behavior after one week post-crush and preserved myelin thickness by protecting myelin basic protein (MBP) from degradation, tested by Western blot and immunofluorescence. These data suggest that MMP-9 expression in peripheral nerve is controlled by key proinflammatory cytokine pathways, and that its removal protects nerve fibers from demyelination and reduces neuropathic pain after injury.
Collapse
Affiliation(s)
- Sharmila Chattopadhyay
- San Diego VA Healthcare System, USA
- University of California, San Diego, School of Medicine, Department of Anesthesiology, La Jolla, CA, USA
| | - Robert R. Myers
- San Diego VA Healthcare System, USA
- University of California, San Diego, School of Medicine, Department of Anesthesiology, La Jolla, CA, USA
| | | | - Veronica Shubayev
- San Diego VA Healthcare System, USA
- University of California, San Diego, School of Medicine, Department of Anesthesiology, La Jolla, CA, USA
- Corresponding author. Fax: +1 858 534 1445. (V. Shubayev)
| |
Collapse
|
47
|
Musse AA, Harauz G. Molecular "negativity" may underlie multiple sclerosis: role of the myelin basic protein family in the pathogenesis of MS. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 79:149-72. [PMID: 17531841 DOI: 10.1016/s0074-7742(07)79007-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocyte membranes and is responsible for adhesion of these surfaces in the multilayered myelin sheath. The pattern of extensive posttranslational modifications of MBP is dynamic during normal central nervous system development and during myelin degeneration in multiple sclerosis (MS), affecting its interactions with the myelin membranes and other proteins. In particular, the degree of deimination (or citrullination) of MBP is correlated with the severity of MS, and may represent a primary defect that precedes neurodegeneration due to autoimmune attack. That MBP deimination also affects topological accessibility of an otherwise partially buried immunodominant epitope of the protein indicates that this modification may play a major role in the autoimmune pathogenesis of the disease. In this chapter, we describe the structural and functional consequences of MBP deimination in healthy and diseased myelin.
Collapse
Affiliation(s)
- Abdiwahab A Musse
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group, University of Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|