1
|
Tse BC, Wang H, Dvoriantchikova G, Pelaez D, Tse DT. Systemic Hypothermia in the Acute Management of Traumatic Optic Neuropathy in a Murine Animal Model. Ophthalmic Plast Reconstr Surg 2025; 41:293-298. [PMID: 39656522 DOI: 10.1097/iop.0000000000002821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
PURPOSE To examine the effects of systemic hypothermia on retinal ganglion cell survival and visual outcomes after optic nerve trauma in a sonication-inducted traumatic optic neuropathy murine animal model. METHODS Twenty mice underwent sonication-inducted traumatic optic neuropathy. Afterward, 10 mice were placed on a warming pad set to 36°C, and 10 mice were placed on a table. General anesthesia was maintained for 3 hours with subcutaneous injections of ketamine. The rectal temperature was measured every 15 minutes. Pattern electroretinograms were obtained at 2, 4, and 6 weeks. Mice were sacrificed at 6 weeks, and retinal ganglion cell counts were performed. RESULTS The hypothermia group had an average rectal temperature of 23.1°C; the control group was 33.3°C. At 6 weeks, the hypothermia group had larger a-wave amplitudes (18.19 µV) than the control group (12.75 µV) ( p < 0.05). At 6 weeks, retinal ganglion cell density over the entire retina was significantly higher in the hypothermia group versus the control ( p < 0.0001). CONCLUSIONS The hypothermia treatment group had significantly higher retinal ganglion cell density and pattern electroretinogram a-wave amplitudes 6 weeks after injury than the control group. Systemic hypothermia may have a neuroprotective effect when initiated immediately after sonication-inducted traumatic optic neuropathy.
Collapse
Affiliation(s)
- Brian C Tse
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami, Miami, Florida, U.S.A
| | | | | | | | | |
Collapse
|
2
|
Sarkar A, Kim KT, Tsymbalyuk O, Keledjian K, Wilhelmy BE, Sherani NA, Jia X, Gerzanich V, Simard JM. A Direct Comparison of Physical Versus Dihydrocapsaicin-Induced Hypothermia in a Rat Model of Traumatic Spinal Cord Injury. Ther Hypothermia Temp Manag 2022; 12:90-102. [PMID: 35675523 PMCID: PMC9231662 DOI: 10.1089/ther.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological condition with no effective treatment. Hypothermia induced by physical means (cold fluid) is established as an effective therapy in animal models of SCI, but its clinical translation to humans is hampered by several constraints. Hypothermia induced pharmacologically may be noninferior or superior to physically induced hypothermia for rapid, convenient systemic temperature reduction, but it has not been investigated previously in animal models of SCI. We used a rat model of SCI to compare outcomes in three groups: (1) normothermic controls; (2) hypothermia induced by conventional physical means; (3) hypothermia induced by intravenous (IV) dihydrocapsaicin (DHC). Male rats underwent unilateral lower cervical SCI and were treated after a 4-hour delay with physical cooling or IV DHC (∼0.60 mg/kg total) cooling (both 33.0 ± 1.0°C) lasting 4 hours; controls were kept normothermic. Telemetry was used to monitor temperature and heart rate during and after treatments. In two separate experiments, one ending at 48 hours, the other at 6 weeks, “blinded” investigators evaluated rats in the three groups for neurological function followed by histopathological evaluation of spinal cord tissues. DHC reliably induced systemic cooling to 32–33°C. At both the time points examined, the two modes of hypothermia yielded similar improvements in neurological function and lesion size compared with normothermic controls. Our results indicate that DHC-induced hypothermia may be comparable with physical hypothermia in efficacy, but more clinically feasible to administer than physical hypothermia.
Collapse
Affiliation(s)
- Amrita Sarkar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kevin T Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bradley E Wilhelmy
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nageen A Sherani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J Marc Simard
- Department of Neurosurgery, Pathology and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Hypothermia Therapy for Traumatic Spinal Cord Injury: An Updated Review. J Clin Med 2022; 11:jcm11061585. [PMID: 35329911 PMCID: PMC8949322 DOI: 10.3390/jcm11061585] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Although hypothermia has shown to protect against ischemic and traumatic neuronal death, its potential role in neurologic recovery following traumatic spinal cord injury (TSCI) remains incompletely understood. Herein, we systematically review the safety and efficacy of hypothermia therapy for TSCI. The English medical literature was reviewed using PRISMA guidelines to identify preclinical and clinical studies examining the safety and efficacy of hypothermia following TSCI. Fifty-seven articles met full-text review criteria, of which twenty-eight were included. The main outcomes of interest were neurological recovery and postoperative complications. Among the 24 preclinical studies, both systemic and local hypothermia significantly improved neurologic recovery. In aggregate, the 4 clinical studies enrolled 60 patients for treatment, with 35 receiving systemic hypothermia and 25 local hypothermia. The most frequent complications were respiratory in nature. No patients suffered neurologic deterioration because of hypothermia treatment. Rates of American Spinal Injury Association (AIS) grade conversion after systemic hypothermia (35.5%) were higher when compared to multiple SCI database control studies (26.1%). However, no statistical conclusions could be drawn regarding the efficacy of hypothermia in humans. These limited clinical trials show promise and suggest therapeutic hypothermia to be safe in TSCI patients, though its effect on neurological recovery remains unclear. The preclinical literature supports the efficacy of hypothermia after TSCI. Further clinical trials are warranted to conclusively determine the effects of hypothermia on neurological recovery as well as the ideal means of administration necessary for achieving efficacy in TSCI.
Collapse
|
4
|
Abstract
Neuroprotection after acute spinal cord injury is an important strategy to limit secondary injury. Animal studies have shown that systemic hypothermia is an effective neuroprotective strategy that can be combined with other therapies. Systemic hypothermia affects several processes at the cellular level to reduce metabolic activity, oxidative stress, and apoptotic neuronal cell death. Modest systemic hypothermia has been shown to be safe and feasible in the acute phase after cervical spinal cord injury. These data have provided the impetus for an active multicenter randomized controlled trial for modest systemic hypothermia in acute cervical spinal cord injury.
Collapse
|
5
|
Zavodska M, Galik J, Marsala M, Papcunova S, Pavel J, Racekova E, Martoncikova M, Sulla I, Gajdos M, Lukac I, Kafka J, Ledecky V, Sulla I, Reichel P, Trbolova A, Capik I, Bimbova K, Bacova M, Stropkovska A, Kisucka A, Miklisova D, Lukacova N. Hypothermic treatment after computer-controlled compression in minipig: A preliminary report on the effect of epidural vs. direct spinal cord cooling. Exp Ther Med 2018; 16:4927-4942. [PMID: 30542449 PMCID: PMC6257352 DOI: 10.3892/etm.2018.6831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/29/2018] [Indexed: 11/24/2022] Open
Abstract
The aim of the present study was to investigate the therapeutic efficacy of local hypothermia (beginning 30 min post-injury persisting for 5 h) on tissue preservation along the rostro-caudal axis of the spinal cord (3 cm cranially and caudally from the lesion site), and the prevention of injury-induced functional loss in a newly developed computer-controlled compression model in minipig (force of impact 18N at L3 level), which mimics severe spinal cord injury (SCI). Minipigs underwent SCI with two post-injury modifications (durotomy vs. intact dura mater) followed by hypothermia through a perfusion chamber with cold (epidural t≈15°C) saline, DMEM/F12 or enriched DMEM/F12 (SCI/durotomy group) and with room temperature (t≈24°C) saline (SCI-only group). Minipigs treated with post-SCI durotomy demonstrated slower development of spontaneous neurological improvement at the early postinjury time points, although the outcome at 9 weeks of survival did not differ significantly between the two SCI groups. Hypothermia with saline (t≈15°C) applied after SCI-durotomy improved white matter integrity in the dorsal and lateral columns in almost all rostro-caudal segments, whereas treatment with medium/enriched medium affected white matter integrity only in the rostral segments. Furthermore, regeneration of neurofilaments in the spinal cord after SCI-durotomy and hypothermic treatments indicated an important role of local saline hypothermia in the functional outcome. Although saline hypothermia (24°C) in the SCI-only group exhibited a profound histological outcome (regarding the gray and white matter integrity and the number of motoneurons) and neurofilament protection in general, none of the tested treatments resulted in significant improvement of neurological status. The findings suggest that clinically-proven medical treatments for SCI combined with early 5 h-long saline hypothermia treatment without opening the dural sac could be more beneficial for tissue preservation and neurological outcome compared with hypothermia applied after durotomy.
Collapse
Affiliation(s)
- Monika Zavodska
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Jan Galik
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Martin Marsala
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia.,Department of Anesthesiology, Neuroregeneration Laboratory, University of California-San Diego, San Diego, CA 92093, USA
| | - Stefania Papcunova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Jaroslav Pavel
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Eniko Racekova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Marcela Martoncikova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Igor Sulla
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia.,Hospital of Slovak Railways, 040 01 Košice, Slovakia
| | - Miroslav Gajdos
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Imrich Lukac
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Jozef Kafka
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Valent Ledecky
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Igor Sulla
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Peter Reichel
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alexandra Trbolova
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Igor Capik
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Katarina Bimbova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Maria Bacova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Andrea Stropkovska
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Alexandra Kisucka
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Dana Miklisova
- Department of Vector-borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Nadezda Lukacova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| |
Collapse
|
6
|
Alkabie S, Boileau AJ. The Role of Therapeutic Hypothermia After Traumatic Spinal Cord Injury—A Systematic Review. World Neurosurg 2016; 86:432-49. [DOI: 10.1016/j.wneu.2015.09.079] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 12/16/2022]
|
7
|
Abstract
Spinal cord injury (SCI) is a major health problem and is associated with a diversity of neurological symptoms. Pathophysiologically, dysfunction after SCI results from the culmination of tissue damage produced both by the primary insult and a range of secondary injury mechanisms. The application of hypothermia has been demonstrated to be neuroprotective after SCI in both experimental and human studies. The myriad of protective mechanisms of hypothermia include the slowing down of metabolism, decreasing free radical generation, inhibiting excitotoxicity and apoptosis, ameliorating inflammation, preserving the blood spinal cord barrier, inhibiting astrogliosis, promoting angiogenesis, as well as decreasing axonal damage and encouraging neurogenesis. Hypothermia has also been combined with other interventions, such as antioxidants, anesthetics, alkalinization and cell transplantation for additional benefit. Although a large body of work has reported on the effectiveness of hypothermia as a neuroprotective approach after SCI and its application has been translated to the clinic, a number of questions still remain regarding its use, including the identification of hypothermia's therapeutic window, optimal duration and the most appropriate rewarming rate. In addition, it is necessary to investigate the neuroprotective effect of combining therapeutic hypothermia with other treatment strategies for putative synergies, particularly those involving neurorepair.
Collapse
Affiliation(s)
- Jiaqiong Wang
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Neuroscience Program, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
| |
Collapse
|
8
|
Liang F, Li C, Gao C, Li Z, Yang J, Liu X, Wang Y. Effects of hyperbaric oxygen therapy on NACHT domain-leucine-rich-repeat- and pyrin domain-containing protein 3 inflammasome expression in rats following spinal cord injury. Mol Med Rep 2015; 11:4650-6. [PMID: 25672366 DOI: 10.3892/mmr.2015.3314] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 11/05/2014] [Indexed: 11/06/2022] Open
Abstract
The clinical application of hyperbaric oxygen therapy (HBOT) in spinal cord injury (SCI) has been reported, however the mechanism underlying its therapeutic effects remains to be elucidated. In the present study, SCI was modeled in male Sprague‑Dawley rats. A total of 120 rats were randomly divided into four groups: Sham‑operated group (SH); sham‑operated and hyperbaric oxygen group (SH+HBO); spinal cord injury group (SCI) and spinal cord injury and hyperbaric oxygen treatment group (SCI+HBO). The rats in each group were randomly divided into five smaller groups (12 h, 1, 3, 7 and 14 days after surgery). The mRNA and protein expression levels of NACHT domain‑, leucine‑rich‑repeat‑ and pyrin domain‑containing protein 3 (NALP3) inflammasome, including NALP3, adaptor molecule apoptosis‑associated speck‑like protein (ASC) and caspase‑1 were determined at several time points following injury. The results of the present study demonstrated that HBOT compromised the mRNA and protein expression levels of NALP3, ASC and caspase‑1 in the SCI model rats and HBOT mitigated SCI‑induced interleukin 1β release in the injured spinal cord tissue. It was concluded that HBOT is an effective approach, which can prevent against spinal cord injury, likely by inactivating NALP3 inflammasome.
Collapse
Affiliation(s)
- Fang Liang
- Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Chunsheng Li
- Department of Emergency, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Chunjin Gao
- Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Zhuo Li
- Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Jing Yang
- Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xuehua Liu
- Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Yong Wang
- Department of Hyperbaric Oxygen, Beijing Fuxing Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
9
|
Facts and fiction: the impact of hypothermia on molecular mechanisms following major challenge. Mediators Inflamm 2012; 2012:762840. [PMID: 22481864 PMCID: PMC3316953 DOI: 10.1155/2012/762840] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/02/2012] [Indexed: 01/02/2023] Open
Abstract
Numerous multiple trauma and surgical patients suffer from accidental hypothermia. While induced hypothermia is commonly used in elective cardiac surgery due to its protective effects, accidental hypothermia is associated with increased posttraumatic complications and even mortality in severely injured patients. This paper focuses on protective molecular mechanisms of hypothermia on apoptosis and the posttraumatic immune response. Although information regarding severe trauma is limited, there is evidence that induced hypothermia may have beneficial effects on the posttraumatic immune response as well as apoptosis in animal studies and certain clinical situations. However, more profound knowledge of mechanisms is necessary before randomized clinical trials in trauma patients can be initiated.
Collapse
|
10
|
Kwon BK, Okon E, Hillyer J, Mann C, Baptiste D, Weaver LC, Fehlings MG, Tetzlaff W. A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury. J Neurotrauma 2011; 28:1545-88. [PMID: 20146558 PMCID: PMC3143410 DOI: 10.1089/neu.2009.1149] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An increasing number of therapies for spinal cord injury (SCI) are emerging from the laboratory and seeking translation into human clinical trials. Many of these are administered as soon as possible after injury with the hope of attenuating secondary damage and maximizing the extent of spared neurologic tissue. In this article, we systematically review the available pre-clinical research on such neuroprotective therapies that are administered in a non-invasive manner for acute SCI. Specifically, we review treatments that have a relatively high potential for translation due to the fact that they are already used in human clinical applications, or are available in a form that could be administered to humans. These include: erythropoietin, NSAIDs, anti-CD11d antibodies, minocycline, progesterone, estrogen, magnesium, riluzole, polyethylene glycol, atorvastatin, inosine, and pioglitazone. The literature was systematically reviewed to examine studies in which an in-vivo animal model was utilized to assess the efficacy of the therapy in a traumatic SCI paradigm. Using these criteria, 122 studies were identified and reviewed in detail. Wide variations exist in the animal species, injury models, and experimental designs reported in the pre-clinical literature on the therapies reviewed. The review highlights the extent of investigation that has occurred in these specific therapies, and points out gaps in our knowledge that would be potentially valuable prior to human translation.
Collapse
Affiliation(s)
- Brian K Kwon
- University of British Columbia, Combined Neurosurgical and Orthopaedic Spine Program, Department of Orthopaedics, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Topuz K, Colak A, Cemil B, Kutlay M, Demircan MN, Simsek H, Ipcioglu O, Kucukodaci Z, Uzun G. Combined hyperbaric oxygen and hypothermia treatment on oxidative stress parameters after spinal cord injury: an experimental study. Arch Med Res 2011; 41:506-12. [PMID: 21167389 DOI: 10.1016/j.arcmed.2010.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 09/30/2010] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS We undertook this study to investigate the possible beneficial effects of combined hypothermia and hyperbaric oxygen (HBO) treatment in comparison with methylprednisolone in experimental spinal cord injury (SCI). METHODS Forty eight male Wistar albino rats (200-250 g) were randomized into six groups; A (normothermic control group; only laminectomy), B (normothermic trauma group; laminectomy + spinal trauma), C (normothermic methylprednisolone group; laminectomy + spinal trauma + methylprednisolone treated), D (hypothermia group; laminectomy + spinal trauma + hypothermia treated); E (HBO group; laminectomy + spinal trauma + HBO therapy), F (hypothermia and HBO group; laminectomy + spinal trauma + hypothermia and HBO treated) each containing eight rats. Neurological assessments were performed 24 h after trauma and spinal cord tissue samples had been harvested for both biochemical and histopathological evaluation. RESULTS After SCI, tissue malondialdehyde (MDA) level of the control group was measured increased, and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) enzyme activities were measured decreased. In group F, it was also shown that MDA level elevation had been prevented, and group F has increased the antioxidant enzyme activities than the other experimental groups C, D, E (p <0.05). CONCLUSIONS We concluded that the use of combined hypothermia and HBO treatment might have potential benefits in spinal cord tissue on secondary damage.
Collapse
Affiliation(s)
- Kivanc Topuz
- Department of Neurosurgery, Haydarpasa Training Hospital, Gulhane Military Medical Academy, Istanbul, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Finkelstein RA, Alam HB. Induced hypothermia for trauma: current research and practice. J Intensive Care Med 2010; 25:205-26. [PMID: 20444735 DOI: 10.1177/0885066610366919] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Induction of hypothermia with the goal of providing therapeutic benefit has been accepted for use in the clinical setting of adult cardiac arrest and neonatal hypoxic-ischemic encephalopathy (HIE). However, its potential as a treatment in trauma is not as well defined. This review discusses potential benefits and complications of induced hypothermia (IH) with emphasis on the current state of knowledge and practice in various types of trauma. There is excellent preclinical research showing that in cases of penetrating trauma with cardiac arrest, inducing hypothermia to 10 degrees C using cardiopulmonary bypass (CPB) could possibly save those otherwise likely to die without causing neurologic sequelae. A human trial of this intervention is about to get underway. Preclinical studies suggest that inducing hypothermia may be useful to delay cardiac arrest in penetrating trauma victims who are hypotensive. There is potential for IH to be used in cases of blunt trauma, but it has not been well studied. In the case of traumatic brain injury (TBI), clinical trials have shown conflicting results, despite almost uniform efficacy seen in preclinical experiments. Major studies are analyzed and ways to standardize its use and optimize future clinical trials are discussed. More preclinical and clinical research is needed to better define whether there could be a role for IH in the case of spinal cord injuries.
Collapse
Affiliation(s)
- Robert A Finkelstein
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|