1
|
Francois AA, Yin X, Oka S, Sadoshima J, Mayr M, Eaton P. On the utility of immobilized phenylarsine oxide in the study of redox sensitive cardiac proteins. Sci Rep 2025; 15:15554. [PMID: 40319072 PMCID: PMC12049532 DOI: 10.1038/s41598-025-00665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025] Open
Abstract
Reactive protein cysteine thiols are critical to sensing and transducing oxidant signals, often by induction of disulfide bonds that alter their activity or interactions. Identifying such redox active proteins nowadays is mostly achieved using thiol redox proteomics with such datasets increasingly available. Subsequently, we are challenged with determining how changes in the redox state of a protein of interest alters its activity or interactions and how this affects physiology or disease progression including in vivo scenarios. Such studies necessitate the measurement of how the protein redox state changes with health or disease-related interventions, with it not always being practicable to resort back to resource-intensive proteomics to achieve this. In some proteins, oxidation to a disulfide state causes a non-reducing gel-shift, but this is mostly not the case and so other efficient approaches are required to index changes in redox state. Here we assessed the utility of immobilized, solid-phase phenylarsine oxide (PAO-Sepharose) as a tool for indexing the thiol redox state of candidate proteins in cardiac samples from in vivo interventions associated with oxidative stress. PAO-Sepharose, which binds proteins with proximal reduced thiol pairs but not when they form a disulfide, was also used to identify proteins that that are oxidised in isolated perfused mouse hearts exposed to hydrogen peroxide or diamide using proteomics. This together with complementary studies using a cardiac-specific FLAG-Thioredoxin-1C35S-HA transgenic 'trap-mutant' mouse model allowed identification of heart proteins susceptible to oxidant-induced disulfide bond formation using proteomics. Thus, two in vitro approaches identified putative cardiac thiol redox sensor proteins that were then assessed with in vivo follow-up studies for their susceptibility to oxidation during endotoxemia induced by lipopolysaccharide or type I diabetes induced by streptozotocin in mice. Of five proteins selected for further analysis by PAO-Sepharose binding, two, namely apoptotic protease activating factor 1 interacting protein (APIP) and γ-glutamylcyclotransferase (GGCT), displayed significantly lower affinity capture from hearts from lipopolysaccharide- or streptozotocin-treated mice, consistent with oxidation of their vicinal thiols. We conclude that PAO-Sepharose is an effective and accessible tool for identifying oxidant-sensitive protein thiols in both ex vivo and in vivo models of oxidative stress. As increasing numbers of thiol redox proteins are identified, PAO-Sepharose binding is an efficient method to determine if they change their oxidation state during interventions relevant to health and disease.
Collapse
Affiliation(s)
- Asvi Arora Francois
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Xiaoke Yin
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Shinichi Oka
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07101, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07101, USA
| | - Manuel Mayr
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Philip Eaton
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
2
|
Xu Y, Wei L, Tang S, Shi Q, Wu B, Yang X, Zou Y, Wang X, Ao Q, Meng L, Wei X, Zhang N, Li Y, Lan C, Chen M, Li X, Lu C. Regulation PP2Ac methylation ameliorating autophagy dysfunction caused by Mn is associated with mTORC1/ULK1 pathway. Food Chem Toxicol 2021; 156:112441. [PMID: 34363881 DOI: 10.1016/j.fct.2021.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/18/2023]
Abstract
Manganese (Mn) exposure leads to autophagy dysfunction and causes neurodegenerative diseases such as Parkinson's syndrome and Alzheimer's disease. However, the mechanism of neurotoxicity of Mn has been less clear. The methylation of the protein phosphatase 2A catalytic subunit determines the dephosphorylation activity of protein phosphatase and plays an important role in autophagy regulation. In this investigation, we established a model of Mn (0-2000 μmol/L) exposure to N2a cells for 12 h, used the PPME-1 inhibitor ABL-127, and constructed an LCMT1-overexpressing N2a cell line. We also regulated the PP2Ac methylation level and explored the effect of PP2Ac methylation on Mn-induced (0-1000 μmol/L) N2a cellular autophagy. Our results showed that Mn > 500 μmol/L induced N2a cell damage and increased oxidative stress. Moreover, Mn modulated autophagy in N2a cells by downregulating PP2Ac methylation, which regulated mTORC1 signaling pathway activation. Both ABL-127 and LCMT1 overexpression can upregulate PP2Ac methylation in parallel with ameliorating N2a cell abnormal autophagy induced by Mn, Briefly, the upregulation of PP2Ac methylation can ameliorate the autophagy disorder of N2a by Mn and effectively alleviate Mn-induced cytotoxicity and oxidative stress, indicating that regulation of autophagy is a protective strategy against Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Yilu Xu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Lancheng Wei
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Shen Tang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Nanning, 530021, China
| | - Qianqian Shi
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Bin Wu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiaobo Yang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xinhang Wang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Nanning, 530021, China
| | - Qingqing Ao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Ling Meng
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Xuejing Wei
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Ning Zhang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yunqing Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Chunhua Lan
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Muting Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiyi Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| | - Cailing Lu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
3
|
Regulation of Cardiac PKA Signaling by cAMP and Oxidants. Antioxidants (Basel) 2021; 10:antiox10050663. [PMID: 33923287 PMCID: PMC8146537 DOI: 10.3390/antiox10050663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Pathologies, such as cancer, inflammatory and cardiac diseases are commonly associated with long-term increased production and release of reactive oxygen species referred to as oxidative stress. Thereby, protein oxidation conveys protein dysfunction and contributes to disease progression. Importantly, trials to scavenge oxidants by systemic antioxidant therapy failed. This observation supports the notion that oxidants are indispensable physiological signaling molecules that induce oxidative post-translational modifications in target proteins. In cardiac myocytes, the main driver of cardiac contractility is the activation of the β-adrenoceptor-signaling cascade leading to increased cellular cAMP production and activation of its main effector, the cAMP-dependent protein kinase (PKA). PKA-mediated phosphorylation of substrate proteins that are involved in excitation-contraction coupling are responsible for the observed positive inotropic and lusitropic effects. PKA-actions are counteracted by cellular protein phosphatases (PP) that dephosphorylate substrate proteins and thus allow the termination of PKA-signaling. Both, kinase and phosphatase are redox-sensitive and susceptible to oxidation on critical cysteine residues. Thereby, oxidation of the regulatory PKA and PP subunits is considered to regulate subcellular kinase and phosphatase localization, while intradisulfide formation of the catalytic subunits negatively impacts on catalytic activity with direct consequences on substrate (de)phosphorylation and cardiac contractile function. This review article attempts to incorporate the current perception of the functionally relevant regulation of cardiac contractility by classical cAMP-dependent signaling with the contribution of oxidant modification.
Collapse
|
4
|
Wu B, Cai H, Tang S, Xu Y, Shi Q, Wei L, Meng L, Zhang N, Wang X, Xiao D, Zou Y, Yang X, Li X, Lu C. Methionine-Mediated Protein Phosphatase 2A Catalytic Subunit (PP2Ac) Methylation Ameliorates the Tauopathy Induced by Manganese in Cell and Animal Models. Neurotherapeutics 2020; 17:1878-1896. [PMID: 32959271 PMCID: PMC7851222 DOI: 10.1007/s13311-020-00930-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 01/10/2023] Open
Abstract
The molecular mechanism of Alzheimer-like cognitive impairment induced by manganese (Mn) exposure has not yet been fully clarified, and there are currently no effective interventions to treat neurodegenerative lesions related to manganism. Protein phosphatase 2 A (PP2A) is a major tau phosphatase and was recently identified as a potential therapeutic target molecule for neurodegenerative diseases; its activity is directed by the methylation status of the catalytic C subunit. Methionine is an essential amino acid, and its downstream metabolite S-adenosylmethionine (SAM) participates in transmethylation pathways as a methyl donor. In this study, the neurotoxic mechanism of Mn and the protective effect of methionine were evaluated in Mn-exposed cell and rat models. We show that Mn-induced neurotoxicity is characterized by PP2Ac demethylation accompanied by abnormally decreased LCMT-1 and increased PME-1, which are associated with tau hyperphosphorylation and spatial learning and memory deficits, and that the poor availability of SAM in the hippocampus is likely to determine the loss of PP2Ac methylation. Importantly, maintenance of local SAM levels through continuous supplementation with exogenous methionine, or through specific inhibition of PP2Ac demethylation by ABL127 administration in vitro, can effectively prevent tau hyperphosphorylation to reduce cellular oxidative stress, apoptosis, damage to cell viability, and rat memory deficits in cell or animal Mn exposure models. In conclusion, our data suggest that SAM and PP2Ac methylation may be novel targets for the treatment of Mn poisoning and neurotoxic mechanism-related tauopathies.
Collapse
Affiliation(s)
- Bin Wu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Haiqing Cai
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Shen Tang
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yilu Xu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Qianqian Shi
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Lancheng Wei
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Ling Meng
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Ning Zhang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Xinhang Wang
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Deqiang Xiao
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yunfeng Zou
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Xiaobo Yang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Xiyi Li
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Cailing Lu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
5
|
Foley TD. Reductive Reprogramming: A Not-So-Radical Hypothesis of Neurodegeneration Linking Redox Perturbations to Neuroinflammation and Excitotoxicity. Cell Mol Neurobiol 2019; 39:577-590. [PMID: 30904976 PMCID: PMC11462848 DOI: 10.1007/s10571-019-00672-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Free radical-mediated oxidative stress, neuroinflammation, and excitotoxicity have long been considered insults relevant to the progression of Alzheimer's disease and other aging-related neurodegenerative disorders (NDD). Among these phenomena, the significance of oxidative stress and, more generally, redox perturbations, for NDD remain ill-defined and unsubstantiated. Here, I argue that (i) free radical-mediated oxidations of biomolecules can be dissociated from the progression of NDD, (ii) oxidative stress fails as a descriptor of cellular redox states under conditions relevant to disease, and (iii) aberrant upregulation of compensatory reducing activities in neural cells, resulting in reductive shifts in thiol-based redox potentials, may be an overlooked and paradoxical contributor to disease progression. In particular, I summarize evidence which supports the view that reductive shifts in the extracellular space can occur in response to oxidant and inflammatory signals and that these have the potential to reduce putative regulatory disulfide bonds in exofacial domains of the N-methyl-D-aspartate receptor, leading potentially to aberrant increases in neuronal excitability and, if sustained, excitotoxicity. The novel reductive reprogramming hypothesis of neurodegeneration presented here provides an alternative view of redox perturbations in NDD and links these to both neuroinflammation and excitotoxicity.
Collapse
Affiliation(s)
- Timothy D Foley
- Department of Chemistry and Neuroscience Program, University of Scranton, Scranton, PA, 18510, USA.
| |
Collapse
|
6
|
Kaufman MJ, Kanayama G, Hudson JI, Pope HG. Supraphysiologic-dose anabolic-androgenic steroid use: A risk factor for dementia? Neurosci Biobehav Rev 2019; 100:180-207. [PMID: 30817935 PMCID: PMC6451684 DOI: 10.1016/j.neubiorev.2019.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 02/06/2023]
Abstract
Supraphysiologic-dose anabolic-androgenic steroid (AAS) use is associated with physiologic, cognitive, and brain abnormalities similar to those found in people at risk for developing Alzheimer's Disease and its related dementias (AD/ADRD), which are associated with high brain β-amyloid (Aβ) and hyperphosphorylated tau (tau-P) protein levels. Supraphysiologic-dose AAS induces androgen abnormalities and excess oxidative stress, which have been linked to increased and decreased expression or activity of proteins that synthesize and eliminate, respectively, Aβ and tau-P. Aβ and tau-P accumulation may begin soon after initiating supraphysiologic-dose AAS use, which typically occurs in the early 20s, and their accumulation may be accelerated by other psychoactive substance use, which is common among non-medical AAS users. Accordingly, the widespread use of supraphysiologic-dose AAS may increase the numbers of people who develop dementia. Early diagnosis and correction of sex-steroid level abnormalities and excess oxidative stress could attenuate risk for developing AD/ADRD in supraphysiologic-dose AAS users, in people with other substance use disorders, and in people with low sex-steroid levels or excess oxidative stress associated with aging.
Collapse
Affiliation(s)
- Marc J Kaufman
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.
| | - Gen Kanayama
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - James I Hudson
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Harrison G Pope
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Clewell HJ, Yager JW, Greene TB, Gentry PR. Application of the adverse outcome pathway (AOP) approach to inform mode of action (MOA): A case study with inorganic arsenic. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:893-912. [PMID: 30230972 DOI: 10.1080/15287394.2018.1500326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to establish a process for deriving a chemical-specific mode of action (MOA) from chemical-agnostic adverse outcome pathway (AOPs), using inorganic arsenic (iAs) as a case study. The AOP developed for this case study are related to disruption of cellular signaling by chemicals that strongly bind to vicinal dithiols in cellular proteins, leading to disruption of inflammatory and oxidative stress signaling along with inhibition of the DNA damage responses. The proposed MOA for iAs incorporates this AOP, overlaid on a background of increasing oxidative stress and/or co-exposure to mutagenic chemicals or radiation. The most challenging aspect of developing a MOA from AOP is the incorporation of metabolism and dose-response, neither of which may be considered in the development of an AOP. The cellular responses to relatively low concentrations (below 100 parts per billion) of iAs in drinking water appear to be secondary to binding of trivalent arsenite and its trivalent metabolite, monomethyl arsenous acid to key cellular vicinal dithiols in target tissues, resulting in a co-carcinogenic MOA. The proposed AOP may also be applied to non-cancer endpoints, enabling an integrated approach to conducting a risk assessment for iAs.
Collapse
|
8
|
Liu Q, Lu X, Peng H, Popowich A, Tao J, Uppal JS, Yan X, Boe D, Le XC. Speciation of arsenic – A review of phenylarsenicals and related arsenic metabolites. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Bouvier E, Brouillard F, Molet J, Claverie D, Cabungcal JH, Cresto N, Doligez N, Rivat C, Do KQ, Bernard C, Benoliel JJ, Becker C. Nrf2-dependent persistent oxidative stress results in stress-induced vulnerability to depression. Mol Psychiatry 2017; 22:1701-1713. [PMID: 27646262 DOI: 10.1038/mp.2016.144] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 05/23/2016] [Accepted: 07/18/2016] [Indexed: 12/18/2022]
Abstract
Stressful life events produce a state of vulnerability to depression in some individuals. The mechanisms that contribute to vulnerability to depression remain poorly understood. A rat model of intense stress (social defeat (SD), first hit) produced vulnerability to depression in 40% of animals. Only vulnerable animals developed a depression-like phenotype after a second stressful hit (chronic mild stress). We found that this vulnerability to depression resulted from a persistent state of oxidative stress, which was reversed by treatment with antioxidants. This persistent state of oxidative stress was due to low brain-derived neurotrophic factor (BDNF) levels, which characterized the vulnerable animals. We found that BDNF constitutively controlled the nuclear translocation of the master redox-sensitive transcription factor Nrf2, which activates antioxidant defenses. Low BDNF levels in vulnerable animals prevented Nrf2 translocation and consequently prevented the activation of detoxifying/antioxidant enzymes, ultimately resulting in the generation of sustained oxidative stress. Activating Nrf2 translocation restored redox homeostasis and reversed vulnerability to depression. This mechanism was confirmed in Nrf2-null mice. The mice displayed high levels of oxidative stress and were inherently vulnerable to depression, but this phenotype was reversed by treatment with antioxidants. Our data reveal a novel role for BDNF in controlling redox homeostasis and provide a mechanistic explanation for post-stress vulnerability to depression while suggesting ways to reverse it. Because numerous enzymatic reactions produce reactive oxygen species that must then be cleared, the finding that BDNF controls endogenous redox homeostasis opens new avenues for investigation.
Collapse
Affiliation(s)
- E Bouvier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-Salpêtrière, Paris, France.,INSERM, U1130, Paris, France.,CNRS, UMR8246, Paris, France
| | - F Brouillard
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.,Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Equipe 34, Centre de Recherche de Gif, Gif-sur-Yvette, France
| | - J Molet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-Salpêtrière, Paris, France.,INSERM, U1130, Paris, France.,CNRS, UMR8246, Paris, France
| | - D Claverie
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-Salpêtrière, Paris, France.,INSERM, U1130, Paris, France.,CNRS, UMR8246, Paris, France.,Institut de Recherche Biomédicale des Armées (IRBA), BP 73, Brétigny sur Orge, France
| | - J-H Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Prilly-Lausanne, Switzerland
| | - N Cresto
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-Salpêtrière, Paris, France.,INSERM, U1130, Paris, France.,CNRS, UMR8246, Paris, France
| | - N Doligez
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-Salpêtrière, Paris, France.,INSERM, U1130, Paris, France.,CNRS, UMR8246, Paris, France
| | - C Rivat
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-Salpêtrière, Paris, France.,INSERM, U1130, Paris, France.,CNRS, UMR8246, Paris, France
| | - K Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Prilly-Lausanne, Switzerland
| | - C Bernard
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - J-J Benoliel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-Salpêtrière, Paris, France.,INSERM, U1130, Paris, France.,CNRS, UMR8246, Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Service de Biochimie Endocrinienne et Oncologique, Paris, France
| | - C Becker
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Site Pitié-Salpêtrière, Paris, France.,INSERM, U1130, Paris, France.,CNRS, UMR8246, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| |
Collapse
|
10
|
Yan X, Li J, Liu Q, Peng H, Popowich A, Wang Z, Li XF, Le XC. p-Azidophenylarsenoxide: An Arsenical "Bait" for the In Situ Capture and Identification of Cellular Arsenic-Binding Proteins. Angew Chem Int Ed Engl 2016; 55:14051-14056. [PMID: 27723242 DOI: 10.1002/anie.201608006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 12/26/2022]
Abstract
Identification of arsenic-binding proteins is important for understanding arsenic health effects and for developing arsenic-based therapeutics. We report here a strategy for the capture and identification of arsenic-binding proteins in living cells. We designed an azide-labeled arsenical, p-azidophenylarsenoxide (PAzPAO), to serve bio-orthogonal functions: the trivalent arsenical group binds to cellular proteins in situ, and the azide group facilitates click chemistry with dibenzylcyclooctyne. The selective and efficient capture of arsenic-binding proteins enables subsequent enrichment and identification by shotgun proteomics. Applications of the technique are demonstrated using the A549 human lung carcinoma cells and two in vitro model systems. The technique enables the capture and identification of 48 arsenic-binding proteins in A549 cells incubated with PAzPAO. Among the identified proteins are a series of antioxidant proteins (e.g., thioredoxin, peroxiredoxin, peroxide reductase, glutathione reductase, and protein disulfide isomerase) and glyceraldehyde-3-phosphate dehydrogenase. Identification of these functional proteins, along with studies of arsenic binding and enzymatic inhibition, points to these proteins as potential molecular targets that play important roles in arsenic-induced health effects and in cancer treatment.
Collapse
Affiliation(s)
- Xiaowen Yan
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G2G3, Canada
| | - Jinhua Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G2G3, Canada
| | - Qingqing Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G2G3, Canada
| | - Hanyong Peng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G2G3, Canada
| | - Aleksandra Popowich
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G2G2, Canada
| | - Zhixin Wang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G2G3, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G2G3, Canada. .,Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G2G2, Canada.
| |
Collapse
|
11
|
Yan X, Li J, Liu Q, Peng H, Popowich A, Wang Z, Li XF, Le XC. p
-Azidophenylarsenoxide: An Arsenical “Bait” for the In Situ Capture and Identification of Cellular Arsenic-Binding Proteins. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaowen Yan
- Division of Analytical and Environmental Toxicology; Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton Alberta T6G2G3 Canada
| | - Jinhua Li
- Division of Analytical and Environmental Toxicology; Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton Alberta T6G2G3 Canada
| | - Qingqing Liu
- Division of Analytical and Environmental Toxicology; Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton Alberta T6G2G3 Canada
| | - Hanyong Peng
- Division of Analytical and Environmental Toxicology; Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton Alberta T6G2G3 Canada
| | - Aleksandra Popowich
- Department of Chemistry; University of Alberta; Edmonton Alberta T6G2G2 Canada
| | - Zhixin Wang
- Division of Analytical and Environmental Toxicology; Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton Alberta T6G2G3 Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology; Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton Alberta T6G2G3 Canada
| | - X. Chris Le
- Division of Analytical and Environmental Toxicology; Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton Alberta T6G2G3 Canada
- Department of Chemistry; University of Alberta; Edmonton Alberta T6G2G2 Canada
| |
Collapse
|
12
|
Park H, Lee K, Park ES, Oh S, Yan R, Zhang J, Beach TG, Adler CH, Voronkov M, Braithwaite SP, Stock JB, Mouradian MM. Dysregulation of protein phosphatase 2A in parkinson disease and dementia with lewy bodies. Ann Clin Transl Neurol 2016; 3:769-780. [PMID: 27752512 PMCID: PMC5048387 DOI: 10.1002/acn3.337] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/08/2016] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE Protein phosphatase 2A (PP2A) is a heterotrimeric holoenzyme composed of a catalytic C subunit, a structural A subunit, and one of several regulatory B subunits that confer substrate specificity. The assembly and activity of PP2A are regulated by reversible methylation of the C subunit. α-Synuclein, which aggregates in Parkinson disease (PD) and dementia with Lewy bodies (DLB), is phosphorylated at Ser129, and PP2A containing a B55α subunit is a major phospho-Ser129 phosphatase. The objective of this study was to investigate PP2A in α-synucleinopathies. METHODS We compared the state of PP2A methylation, as well as the expression of its methylating enzyme, leucine carboxyl methyltransferase (LCMT-1), and demethylating enzyme, protein phosphatase methylesterase (PME-1), in postmortem brains from PD and DLB cases as well as age-matched Controls. Immunohistochemical studies and quantitative image analysis were employed. RESULTS LCMT-1 was significantly reduced in the substantia nigra (SN) and frontal cortex in both PD and DLB. PME-1, on the other hand, was elevated in the PD SN. In concert with these changes, the ratio of methylated PP2A to demethylated PP2A was markedly decreased in PD and DLB brains in both SN and frontal cortex. No changes in total PP2A or total B55α subunit were detected. INTERPRETATION These findings support the hypothesis that PP2A dysregulation in α-synucleinopathies may contribute to the accumulation of hyperphosphorylated α-synuclein and to the disease process, raising the possibility that pharmacological means to enhance PP2A phosphatase activity may be a useful disease-modifying therapeutic approach.
Collapse
Affiliation(s)
- Hye‐Jin Park
- Center for Neurodegenerative and Neuroimmunologic DiseasesDepartment of NeurologyRutgers – Robert Wood Johnson Medical SchoolPiscatawayNew Jersey08854
| | - Kang‐Woo Lee
- Center for Neurodegenerative and Neuroimmunologic DiseasesDepartment of NeurologyRutgers – Robert Wood Johnson Medical SchoolPiscatawayNew Jersey08854
- Present address: Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701Republic of Korea
| | - Eun S. Park
- Center for Neurodegenerative and Neuroimmunologic DiseasesDepartment of NeurologyRutgers – Robert Wood Johnson Medical SchoolPiscatawayNew Jersey08854
- Present address: Albert Einstein College of MedicineBronxNew Jersey10461
| | - Stephanie Oh
- Center for Neurodegenerative and Neuroimmunologic DiseasesDepartment of NeurologyRutgers – Robert Wood Johnson Medical SchoolPiscatawayNew Jersey08854
| | - Run Yan
- Center for Neurodegenerative and Neuroimmunologic DiseasesDepartment of NeurologyRutgers – Robert Wood Johnson Medical SchoolPiscatawayNew Jersey08854
| | - Jie Zhang
- Center for Neurodegenerative and Neuroimmunologic DiseasesDepartment of NeurologyRutgers – Robert Wood Johnson Medical SchoolPiscatawayNew Jersey08854
| | | | | | | | - Steven P. Braithwaite
- Signum Biosciences133 Wall StreetPrincetonNew Jersey08540
- Present address: Alkahest75 Shoreway Drive, Suite DSan CarlosCalifornia94070
| | - Jeffry B. Stock
- Signum Biosciences133 Wall StreetPrincetonNew Jersey08540
- Department of Molecular BiologyPrinceton UniversityPrincetonNew Jersey08544
| | - M. Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic DiseasesDepartment of NeurologyRutgers – Robert Wood Johnson Medical SchoolPiscatawayNew Jersey08854
| |
Collapse
|
13
|
Foley TD, Katchur KM, Gillespie PF. Disulfide Stress Targets Modulators of Excitotoxicity in Otherwise Healthy Brains. Neurochem Res 2016; 41:2763-2770. [PMID: 27350580 DOI: 10.1007/s11064-016-1991-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 01/07/2023]
Abstract
Oxidative stress is a long-hypothesized cause of diverse neurological and psychiatric disorders but the pathways by which physiological redox perturbations may detour healthy brain development and aging are unknown. We reported recently (Foley et al., Neurochem Res 39:2030-2039, 2014) that two-electron oxidations, to disulfides, of protein vicinal thiols can vary markedly in association with more modest oxidations of the glutathione redox couple in brains from healthy adolescent rats whereas levels of protein S-glutathionylation were low and unchanged. Here, we demonstrate that the selective oxidations of protein vicinal thiols, occurring only in the more oxidized brains under study, were linked specifically to a peroxide stress as evidenced by increased oxidations, to disulfides, of the presumed catalytic vicinal thiols of peroxiredoxins 1 and 2. Moreover, we identify the catalytic subunit(s) of Na+, K+-ATPase, tubulins, glyceraldehyde-3-phosphate dehydrogenase, and protein phosphatase 1, all of which can modulate glutamate neurotransmission and the vulnerability of neurons to excitotoxicity, as non-peroxidase proteins exhibiting prominent oxidations of vicinal thiols. The two-electron pathway, demonstrated here, linking physiological redox perturbations in otherwise healthy brains to protein determinants of excitotoxicity, suggests an alternative to free radical pathways by which oxidative stress may impact brain development and aging.
Collapse
Affiliation(s)
- Timothy D Foley
- Biochemistry Program, Department of Chemistry, University of Scranton, 800 Linden St., Scranton, PA, 18510, USA.
| | - Kristen M Katchur
- Biochemistry Program, Department of Chemistry, University of Scranton, 800 Linden St., Scranton, PA, 18510, USA
| | - Paul F Gillespie
- Biochemistry Program, Department of Chemistry, University of Scranton, 800 Linden St., Scranton, PA, 18510, USA
| |
Collapse
|
14
|
Protein Vicinal Thiol Oxidations in the Healthy Brain: Not So Radical Links between Physiological Oxidative Stress and Neural Cell Activities. Neurochem Res 2014; 39:2030-9. [DOI: 10.1007/s11064-014-1378-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/16/2014] [Accepted: 06/30/2014] [Indexed: 11/26/2022]
|
15
|
Nifoussi SK, Ratcliffe NR, Ornstein DL, Kasof G, Strack S, Craig RW. Inhibition of protein phosphatase 2A (PP2A) prevents Mcl-1 protein dephosphorylation at the Thr-163/Ser-159 phosphodegron, dramatically reducing expression in Mcl-1-amplified lymphoma cells. J Biol Chem 2014; 289:21950-9. [PMID: 24939844 DOI: 10.1074/jbc.m114.587873] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abundant, sustained expression of prosurvival Mcl-1 is an important determinant of viability and drug resistance in cancer cells. The Mcl-1 protein contains PEST sequences (enriched in proline, glutamic acid, serine, and threonine) and is normally subject to rapid turnover via multiple different pathways. One of these pathways involves a phosphodegron in the PEST region, where Thr-163 phosphorylation primes for Ser-159 phosphorylation by glycogen synthase kinase-3. Turnover via this phosphodegron-targeted pathway is reduced in Mcl-1-overexpressing BL41-3 Burkitt lymphoma and other cancer cells; turnover is further slowed in the presence of phorbol ester-induced ERK activation, resulting in Mcl-1 stabilization and an exacerbation of chemoresistance. The present studies focused on Mcl-1 dephosphorylation, which was also found to profoundly influence turnover. Exposure of BL41-3 cells to an inhibitor of protein phosphatase 2A (PP2A), okadaic acid, resulted in a rapid increase in phosphorylation at Thr-163 and Ser-159, along with a precipitous decrease in Mcl-1 expression. The decline in Mcl-1 expression preceded the appearance of cell death markers and was not slowed in the presence of phorbol ester. Upon exposure to calyculin A, which also potently inhibits PP2A, versus tautomycin, which does not, only the former increased Thr-163/Ser-159 phosphorylation and decreased Mcl-1 expression. Mcl-1 co-immunoprecipitated with PP2A upon transfection into CHO cells, and PP2A/Aα knockdown recapitulated the increase in Mcl-1 phosphorylation and decrease in expression. In sum, inhibition of PP2A prevents Mcl-1 dephosphorylation and results in rapid loss of this prosurvival protein in chemoresistant cancer cells.
Collapse
Affiliation(s)
- Shanna K Nifoussi
- From the Departments of Pharmacology and Toxicology and the Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766
| | - Nora R Ratcliffe
- Pathology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, the Veterans Affairs Medical Center, White River Junction, Vermont 05001
| | - Deborah L Ornstein
- Pathology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Gary Kasof
- Cell Signaling Technology, Danvers, Massachusetts 01923, and
| | - Stefan Strack
- Department of Pharmacology, The University of Iowa, Iowa City, Iowa 52242
| | - Ruth W Craig
- From the Departments of Pharmacology and Toxicology and the Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766,
| |
Collapse
|
16
|
Olson KR, DeLeon ER, Liu F. Controversies and conundrums in hydrogen sulfide biology. Nitric Oxide 2014; 41:11-26. [PMID: 24928561 DOI: 10.1016/j.niox.2014.05.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 01/10/2023]
Abstract
Hydrogen sulfide (H2S) signaling has been implicated in physiological processes in practically all organ systems studied to date. At times the excitement of this new field has outpaced the technical expertise or practical knowledge with which to accurately assess these advancements. Recently, the myriad of proposed H2S actions has spawned interest in using indicators of H2S metabolism, especially plasma H2S concentrations, as a means of identifying a variety of pathophysiological conditions or to predict clinical outcomes. While this is a noteworthy endeavor, there are a number of contraindications to this practice at this time. First, there is little consensus regarding normal, i.e., "physiological" concentrations of H2S in either plasma or tissue. In fact, it has been shown that the methods most often employed for these measurements are associated with substantial artifact. Second, interactions, or presumed lack thereof, of H2S with other biomolecules (e.g., O2, H2O2, pH, etc.) or analytical reagents (e.g., reducing reagents, N-ethylmaleimide, phenylarsine, etc.) are often assumed but not evaluated. Third, the experimental design and/or statistical analyses may not be sufficient to justify using H2S concentration in tissue or blood as a predictive biomarker of pathophysiology. In this study, we first briefly review the problems associated with plasma and tissue H2S measurements and the associated errors and we provide some simple methods to evaluate whether the data obtained is physiologically relevant. Second we provide a brief analysis of H2S interactions with the above biomolecules. Third, we provide a statistical tool with which to determine the clinical applicability of H2S measurements. It is hoped that these points will provide a rational background for future work.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine - South Bend, South Bend, IN 46617, United States.
| | - Eric R DeLeon
- Indiana University School of Medicine - South Bend, South Bend, IN 46617, United States; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Fang Liu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
17
|
Reactive oxygen species and excitation-contraction coupling in the context of cardiac pathology. J Mol Cell Cardiol 2014; 73:92-102. [PMID: 24631768 DOI: 10.1016/j.yjmcc.2014.03.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/05/2014] [Accepted: 03/01/2014] [Indexed: 01/12/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen-derived chemical compounds that are by-products of aerobic cellular metabolism as well as crucial second messengers in numerous signaling pathways. In excitation-contraction-coupling (ECC), which links electrical signaling and coordinated cardiac contraction, ROS have a severe impact on several key ion handling proteins such as ion channels and transporters, but also on regulating proteins such as protein kinases (e.g. CaMKII, PKA or PKC), thereby pivotally influencing the delicate balance of this finely tuned system. While essential as second messengers, ROS may be deleterious when excessively produced due to a disturbed balance in Na(+) and Ca(2+) handling, resulting in Na(+) and Ca(2+) overload, SR Ca(2+) loss and contractile dysfunction. This may, in the end, result in systolic and diastolic dysfunction and arrhythmias. This review aims to provide an overview of the single targets of ROS in ECC and to outline the role of ROS in major cardiac pathologies, such as heart failure and arrhythmogenesis. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System"
Collapse
|
18
|
Affiliation(s)
- Shengwen Shen
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - Xing-Fang Li
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - William R. Cullen
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver,
British Columbia, Canada, V6T 1Z1
| | - Michael Weinfeld
- Department of Oncology, Cross
Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, Canada, T6G 1Z2
| | - X. Chris Le
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| |
Collapse
|
19
|
Zheng MQ, Li X, Tang K, Sharma NM, Wyatt TA, Patel KP, Gao L, Bidasee KR, Rozanski GJ. Pyruvate restores β-adrenergic sensitivity of L-type Ca(2+) channels in failing rat heart: role of protein phosphatase. Am J Physiol Heart Circ Physiol 2013; 304:H1352-60. [PMID: 23504177 DOI: 10.1152/ajpheart.00873.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oxidative stress plays a major role in the pathogenesis of heart failure, where the contractile response to β-adrenergic stimulation is profoundly depressed. This condition involves L-type Ca(2+) channels, but the mechanisms underlying their impaired adrenergic regulation are unclear. Thus the present study explored the basis for impaired adrenergic control of Ca(2+) channels in a rat infarction model of heart failure. Patch-clamp recordings of L-type Ca(2+) current (I(Ca,L)) from ventricular myocytes isolated from infarcted hearts showed a blunted response to intracellular cAMP that was reversed by treatment with exogenous pyruvate. Biochemical studies showed that basal and cAMP-stimulated protein kinase A activities were similar in infarcted and sham-operated hearts, whereas molecular analysis also found that binding of protein kinase A to the α(1C) subunit of voltage-gated Ca(2+) channel isoform 1.2 was not different between groups. By contrast, protein phosphatase 2A (PP2A) activity and binding to α(1C) were significantly less in infarcted hearts. The PP2A inhibitor okadaic acid markedly increased I(Ca,L) in sham-operated myocytes, but this response was significantly less in myocytes from infarcted hearts. However, pyruvate normalized I(Ca,L) stimulation by okadaic acid, and this effect was blocked by inhibitors of thioredoxin reductase, implicating a functional role for the redox-active thioredoxin system. Our data suggest that blunted β-adrenergic stimulation of I(CaL) in failing hearts results from hyperphosphorylation of Ca(2+) channels secondary to oxidation-induced impairment of PP2A function. We propose that the redox state of Ca(2+) channels or PP2A is controlled by the thioredoxin system which plays a key role in Ca(2+) channel remodeling of the failing heart.
Collapse
Affiliation(s)
- Ming-Qi Zheng
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Phosphatidylinositol 4-Kinases and PI4P Metabolism in the Nervous System: Roles in Psychiatric and Neurological Diseases. Mol Neurobiol 2012; 47:361-72. [DOI: 10.1007/s12035-012-8358-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/27/2012] [Indexed: 01/18/2023]
|
21
|
Foley TD, Clark AR, Stredny ES, Wierbowski BM. SNAP-25 contains non-acylated thiol pairs that can form intrachain disulfide bonds: possible sites for redox modulation of neurotransmission. Cell Mol Neurobiol 2012; 32:201-8. [PMID: 21850520 PMCID: PMC11498476 DOI: 10.1007/s10571-011-9748-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/30/2011] [Indexed: 10/17/2022]
Abstract
Intrachain disulfide bond formation among the cysteine thiols of SNAP-25, a component of the SNARE protein complex required for neurotransmitter release, has been hypothesized to link oxidative stress and inhibition of synaptic transmission. However, neither the availability in vivo of SNAP-25 thiols, which are known targets of S-palmitoylation, nor the tendency of these thiols to form intrachain disulfide bonds is known. We have examined, in rat brain extracts, both the availability of closely spaced, or vicinal, thiol pairs in SNAP-25 and the propensity of these dithiols toward disulfide bond formation using a method improved by us recently that exploits the high chemoselectivity of phenylarsine oxide (PAO) for vicinal thiols. The results show for the first time that a substantial fraction of soluble and, to a lesser extent, particulate SNAP-25 contain non-acylated PAO-binding thiol pairs and that these thiols in soluble SNAP-25 in particular have a high propensity toward disulfide bond formation. Indeed, disulfide bonds were detected in a small fraction of soluble SNAP-25 even under conditions designed to prevent or greatly limit protein thiol oxidation during experimental procedures. These results provide direct experimental support for the availability, in a subpopulation of SNAP-25, of vicinal thiols that may confer on one or more isoforms of this family of proteins a sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Timothy D Foley
- Departments of Chemistry and Program in Biochemistry, Cell, and Molecular Biology, University of Scranton, Scranton, PA 18510, USA.
| | | | | | | |
Collapse
|
22
|
Fedotcheva TA, Shimanovskii NL, Kruglov AG, Teplova VV, Fedotcheva NI. Role of mitochondrial thiols of different localization in the generation of reactive oxygen species. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2012. [DOI: 10.1134/s1990747811060043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Zhang YH, Casadei B. Sub-cellular targeting of constitutive NOS in health and disease. J Mol Cell Cardiol 2011; 52:341-50. [PMID: 21945464 DOI: 10.1016/j.yjmcc.2011.09.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 02/04/2023]
Abstract
Constitutive nitric oxide synthases (NOSs) are ubiquitous enzymes that play a pivotal role in the regulation of myocardial function in health and disease. The discovery of both a neuronal NOS (nNOS) and an endothelial NOS (eNOS) isoform in the myocardium and the availability of genetically modified mice with selective eNOS or nNOS gene deletion have been of crucial importance for understanding the role of constitutive nitric oxide (NO) production in the myocardium. eNOS and nNOS are homologous in structure and utilize the same co-factors and substrates; however, they differ in their subcellular localization, regulation, and downstream signaling, all of which may account for their distinct effects on excitation-contraction coupling. In particular, eNOS-derived NO has been reported to increase left ventricular (LV) compliance, attenuate beta-adrenergic inotropy and enhance parasympathetic/muscarinic responses, and mediate the negative inotropic response to β3 adrenoreceptor stimulation via cGMP-dependent signaling. Conversely, nNOS-derived NO regulates basal myocardial inotropy and relaxation by inhibiting the sarcolemmal Ca(2+) current (I(Ca)) and promoting protein kinase A-dependent phospholamban (PLN) phosphorylation, independent of cGMP. By inhibiting the activity of myocardial oxidase systems, nNOS regulates the redox state of the myocardium and contributes to maintain eNOS "coupled" activity. After myocardial infarction, up-regulation of myocardial nNOS attenuates adverse remodeling and prevents arrhythmias whereas uncoupled eNOS activity in murine models of left ventricular pressure overload accelerates the progress towards heart failure. Here we review the evidence in support of the idea that NOS subcellular localization, mode of activation, and downstream signaling account for the diverse and highly specialized actions of NO in the heart. This article is part of a Special Issue entitled "Local Signaling in Myocytes".
Collapse
Affiliation(s)
- Yin Hua Zhang
- Department of Physiology, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | | |
Collapse
|