1
|
Demirel G, Sanajou S, Yirün A, Çakır DA, Özyurt AB, Berkkan A, Baydar T, Erkekoğlu P. Walnut oil: a promising nutraceutical in reducing oxidative stress and improving cholinergic activity in an in vitro Alzheimer's disease model. Toxicol Res (Camb) 2024; 13:tfae097. [PMID: 38957781 PMCID: PMC11215158 DOI: 10.1093/toxres/tfae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Improving the quality of life in elderly patients and finding new treatment options for neurological diseases such as Alzheimer's has become one of the priorities in the scientific world. In recent years, the beneficial effects and therapeutic properties of natural foods on neurological health have become a very remarkable issue. Walnut oil (WO) is a promising nutraceutical, with many phytochemicals and polyunsaturated fatty acids and is thought to be promising in the treatment of many neurological diseases and cognitive deficits, such as Alzheimer's disease (AD). Polyphenolic compounds found in WO enhance intraneuronal signaling and neurogenesis and improve the sequestration of insoluble toxic protein aggregates. The objective of this study was to investigate the potential protective and therapeutic effects of WO in a model of AD induced by retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). In order to achieve this, the experimental groups were formed as follows: Control group, WO group, Alzheimer's disease (AD) group, AD + WO applied group (AD + WO). WO supplementation almost significantly reduced oxidative stress in the ad model, providing 2-fold protection against protein oxidation. Additionally, WO showed a significant reduction in tau protein levels (2-fold), increased acetylcholine (ACh) levels (12%), and decreased acetylcholine esterase (AChE) activity (~50%). Since it has been known for centuries that WO does show any adverse effects on human health and has neuroprotective properties, it may be used in the treatment of AD as an additional nutraceutical to drug treatments.
Collapse
Affiliation(s)
- Göksun Demirel
- Faculty of Pharmacy, Department of Toxicology, Çukurova University, Adana 01330, Turkey
- Institute of Addiction and Forensic Sciences, Department of Forensic Sciences, Çukurova University 01330, Adana, Turkey
| | - Sonia Sanajou
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul Aydin University, Istanbul 34320, Türkiye
| | - Anıl Yirün
- Faculty of Pharmacy, Department of Toxicology, Çukurova University, Adana 01330, Turkey
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara 06100, Turkey
| | - Deniz Arca Çakır
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara 06100, Turkey
- Vaccine Institute, Department of Vaccine Technology, Hacettepe University, Ankara 06100, Turkey
| | - Aylin Balcı Özyurt
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara 06100, Turkey
- Faculty of Pharmacy, Department of Toxicology, Bahçeşehir University, Istanbul 34353, Turkey
| | - Aysel Berkkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Gazi University, Ankara 06500, Turkey
| | - Terken Baydar
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara 06100, Turkey
| | - Pınar Erkekoğlu
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara 06100, Turkey
- Vaccine Institute, Department of Vaccine Technology, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
2
|
Alsenani F. Unraveling potential neuroprotective mechanisms of herbal medicine for Alzheimer's diseases through comprehensive molecular docking analyses. Saudi J Biol Sci 2024; 31:103998. [PMID: 38681227 PMCID: PMC11053229 DOI: 10.1016/j.sjbs.2024.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024] Open
Abstract
Alzheimer's disease (AD) continues to be a worldwide health concern, demanding innovative therapeutic approaches. This study investigates the neuroprotective potential of herbal compounds by scrutinizing their interactions with Beta-Secretase-1 (BACE1). Through comprehensive molecular docking analyses, three compounds, Masticadienonic acid (ΔG: -9.6 kcal/mol), Hederagenin (ΔG: -9.3 kcal/mol), and Anthocyanins (ΔG: -8.1 kcal/mol), emerge as promising BACE1 ligands, displaying low binding energies and strong affinities. ADME parameter predictions, drug-likeness assessments, and toxicity analyses reveal favorable pharmacokinetic profiles for these compounds. Notably, Masticadienonic Acid exhibits optimal drug-likeness (-3.3736) and negligible toxicity concerns. Hederagenin (drug-likeness: -5.3272) and Anthocyanins (drug-likeness: -6.2041) also demonstrate promising safety profiles. Furthermore, pharmacophore modeling elucidates the compounds' unique interaction landscapes within BACE1's active site. Masticadienonic acid showcases seven hydrophobic interactions and a hydrogen bond acceptor interaction with Thr232. Hederagenin exhibits a specific hydrogen bond acceptor interaction with Trp76, emphasizing its selective binding. Anthocyanins reveal a multifaceted engagement, combining hydrophobic contacts and hydrogen bond interactions with key residues. In conclusion, Masticadienonic acid, Hederagenin, and Anthocyanins stand out as promising candidates for further experimental validation, presenting a synergistic balance of efficacy and safety in combating AD through BACE1 inhibition.
Collapse
Affiliation(s)
- Faisal Alsenani
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
3
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. Neuroprotective effects of walnut (Juglans regia L.) in nervous system disorders: A comprehensive review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1492-1505. [PMID: 39539440 PMCID: PMC11556768 DOI: 10.22038/ijbms.2024.79854.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024]
Abstract
Juglans regia L. (walnut) has a rich history in traditional medicine due to its various medicinal properties, including its neuroprotective effects on nervous system disorders. This updated review sheds light on the therapeutic potential of walnuts in nervous system disorders such as Alzheimer's disease, Parkinson's disease, depression, epilepsy, and pain, supported by evidence from in vivo and in vitro studies. These beneficial effects are attributed to the walnut's rich composition of bioactive compounds, including gallic acid, protocatechuic acid, ferulic acid, sinapate, ellagic acid, p-hydroxybenzoic acid, p-coumaric acid, quercetin 3-galactoside, juglone, vanillic acid, quercetin, myricetin, kaempferol, apigenin, luteolin, daidzein, and others. The mechanisms underlying the neuroprotective effects of walnuts include decreasing oxidative stress, inflammation, apoptosis, proteolysis, β-amyloid plaque accumulation, acetylcholinesterase (AChE) activity, phosphorylated-c-Jun N-terminal kinase (p-JNK) levels, increasing adenosine triphosphate (ATP) levels, mitochondrial homeostasis, expression of mitophagy-related proteins, and activating the nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (KEAP1)/heme oxygenase-1 (HO-1) pathway. Although walnuts hold great promise in managing nervous system disorders and their complications, further preclinical and clinical investigations are necessary to consolidate these findings. This comprehensive review highlights the potential of walnuts as a natural therapeutic agent and encourages future research to unlock their full neuroprotective potential.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Ali MU, Anwar L, Ali MH, Iqubal MK, Iqubal A, Baboota S, Ali J. Signalling Pathways Involved in Microglial Activation in Alzheimer's Disease and Potential Neuroprotective Role of Phytoconstituents. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:819-840. [PMID: 36567300 DOI: 10.2174/1871527322666221223091529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/02/2022] [Accepted: 10/19/2022] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is a commonly reported neurodegenerative disorder associated with dementia and cognitive impairment. The pathophysiology of AD comprises Aβ, hyperphosphorylated tau protein formation, abrupt cholinergic cascade, oxidative stress, neuronal apoptosis, and neuroinflammation. Recent findings have established the profound role of immunological dysfunction and microglial activation in the pathogenesis of AD. Microglial activation is a multifactorial cascade encompassing various signalling molecules and pathways such as Nrf2/NLRP3/NF-kB/p38 MAPKs/ GSK-3β. Additionally, deposited Aβ or tau protein triggers microglial activation and accelerates its pathogenesis. Currently, the FDA-approved therapeutic regimens are based on the modulation of the cholinergic system, and recently, one more drug, aducanumab, has been approved by the FDA. On the one hand, these drugs only offer symptomatic relief and not a cure for AD. Additionally, no targetedbased microglial medicines are available for treating and managing AD. On the other hand, various natural products have been explored for the possible anti-Alzheimer effect via targeting microglial activation or different targets of microglial activation. Therefore, the present review focuses on exploring the mechanism and associated signalling related to microglial activation and a detailed description of various natural products that have previously been reported with anti-Alzheimer's effect via mitigation of microglial activation. Additionally, we have discussed the various patents and clinical trials related to managing and treating AD.
Collapse
Affiliation(s)
- Mohd Uzair Ali
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Laiba Anwar
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Humair Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Sentiss Research Centre, Department of Product Development, Sentiss Pharma Pvt Ltd., Gurugram 122001, India
| | - Ashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
5
|
Jafni S, Sathya S, Arunkumar M, Kiruthiga C, Jeyakumar M, Murugesh E, Devi KP. Hesperidin Methyl Chalcone reduces extracellular Aβ (25-35) peptide aggregation and fibrillation and also protects Neuro 2a cells from Aβ (25-35) induced neuronal dysfunction. Bioorg Med Chem 2023; 96:117536. [PMID: 38016411 DOI: 10.1016/j.bmc.2023.117536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
In the present study, we evaluated the neuroprotective potential of Hesperidin Methyl Chalcone (HMC) against the neurotoxicity induced by Aβ(25-35) peptide. HMC demonstrated higher free-radical scavenging activity than Hesperidin in initial cell-free studies. Investigations using the fluorescent dye thioflavin T with Aβ(25-35) peptide showed that HMC has the ability to combat extracellular amyloid aggregation by possessing anti-aggregation property against oligomers and by disaggregating mature fibrils. Also, the results of the molecular simulation studies show that HMC ameliorated oligomer formation. Further, the anti-Alzheimer's property of HMC was investigated in in vitro cell conditions by pre-treating the neuro 2a (N2a) cells with HMC before inducing Aβ(25-35) toxicity. The findings demonstrate that HMC increased cell viability, reduced oxidative stress, prevented macromolecular damage, allayed mitochondrial dysfunction, and exhibited anticholinesterase activity. HMC also reduced Aβ induced neuronal cell death by modulating caspase-3 activity, Bax expression and Bcl2 overexpression, demonstrating that HMC pre-treatment reduced mitochondrial damage and intrinsic apoptosis induced by Aβ(25-35).In silico evaluation against potential AD targets reveal that HMC could be a potent inhibitor of BACE-1, inhibiting the formation of toxic Aβ peptides. Overall, the findings imply that the neuroprotective efficacy of HMC has high prospects for addressing a variety of pathogenic consequences caused by amyloid beta in AD situations and alleviating cognitive impairments.
Collapse
Affiliation(s)
- Sakthivel Jafni
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Sethuraman Sathya
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Malaisamy Arunkumar
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | | | - Mahalingam Jeyakumar
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Easwaran Murugesh
- Research Scientist, Bioinformatics Centre, GRC - Ganga Hospital, Coimbatore, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
6
|
El-Ansary A, Al-Ayadhi L. Effects of Walnut and Pumpkin on Selective Neurophenotypes of Autism Spectrum Disorders: A Case Study. Nutrients 2023; 15:4564. [PMID: 37960217 PMCID: PMC10647375 DOI: 10.3390/nu15214564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Special diets or nutritional supplements are regularly given to treat children with autism spectrum disorder (ASD). The increased consumption of particular foods has been demonstrated in numerous trials to lessen autism-related symptoms and comorbidities. A case study on a boy with moderate autism who significantly improved after three years of following a healthy diet consisting of pumpkin and walnuts was examined in this review in connection to a few different neurophenotypes of ASD. We are able to suggest that a diet high in pumpkin and walnuts was useful in improving the clinical presentation of the ASD case evaluated by reducing oxidative stress, neuroinflammation, glutamate excitotoxicity, mitochondrial dysfunction, and altered gut microbiota, all of which are etiological variables. Using illustrated figures, a full description of the ways by which a diet high in pumpkin and nuts could assist the included case is offered.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Autism Center, Lotus Holistic Alternative Medical Center, Abu Dhabi P.O. Box 110281, United Arab Emirates
- Autism Research and Treatment Center, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
- Department of Physiology, Faculty of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
7
|
Raut S, Bhalerao A, Powers M, Gonzalez M, Mancuso S, Cucullo L. Hypometabolism, Alzheimer's Disease, and Possible Therapeutic Targets: An Overview. Cells 2023; 12:2019. [PMID: 37626828 PMCID: PMC10453773 DOI: 10.3390/cells12162019] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The brain is a highly dynamic organ that requires a constant energy source to function normally. This energy is mostly supplied by glucose, a simple sugar that serves as the brain's principal fuel source. Glucose transport across the blood-brain barrier (BBB) is primarily controlled via sodium-independent facilitated glucose transport, such as by glucose transporter 1 (GLUT1) and 3 (GLUT3). However, other glucose transporters, including GLUT4 and the sodium-dependent transporters SGLT1 and SGLT6, have been reported in vitro and in vivo. When the BBB endothelial layer is crossed, neurons and astrocytes can absorb the glucose using their GLUT1 and GLUT3 transporters. Glucose then enters the glycolytic pathway and is metabolized into adenosine triphosphate (ATP), which supplies the energy to support cellular functions. The transport and metabolism of glucose in the brain are impacted by several medical conditions, which can cause neurological and neuropsychiatric symptoms. Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, traumatic brain injury (TBI), schizophrenia, etc., are a few of the most prevalent disorders, characterized by a decline in brain metabolism or hypometabolism early in the course of the disease. Indeed, AD is considered a metabolic disorder related to decreased brain glucose metabolism, involving brain insulin resistance and age-dependent mitochondrial dysfunction. Although the conventional view is that reduced cerebral metabolism is an effect of neuronal loss and consequent brain atrophy, a growing body of evidence points to the opposite, where hypometabolism is prodromal or at least precedes the onset of brain atrophy and the manifestation of clinical symptoms. The underlying processes responsible for these glucose transport and metabolic abnormalities are complicated and remain poorly understood. This review article provides a comprehensive overview of the current understanding of hypometabolism in AD and potential therapeutic targets.
Collapse
Affiliation(s)
- Snehal Raut
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Aditya Bhalerao
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Michael Powers
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA;
| | - Minelly Gonzalez
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Salvatore Mancuso
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| |
Collapse
|
8
|
Migheli R, Lostia G, Galleri G, Rocchitta G, Serra PA, Campesi I, Bassareo V, Acquas E, Peana AT. New perspective for an old drug: Can naloxone be considered an antioxidant agent? Biochem Biophys Rep 2023; 34:101441. [PMID: 36875795 PMCID: PMC9975616 DOI: 10.1016/j.bbrep.2023.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Background Experimental evidence indicates that Naloxone (NLX) holds antioxidant properties. The present study aims at verifying the hypothesis that NLX could prevent oxidative stress induced by hydrogen peroxide (H2O2) in PC12 cells. Methods To investigate the antioxidant effect of NLX, initially, we performed electrochemical experiments by means of platinum-based sensors in a cell-free system. Subsequently, NLX was tested in PC12 cells on H2O2-induced overproduction of intracellular levels of reactive-oxygen-species (ROS), apoptosis, modification of cells' cycle distribution and damage of cells' plasma membrane. Results This study reveals that NLX counteracts intracellular ROS production, reduces H2O2-induced apoptosis levels, and prevents the oxidative damage-dependent increases of the percentage of cells in G2/M phase. Likewise, NLX protects PC12 cells from H2O2- induced oxidative damage, by preventing the lactate dehydrogenase (LDH) release. Moreover, electrochemical experiments confirmed the antioxidant properties of NLX. Conclusion Overall, these findings provide a starting point for studying further the protective effects of NLX on oxidative stress.
Collapse
Affiliation(s)
- Rossana Migheli
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Giada Lostia
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Grazia Galleri
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Gaia Rocchitta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Pier Andrea Serra
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Valentina Bassareo
- Department of Biomedical Sciences and Center of Excellence for the Study of Neurobiology of Addiction, University of Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Elio Acquas
- Department of Life and Environmental Sciences and Center of Excellence for the Study of Neurobiology of Addiction, University of Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Alessandra T. Peana
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy
| |
Collapse
|
9
|
Hosseini Adarmanabadi SMH, Karami Gilavand H, Taherkhani A, Sadat Rafiei SK, Shahrokhi M, Faaliat S, Biabani M, Abil E, Ansari A, Sheikh Z, Poudineh M, Khalaji A, ShojaeiBaghini M, Koorangi A, Deravi N. Pharmacotherapeutic potential of walnut (Juglans spp.) in age-related neurological disorders. IBRO Neurosci Rep 2023; 14:1-20. [PMID: 36507190 PMCID: PMC9727645 DOI: 10.1016/j.ibneur.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Global and regional trends of population aging spotlight major public health concerns. As one of the most common adverse prognostic factors, advanced age is associated with a remarkable incidence risk of many non-communicable diseases, affecting major organ systems of the human body. Age-dependent factors and molecular processes can change the nervous system's normal function and lead to neurodegenerative disorders. Oxidative stress results from of a shift toward reactive oxygen species (ROS) production in the equilibrium between ROS generation and the antioxidant defense system. Oxidative stress and neuroinflammation caused by Amyloid-ß protein deposition in the human brain are the most likely pathogenesis of Alzheimer's disease (AD). Walnut extracts could reduce Amyloid-ß fibrillation and aggregation, indicating their beneficial effects on memory and cognition. Walnut can also improve movement disabilities in Parkinson's disease due to their antioxidant and neuroprotective effect by reducing ROS and nitric oxide (NO) generation and suppressing oxidative stress. It is noteworthy that Walnut compounds have potential antiproliferative effects on Glioblastoma (the most aggressive primary cerebral neoplasm). This effective therapeutic agent can stimulate apoptosis of glioma cells in response to oxidative stress, concurrent with preventing angiogenesis and migration of tumor cells, improving the quality of life and life expectancy of patients with glioblastoma. Antioxidant Phenolic compounds of the Walnut kernel could explain the significant anti-convulsion ability of Walnut to provide good prevention and treatment for epileptic seizures. Moreover, the anti-inflammatory effect of Walnut oil could be beneficial in treating multiple sclerosis. In this study, we review the pharmaceutical properties of Walnut in age-related neurological disorders.
Collapse
Affiliation(s)
| | - Helia Karami Gilavand
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Taherkhani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Kiarash Sadat Rafiei
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sara Faaliat
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Morteza Biabani
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elaheh Abil
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Akram Ansari
- Laboratory Science, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Zahra Sheikh
- Student Research Committee, School of medicine, Babol University of Medical Sciences, Babol, Iran
| | | | | | - Mahdie ShojaeiBaghini
- Medical Informatics, Research Center, Institute for Futures Studies in Health, Kerman, Iran
| | - Amirhosein Koorangi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Koul B, Farooq U, Yadav D, Song M. Phytochemicals: A Promising Alternative for the Prevention of Alzheimer's Disease. Life (Basel) 2023; 13:life13040999. [PMID: 37109528 PMCID: PMC10144079 DOI: 10.3390/life13040999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that worsens with ageing and affects memory and cognitive function. Presently more than 55 million individuals are affected by AD all over the world, and it is a leading cause of death in old age. The main purpose of this paper is to review the phytochemical constituents of different plants that are used for the treatment of AD. A thorough and organized review of the existing literature was conducted, and the data under the different sections were found using a computerized bibliographic search through the use of databases such as PubMed, Web of Science, Google Scholar, Scopus, CAB Abstracts, MEDLINE, EMBASE, INMEDPLAN, NATTS, and numerous other websites. Around 360 papers were screened, and, out of that, 258 papers were selected on the basis of keywords and relevant information that needed to be included in this review. A total of 55 plants belonging to different families have been reported to possess different bioactive compounds (galantamine, curcumin, silymarin, and many more) that play a significant role in the treatment of AD. These plants possess anti-inflammatory, antioxidant, anticholinesterase, and anti-amyloid properties and are safe for consumption. This paper focuses on the taxonomic details of the plants, the mode of action of their phytochemicals, their safety, future prospects, limitations, and sustainability criteria for the effective treatment of AD.
Collapse
Affiliation(s)
- Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Usma Farooq
- Department of Botany, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Dhananjay Yadav
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
11
|
He M, Park C, Shin Y, Kim J, Cho E. N-Feruloyl Serotonin Attenuates Neuronal Oxidative Stress and Apoptosis in Aβ 25-35-Treated Human Neuroblastoma SH-SY5Y Cells. Molecules 2023; 28:molecules28041610. [PMID: 36838597 PMCID: PMC9963151 DOI: 10.3390/molecules28041610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
Amyloid-beta (Aβ) aggregation and deposition have been identified as a critical feature in the pathology of Alzheimer's disease (AD), with a series of functional alterations including neuronal oxidative stress and apoptosis. N-feruloyl serotonin (FS) is a plant-derived component that exerts antioxidant activity. This study investigated the protective effects of FS on Aβ25-35-treated neuronal damage by regulation of oxidative stress and apoptosis in human neuroblastoma SH-SY5Y cells. The radical scavenging activities increased with the concentration of FS, exhibiting in vitro antioxidant activity. The Aβ25-35-treated SH-SY5Y cells exerted neuronal cell injury by decreased cell viability and elevated reactive oxygen species, but that was recovered by FS treatment. In addition, treatment of FS increased anti-apoptotic factor B-cell lymphoma protein 2 (Bcl-2) and decreased the pro-apoptotic factor Bcl-2-associated X protein. The FS attenuated Aβ-stimulated neuronal apoptosis by regulations of mitogen-activated protein kinase signaling pathways. Moreover, activated CREB-BDNF signaling was observed by the treatment of FS in Aβ25-35-induced SH-SY5Y cells. These results demonstrate that FS shows potential neuroprotective effects on Aβ25-35-induced neuronal damage by attenuation of oxidative stress and apoptosis, and suggest that FS may be considered a promising candidate for the treatment of AD.
Collapse
Affiliation(s)
- Meitong He
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Chanhum Park
- Institute of New Frontier Research Team, Research Institute of Medical-Bio Convergence, Hallym University, Chuncheon 24252, Republic of Korea
| | - Yusu Shin
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Jihyun Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
- Correspondence: (J.K.); (E.C.)
| | - Eunju Cho
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: (J.K.); (E.C.)
| |
Collapse
|
12
|
Aleksandrova S, Alexova R, Dragomanova S, Kalfin R, Nicoletti F, Fagone P, Petralia MC, Mangano K, Tancheva L. Preventive and Therapeutic Effects of Punica granatum L. Polyphenols in Neurological Conditions. Int J Mol Sci 2023; 24:ijms24031856. [PMID: 36768185 PMCID: PMC9916020 DOI: 10.3390/ijms24031856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Pomegranate (Punica granatum L.) is a polyphenol-rich food and medicinal plant containing flavonols, anthocyanins, and tannins. Ellagitannins (ETs) are the most abundant polyphenols in pomegranate. A growing body of research shows that polyphenol-rich pomegranate extracts and their metabolites target multiple types of brain cell and support their redox balance, proliferation and survival, as well as cell signaling. Independent studies have demonstrated that the significant neuroprotective effects of ETs are mediated by their antioxidant and anti-inflammatory effects, their chelating properties, by their ability to activate various signaling pathways, as well as the ability to influence mitochondrial damage, thus regulating autophagy, apoptosis and neurotransmitter signaling. The multitude of in vitro and in vivo studies summarized in the present review suggest that pomegranate polyphenols act on both neuronal and glial cells directly, and also affect blood-brain barrier function, restoring redox balance in the blood and brain and increasing blood flow to the brain.
Collapse
Affiliation(s)
- Simona Aleksandrova
- Department of Biological Activity of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ralitza Alexova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University—Sofia, 2 Zdrave St., 1431 Sofia, Bulgaria
| | - Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University, 9002 Varna, Bulgaria
| | - Reni Kalfin
- Department of Biological Activity of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Department of Health Care, South-West University “Neofit Rilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
- Correspondence:
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Lyubka Tancheva
- Department of Biological Activity of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
13
|
Ethnomedicinal Plants with Protective Effects against Beta-Amyloid Peptide (Aβ)1-42 Indicate Therapeutic Potential in a New In Vivo Model of Alzheimer's Disease. Antioxidants (Basel) 2022; 11:antiox11101865. [PMID: 36290588 PMCID: PMC9598277 DOI: 10.3390/antiox11101865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with unmet medical need. This investigation consisted of testing a range of ethanolic ethnomedicinal plant extracts (n = 18) traditionally used in the treatment of disorders such as anxiety, delirium, and memory loss. They were then screened for in vitro inhibitory activity against acetylcholinesterase (AChE), butylcholinesterase (BuChE), beta-secretase 1/beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), and antioxidant activities. Plants with potent activities were further characterised using a recently developed in vivo model of AD, Globodera pallida. The ability of phytoextracts to protect this organism against amyloid-beta Aβ (1-42) exposure was assessed by measuring chemosensing, survival rate, production of reactive oxygen species (ROS), and antioxidant responses. Extracts (n = 5) from Juglans regia (leaves), Ellettaria cardamomum (seeds), Cinnamomum zeylanicum (bark), Salvia officinalis (leaves/flowers), and Hypericum perforatum (flowers) exerted concentration-dependent inhibitory activities against AChE and BuChE. Three of these plant extracts (i.e., J. regia, E. cardamomum, and S. officinalis) possessed strong concentration-dependent inhibitory activity against BACE1. Furthermore, the five selected medicinal plant extracts not only enhanced significantly (p < 0.05) the nematode’s chemosensing, survival rate, and antioxidant responses (i.e., anti-ROS production, mitochondrial reductase activity, oxidized glutathione (GSSG) to reduced glutathione (GSH) ratio), but also greatly restored (p < 0.05) in a concentration-dependent manner the Aβ (1-42)-induced deleterious changes in these same parameters. In brief, this investigation highlights plant extracts with strong anti-AD activities which could be trialled as novel therapeutic supplements or undergo further biodiscovery research.
Collapse
|
14
|
Ellagic Acid and Its Anti-Aging Effects on Central Nervous System. Int J Mol Sci 2022; 23:ijms231810937. [PMID: 36142849 PMCID: PMC9502104 DOI: 10.3390/ijms231810937] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/25/2022] Open
Abstract
Aging is an unavoidable biological process that leads to the decline of human function and the reduction in people’s quality of life. Demand for anti-aging medicines has become very urgent. Many studies have shown that ellagic acid (EA), a phenolic compound widely distributed in dicotyledonous plants, has powerful anti-inflammation and antioxidant properties. Moreover, it has been demonstrated that EA can enhance neuronal viability, reduce neuronal defects, and alleviate damage in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and cerebral ischemia. This paper reviews the biochemical functions and neuroprotective effects of EA, showing the clinical value of its application.
Collapse
|
15
|
Walnut Prevents Cognitive Impairment by Regulating the Synaptic and Mitochondrial Dysfunction via JNK Signaling and Apoptosis Pathway in High-Fat Diet-Induced C57BL/6 Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165316. [PMID: 36014555 PMCID: PMC9414791 DOI: 10.3390/molecules27165316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022]
Abstract
This study was conducted to evaluate the protective effect of Juglans regia (walnut, Gimcheon 1ho cultivar, GC) on high-fat diet (HFD)-induced cognitive dysfunction in C57BL/6 mice. The main physiological compounds of GC were identified as pedunculagin/casuariin isomer, strictinin, tellimagrandin I, ellagic acid-O-pentoside, and ellagic acid were identified using UPLC Q-TOF/MS analysis. To evaluate the neuro-protective effect of GC, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2′,7′-dichlorodihydrofluorecein diacetate (DCF-DA) analysis were conducted in H2O2 and high glucose-induced neuronal PC12 cells and hippocampal HT22 cells. GC presented significant cell viability and inhibition of reactive oxygen species (ROS) production. GC ameliorated behavioral and memory dysfunction through Y-maze, passive avoidance, and Morris water maze tests. In addition, GC reduced white adipose tissue (WAT), liver fat mass, and serum dyslipidemia. To assess the inhibitory effect of antioxidant system deficit, lipid peroxidation, ferric reducing antioxidant power (FRAP), and advanced glycation end products (AGEs) were conducted. Administration of GC protected the antioxidant damage against HFD-induced diabetic oxidative stress. To estimate the ameliorating effect of GC, acetylcholine (ACh) level, acetylcholinesterase (AChE) activity, and expression of AChE and choline acetyltransferase (ChAT) were conducted, and the supplements of GC suppressed the cholinergic system impairment. Furthermore, GC restored mitochondrial dysfunction by regulating the mitochondrial ROS production and mitochondrial membrane potential (MMP) levels in cerebral tissues. Finally, GC ameliorated cerebral damage by synergically regulating the protein expression of the JNK signaling and apoptosis pathway. These findings suggest that GC could provide a potential functional food source to improve diabetic cognitive deficits and neuronal impairments.
Collapse
|
16
|
Aydin N, Turkez H, Tozlu OO, Arslan ME, Yavuz M, Sonmez E, Ozpolat OF, Cacciatore I, Di Stefano A, Mardinoglu A. Ameliorative Effects by Hexagonal Boron Nitride Nanoparticles against Beta Amyloid Induced Neurotoxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12152690. [PMID: 35957121 PMCID: PMC9370266 DOI: 10.3390/nano12152690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 05/28/2023]
Abstract
Alzheimer’s disease (AD) is considered as the most common neurodegenerative disease. Extracellular amyloid beta (Aβ) deposition is a hallmark of AD. The options based on degradation and clearance of Aβ are preferred as promising therapeutic strategies for AD. Interestingly, recent findings indicate that boron nanoparticles not only act as a carrier but also play key roles in mediating biological effects. In the present study, the aim was to investigate the effects of different concentrations (0−500 mg/L) of hexagonal boron nitride nanoparticles (hBN-NPs) against neurotoxicity by beta amyloid (Aβ1-42) in differentiated human SH-SY5Y neuroblastoma cell cultures for the first time. The synthesized hBN-NPs were characterized by X-ray diffraction (XRD) measurements, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Aβ1-42-induced neurotoxicity and therapeutic potential by hBN-NPs were assessed on differentiated SH-SY5Y cells using MTT and LDH release assays. Levels of total antioxidant capacity (TAC) and total oxidant status (TOS), expression levels of genes associated with AD and cellular morphologies were examined. The exposure to Aβ1-42 significantly decreased the rates of viable cells which was accompanied by elevated TOS level. Aβ1-42 induced both apoptotic and necrotic cell death. Aβ exposure led to significant increases in expression levels of APOE, BACE 1, EGFR, NCTSN and TNF-α genes and significant decreases in expression levels of ADAM 10, APH1A, BDNF, PSEN1 and PSENEN genes (p < 0.05). All the Aβ1-42-induced neurotoxic insults were inhibited by the applications with hBN-NPs. hBN-NPs also suppressed the remarkable elevation in the signal for Aβ following exposure to Aβ1-42 for 48 h. Our results indicated that hBN-NPs could significantly prevent the neurotoxic damages by Aβ. Thus, hBN-NPs could be a novel and promising anti-AD agent for effective drug development, bio-nano imaging or drug delivery strategies.
Collapse
Affiliation(s)
- Nursah Aydin
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25050, Turkey
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, Erzurum 25240, Turkey
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25050, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25050, Turkey
| | - Mehmet Yavuz
- REEM Neuropsychiatry Clinics, İstanbul 34245, Turkey
| | - Erdal Sonmez
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Ataturk University, Erzurum 25240, Turkey
- Department of Physics, Kazım Karabekir Education Faculty, Atatürk University, Erzurum 25240, Turkey
| | - Ozgur Fırat Ozpolat
- Computer Sciences Research and Application Center, Atatürk University, Erzurum 25240, Turkey
| | - Ivana Cacciatore
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti Scalo, CH, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti Scalo, CH, Italy
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| |
Collapse
|
17
|
Bhat BA, Almilaibary A, Mir RA, Aljarallah BM, Mir WR, Ahmad F, Mir MA. Natural Therapeutics in Aid of Treating Alzheimer's Disease: A Green Gateway Toward Ending Quest for Treating Neurological Disorders. Front Neurosci 2022; 16:884345. [PMID: 35651632 PMCID: PMC9149276 DOI: 10.3389/fnins.2022.884345] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
The current scientific community is facing a daunting challenge to unravel reliable natural compounds with realistic potential to treat neurological disorders such as Alzheimer's disease (AD). The reported compounds/drugs mostly synthetic deemed the reliability and therapeutic potential largely due to their complexity and off-target issues. The natural products from nutraceutical compounds emerge as viable preventive therapeutics to fill the huge gap in treating neurological disorders. Considering that Alzheimer's disease is a multifactorial disease, natural compounds offer the advantage of a multitarget approach, tagging different molecular sites in the human brain, as compared with the single-target activity of most of the drugs so far used to treat Alzheimer's disease. A wide range of plant extracts and phytochemicals reported to possess the therapeutic potential to Alzheimer's disease includes curcumin, resveratrol, epigallocatechin-3-gallate, morin, delphinidins, quercetin, luteolin, oleocanthal, and other phytochemicals such as huperzine A, limonoids, and azaphilones. Reported targets of these natural compounds include inhibition of acetylcholinesterase, amyloid senile plaques, oxidation products, inflammatory pathways, specific brain receptors, etc. We tenaciously aimed to review the in-depth potential of natural products and their therapeutic applications against Alzheimer's disease, with a special focus on a diversity of medicinal plants and phytocompounds and their mechanism of action against Alzheimer's disease pathologies. We strongly believe that the medicinal plants and phytoconstituents alone or in combination with other compounds would be effective treatments against Alzheimer's disease with lesser side effects as compared to currently available treatments.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Albaha University Alaqiq, Alaqiq, Saudi Arabia
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Badr M. Aljarallah
- Department of Gastroenterology and Hepatology, Qassim University, Buraydah, Saudi Arabia
| | - Wajahat R. Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Fuzail Ahmad
- College of Applied Medical Science, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
18
|
Khoba K, Kumar S, Chatterjee S, Purty RS. Isolation, Characterization, and In Silico Interaction Studies of Bioactive Compounds from Caesalpinia bonducella with Target Proteins Involved in Alzheimer's Disease. Appl Biochem Biotechnol 2022; 195:2216-2234. [PMID: 35507252 DOI: 10.1007/s12010-022-03937-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder characterized by memory loss, cognitive deterioration, and neuropsychiatric symptoms. Various drug targets implicated in AD are amyloid beta peptides, cholinesterase enzymes, and anti-amylogenic protein. Medicinal plants derived phytochemical constituents provide a vast pool of diverse compounds as a source of novel drugs. In view of this, the Caesalpinia bonducella seed extract and its active phytoconstituents were used to study the disease-modifying effects in Alzheimer's disease. The present study successfully demonstrated the therapeutic potential of various phytochemicals as it binds to multiple drug targets, resulting in inhibition of acetylcholinesterase (AChE) enzyme, butyrylcholinesterase (BuChE), BACE-1 enzyme, and anti-amylogenic protein as indicated by docking analysis. In conclusion, phytochemicals identified can be used as a suitable lead to developing a molecule that might have multi-targeted directed ligand (MTDL) potential and disease amelioration effects in Alzheimer's disease.
Collapse
Affiliation(s)
- Kanika Khoba
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi, 110078, India
| | - Suresh Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi, 110078, India
| | - Sayan Chatterjee
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi, 110078, India
| | - Ram Singh Purty
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
19
|
Islam F, Khadija JF, Harun-Or-Rashid M, Rahaman MS, Nafady MH, Islam MR, Akter A, Emran TB, Wilairatana P, Mubarak MS. Bioactive Compounds and Their Derivatives: An Insight into Prospective Phytotherapeutic Approach against Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5100904. [PMID: 35450410 PMCID: PMC9017558 DOI: 10.1155/2022/5100904] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative brain disorder that causes cellular response alterations, such as impaired cholinergic mechanism, amyloid-beta (Aβ) AD aggregation, neuroinflammation, and several other pathways. AD is still the most prevalent form of dementia and affects many individuals across the globe. The exact cause of the disorder is obscure. There are yet no effective medications for halting, preventing, or curing AD's progress. Plenty of natural products are isolated from several sources and analyzed in preclinical and clinical settings for neuroprotective effects in preventing and treating AD. In addition, natural products and their derivatives have been promising in treating and preventing AD. Natural bioactive compounds play an active modulatory role in the pathological molecular mechanisms of AD development. This review focuses on natural products from plant sources and their derivatives that have demonstrated neuroprotective activities and maybe promising to treat and prevent AD. In addition, this article summarizes the literature pertaining to natural products as agents in the treatment of AD. Rapid metabolism, nonspecific targeting, low solubility, lack of BBB permeability, and limited bioavailability are shortcomings of most bioactive molecules in treating AD. We can use nanotechnology and nanocarriers based on different types of approaches.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Jannatul Fardous Khadija
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
20
|
Higher Habitual Nuts Consumption Is Associated with Better Cognitive Function among Qatari Adults. Nutrients 2021; 13:nu13103580. [PMID: 34684580 PMCID: PMC8538871 DOI: 10.3390/nu13103580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
The association between nuts intake and cognitive function is inconclusive. We aimed to investigate the association between habitual nuts consumption and cognition among Qatari adults. Data from 1000 participants aged >20 years who attended Qatar Biobank (QBB) were used. Nuts consumption was assessed by a food frequency questionnaire (FFQ). Blood samples were measured for magnesium, lipids and glucose. Mean reaction time (MRT) was used as an indicator of cognitive function. Linear regression was used to assess the association. A total of 21.1% of the participants reported consuming nuts ≥4-6 times/week (high consumption) while 40.2% reported consuming ≤1 time/month (low consumption). The mean MRT was 715.6 milliseconds (SD 204.1). An inverse association was found between nuts consumption and MRT. Compared to those with a low consumption, high consumption of nuts had a regression coefficient of -36.9 (95% CI -68.1 to -5.8) after adjusting for sociodemographic and lifestyle factors. The inverse association between nuts and MRT was mainly seen among those >50 years. There was an interaction between nuts consumption and hypertension. The association between nuts consumption and MRT was not mediated by hypertension, diabetes, or serum magnesium. Habitual higher consumption of nuts is positively associated with cognitive function, especially among old adults.
Collapse
|
21
|
Nguyen TH, Vu DC. A Review on Phytochemical Composition and Potential Health-promoting Properties of Walnuts. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1912084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Trang H.D. Nguyen
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Danh C. Vu
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| |
Collapse
|
22
|
The Moringin/α-CD Pretreatment Induces Neuroprotection in an In Vitro Model of Alzheimer's Disease: A Transcriptomic Study. Curr Issues Mol Biol 2021; 43:197-214. [PMID: 34073287 PMCID: PMC8929117 DOI: 10.3390/cimb43010017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and represents the most common form of senile dementia. Autophagy and mitophagy are cellular processes that play a key role in the aggregation of β-amyloid (Aβ) and tau phosphorylation. As a consequence, impairment of these processes leads to the progression of AD. Thus, interest is growing in the search for new natural compounds, such as Moringin (MOR), with neuroprotective, anti-amyloidogenic, antioxidative, and anti-inflammatory properties that could be used for AD prevention. However, MOR appears to be poorly soluble and stable in water. To increase its solubility MOR was conjugated with α-cyclodextrin (MOR/α-CD). In this work, it was evaluated if MOR/α-CD pretreatment was able to exert neuroprotective effects in an AD in vitro model through the evaluation of the transcriptional profile by next-generation sequencing (NGS). To induce the AD model, retinoic acid-differentiated SH-SY5Y cells were exposed to Aβ1-42. The MOR/α-CD pretreatment reduced the expression of the genes which encode proteins involved in senescence, autophagy, and mitophagy processes. Additionally, MOR/α-CD was able to induce neuronal remodeling modulating the axon guidance, principally downregulating the Slit/Robo signaling pathway. Noteworthy, MOR/α-CD, modulating these important pathways, may induce neuronal protection against Aβ1-42 toxicity as demonstrated also by the reduction of cleaved caspase 3. These data indicated that MOR/α-CD could attenuate the progression of the disease and promote neuronal repair.
Collapse
|
23
|
Chen X, Drew J, Berney W, Lei W. Neuroprotective Natural Products for Alzheimer's Disease. Cells 2021; 10:1309. [PMID: 34070275 PMCID: PMC8225186 DOI: 10.3390/cells10061309] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the number one neurovegetative disease, but its treatment options are relatively few and ineffective. In efforts to discover new strategies for AD therapy, natural products have aroused interest in the research community and in the pharmaceutical industry for their neuroprotective activity, targeting different pathological mechanisms associated with AD. A wide variety of natural products from different origins have been evaluated preclinically and clinically for their neuroprotective mechanisms in preventing and attenuating the multifactorial pathologies of AD. This review mainly focuses on the possible neuroprotective mechanisms from natural products that may be beneficial in AD treatment and the natural product mixtures or extracts from different sources that have demonstrated neuroprotective activity in preclinical and/or clinical studies. It is believed that natural product mixtures or extracts containing multiple bioactive compounds that can work additively or synergistically to exhibit multiple neuroprotective mechanisms might be an effective approach in AD drug discovery.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Joshua Drew
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Wren Berney
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Presbyterian College, Clinton, SC 29325, USA
| |
Collapse
|
24
|
Chen WT, Lin GB, Kuo YY, Hsieh CH, Lu CH, Sun YK, Chao CY. Effect of high-frequency low-intensity pulsed electric field on protecting SH-SY5Y cells against hydrogen peroxide and β-amyloid-induced cell injury via ERK pathway. PLoS One 2021; 16:e0250491. [PMID: 33901243 PMCID: PMC8075192 DOI: 10.1371/journal.pone.0250491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/08/2021] [Indexed: 11/21/2022] Open
Abstract
As the most common type of neurodegenerative diseases (NDDs), Alzheimer's disease (AD) is thought to be caused mainly by the excessive aggregation of β-amyloid protein (Aβ). However, a growing number of studies have found that reactive oxygen species (ROS) play a key role in the onset and progression of AD. The present study aimed to probe the neuroprotective effect of high-frequency low-intensity pulsed electric field (H-LIPEF) for SH-SY5Y cells against hydrogen peroxide (H2O2) and Aβ-induced cytotoxicity. By looking in a systematic way into the frequency- and amplitude-dependent neuroprotective effect of pulsed electric field (PEF), the study finds that H-LIPEF at 200 Hz produces the optimal protective effect for SH-SY5Y cells. The underlying mechanisms were confirmed to be due to the activation of extracellular signal-regulated kinase (ERK) pathway and the downstream prosurvival and antioxidant proteins. Because the electric field can be modified to focus on specific area in a non-contact manner, the study suggests that H-LIPEF holds great potential for treating NDDs, whose effect can be further augmented with the administering of drugs or natural compounds at the same time.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Guan-Bo Lin
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Yi Kuo
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Hsiung Hsieh
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chueh-Hsuan Lu
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Kun Sun
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Yu Chao
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Applied Physics, Biophysics Division, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
Enhanced Recovery of Phenolic and Tocopherolic Compounds from Walnut ( Juglans Regia L.) Male Flowers Based on Process Optimization of Ultrasonic Assisted-Extraction: Phytochemical Profile and Biological Activities. Antioxidants (Basel) 2021; 10:antiox10040607. [PMID: 33920912 PMCID: PMC8071334 DOI: 10.3390/antiox10040607] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
The extraction of bioactive compounds present in walnut (Juglans regia L.) male flowers (WMFs) was performed based on an experimental design using ultrasonic-assisted extraction. Solvent nature, extraction time, and water content were selected as experimental variables, and phenolic, flavonoidic, and condensed tannins contents and antioxidant properties were evaluated. Acetone was the solvent with the highest extraction performance, with the extracts obtained using this solvent displaying an increased concentration of bioactive compounds and increased antioxidant activities. For several extracts with high bioactive content, individual polyphenolic and tocopherolic compounds were evaluated by means of LC-MS and LC-MS/MS. The best extraction conditions for polyphenolic (2.86 mg gallic acid equivalents/g WMF) and tocopherolic compounds (29.4 µg/g WMF) were acetone with 40% water content (N20) and acetone with 20% water content (N15), respectively. Although the total tocopherol concentrations were lower than in other Juglans regia parts, most of the total tocopherol quantity was provided by the highly biologically active δ-tocopherol (84%). Significant quantities of quercetin (101.9 µg/g), hyperoside (2662.9 µg/g), quercitrin (405.7 µg/g), and isoquercitrin (1293.7 µg/g) were determined in WMF (N20). Both extracts inhibited the enzymatic activity of α-glucosidase and tyrosinase; however, an increased inhibition was observed for N20, the extract with the higher polyphenolic content. Conversely, N15 had higher anticancerous activity on the cell lines used, with a moderate selectivity towards the cancerous phenotype being observed for both extracts. At non-cytotoxic concentrations, both extracts displayed good antioxidant activities in cellular cultures, decreasing basal and H2O2-induced oxidative stress. This is the first characterization of both hydrophilic and lipophilic phytochemicals in WMF extracts. The outcomes of our study reveal that walnut male flowers have strong biological activities, thus justifying further research to demonstrate their usefulness in the food, pharmaceutical, and/or cosmetic industries.
Collapse
|
26
|
Fizeșan I, Rusu ME, Georgiu C, Pop A, Ștefan MG, Muntean DM, Mirel S, Vostinaru O, Kiss B, Popa DS. Antitussive, Antioxidant, and Anti-Inflammatory Effects of a Walnut ( Juglans regia L.) Septum Extract Rich in Bioactive Compounds. Antioxidants (Basel) 2021; 10:119. [PMID: 33467612 PMCID: PMC7830861 DOI: 10.3390/antiox10010119] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The antitussive, antioxidant, and anti-inflammatory effects of a walnut (Juglans regia L.) septum extract (WSE), rich in bioactive compounds were investigated using the citric acid aerosol-induced cough experimental model in rodents. Wistar male rats were treated orally for three days with distilled water (control), codeine (reference), and WSE in graded doses. On the third day, all rats were exposed to citric acid aerosols, the number of coughs being recorded. Each animal was sacrificed after exposure, and blood and lung tissue samples were collected for histopathological analysis and the assessment of oxidative stress and inflammatory biomarkers. The results of the experiment showed a significant antitussive effect of WSE, superior to codeine. This activity could be due to cellular protective effect and anti-inflammatory effect via the stimulation of the antioxidant enzyme system and the decrease of IL-6 and CXC-R1 concentration in the lung tissue of WSE-treated animals. The antioxidant and anti-inflammatory effects of WSE were confirmed by biochemical assays and histopathological analysis. This is the first scientific study reporting the antitussive effect of walnut septum, a new potential source of non-opioid antitussive drug candidates, and a valuable bioactive by-product that could be used in the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Ionel Fizeșan
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania; (I.F.); (A.P.); (M.-G.Ș.); (B.K.); (D.-S.P.)
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania; (M.E.R.); (D.-M.M.)
| | - Carmen Georgiu
- Department of Pathological Anatomy, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania
| | - Anca Pop
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania; (I.F.); (A.P.); (M.-G.Ș.); (B.K.); (D.-S.P.)
| | - Maria-Georgia Ștefan
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania; (I.F.); (A.P.); (M.-G.Ș.); (B.K.); (D.-S.P.)
| | - Dana-Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania; (M.E.R.); (D.-M.M.)
| | - Simona Mirel
- Department of Medical Devices, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania;
| | - Oliviu Vostinaru
- Department of Pharmacology, Physiology and Physiopathology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania
| | - Béla Kiss
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania; (I.F.); (A.P.); (M.-G.Ș.); (B.K.); (D.-S.P.)
| | - Daniela-Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania; (I.F.); (A.P.); (M.-G.Ș.); (B.K.); (D.-S.P.)
| |
Collapse
|
27
|
Ashrafian H, Zadeh EH, Khan RH. Review on Alzheimer's disease: Inhibition of amyloid beta and tau tangle formation. Int J Biol Macromol 2020; 167:382-394. [PMID: 33278431 DOI: 10.1016/j.ijbiomac.2020.11.192] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/18/2020] [Accepted: 11/28/2020] [Indexed: 12/19/2022]
Abstract
It is reported that approximately 40 million people are suffering from dementia, globally. Dementia is a group of symptoms that affect neurons and cause some mental disorders, such as losing memory. Alzheimer's disease (AD) which is known as the most common cause of dementia, is one of the top medical care concerns across the world. Although the exact sources of the disease are not understood, is it believed that aggregation of amyloid-beta (Aβ) outside of neuron cells and tau aggregation or neurofibrillary tangles (NFTs) formation inside the cell may play crucial roles. In this paper, we are going to review studies that targeted inhibition of amyloid plaque and tau protein tangle formation, to suppress or postpone AD.
Collapse
Affiliation(s)
- Hossein Ashrafian
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA; Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | | | | |
Collapse
|
28
|
Ohba T, Nakamura S, Shimazawa M, Hayashi Y, Kono H, Hara H. Protective effects of Huperzia serrata and its components against oxidative damage and cognitive dysfunction. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Kwon OY, Lee SH. Ameliorating Activity of Ishige okamurae on the Amyloid Beta-Induced Cognitive Deficits and Neurotoxicity through Regulating ERK, p38 MAPK, and JNK Signaling in Alzheimer's Disease-Like Mice Model. Mol Nutr Food Res 2020; 64:e1901220. [PMID: 32437593 DOI: 10.1002/mnfr.201901220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SCOPE Alzheimer's disease (AD) is associated with amyloid beta peptide (Aβ25-35 ) accumulation in brains, which induces neurotoxicity and cognitive impairment. The effects of Ishige okamurae, an edible brown algae, on Aβ25-35 -induced cognitive impairment and neuronal toxicity is investigated. The aim of this study is to determine the molecular mechanisms responsible for I. okamurae extracts (IOE) mediating anti-AD effects. METHODS AND RESULTS Oral administration of IOE significantly attenuated Aβ25-35 -induced cognitive deficits, as estimated by Y-maze and Morris water maze tests. IOE also attenuated the Aβ25-35 -induced cellular apoptosis and expression of inducible isoforms of nitric oxide synthases (iNOS) and cyclooxygenase-2 (COX-2) in mouse brains and PC12 cells. In addition, Aβ25-35 -induced phosphorylation of ERK, p38 MAPK, and JNK in mouse brains and PC12 cells is significantly abolished by administration of IOE. In PC12 cells, pretreatment of signal inhibitors (PD98059 (MEK inhibitor), SB203580 (p38 MAPK inhibitor), and SP600125 (JNK inhibitor)) recovers Aβ25-35 -mediated cellular dysregulations to the same extent as does IOE pretreatment. CONCLUSION Taken together, the data suggest that Aβ25-35 -induced AD progress may be attenuated by administration of IOE through prevention of Aβ25-35 -induced phosphorylation of ERK, p38 MAPK, and JNK.
Collapse
Affiliation(s)
- Oh Yun Kwon
- Department of Nano-Bioengineering, Incheon National University, 119 Academy-ro, Incheon, 22012, Korea
| | - Seung Ho Lee
- Department of Nano-Bioengineering, Incheon National University, 119 Academy-ro, Incheon, 22012, Korea
| |
Collapse
|
30
|
Sathya S, Shanmuganathan B, Devi KP. Deciphering the anti-apoptotic potential of α-bisabolol loaded solid lipid nanoparticles against Aβ induced neurotoxicity in Neuro-2a cells. Colloids Surf B Biointerfaces 2020; 190:110948. [DOI: 10.1016/j.colsurfb.2020.110948] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
|
31
|
Sirin S, Aslim B. Characterization of lactic acid bacteria derived exopolysaccharides for use as a defined neuroprotective agent against amyloid beta 1-42-induced apoptosis in SH-SY5Y cells. Sci Rep 2020; 10:8124. [PMID: 32415207 PMCID: PMC7229009 DOI: 10.1038/s41598-020-65147-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/28/2020] [Indexed: 12/06/2022] Open
Abstract
Alzheimer's disease (AD) is a disease characterized by cerebral neuronal degeneration and loss in a progressive manner. Amyloid beta (Aβ) in the brain is toxic to neurons, being a main risk factor for initiation and continuation of cognitive deterioration in AD. Neurotoxicity of Aβ origin is also linked to oxidative stress characterized by excessive lipid peroxidation, protein oxidation, changes in antioxidant systems, and cerebral DNA damage in AD. Furthermore, Aβ can induce oxidative neuronal cell death by a mitochondrial dysfunction. Cellular injury caused by oxidative stress can be possibly prevented by boosting or promoting bodily oxidative defense system by supplying antioxidants in diet or as medications. However, most synthetic antioxidants are found to have cytotoxicity, which prevents their safe use, and limits their administration. For this reason, more attention has been paid to the natural non-toxic antioxidants. One of the most promising groups of non-toxic antioxidative compounds is thought to be polysaccharides. This study investigated the characterization and protective action exerted by exopolysaccharides (EPSs) originated from Lactobacillus delbrueckii ssp. bulgaricus B3 and Lactobacillus plantarum GD2 to protect from apoptotic activity exerted by Aβ1-42 among SH-SY5Y cells. We characterized EPSs by elemental analysis, FTIR, AFM, SEM, and XRD. The antioxidant effects of EPSs were determined by the DPPH free radical scavenging activity, hydroxyl radical scavenging activity, metal ion chelating activity, lipid peroxidation inhibitory activity, and superoxide anion scavenging activity method. The protective effects of EPSs were determined by flow cytometry and RT-PCR. Mannose ratio, molecular weight, functional groups, surface morphology, and amorphous character structure of EPSs are thought to play a role in the protective effect of EPSs. EPSs reduced apoptotic activity of Aβ1-42 in addition to their depolarizing effect on mitochondrial membrane potential in concentration-dependent manner. These observations contribute the inclusion of EPSs among the therapeutic options used to manage various neurological disorders in the traditional medicine in a scientific manner, indicating that EPSs may be promising natural chemical constituents that need advanced research and development for pharmacological therapy of AD.
Collapse
Affiliation(s)
- Seda Sirin
- Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey.
| | - Belma Aslim
- Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey
| |
Collapse
|
32
|
Rusu ME, Fizesan I, Pop A, Mocan A, Gheldiu AM, Babota M, Vodnar DC, Jurj A, Berindan-Neagoe I, Vlase L, Popa DS. Walnut ( Juglans regia L.) Septum: Assessment of Bioactive Molecules and In Vitro Biological Effects. Molecules 2020; 25:E2187. [PMID: 32392837 PMCID: PMC7248768 DOI: 10.3390/molecules25092187] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Walnut (Juglans regia L.) septum represents an interesting bioactive compound source by-product. In our study, a rich phenolic walnut septum extract, previously selected, was further examined. The tocopherol content determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed higher amounts of α-tocopherol compared to γ- and δ-tocopherols. Moreover, several biological activities were investigated. The in vitro inhibiting assessment against acetylcholinesterase, α-glucosidase, or lipase attested a real management potential in diabetes or obesity. The extract demonstrated very strong antimicrobial potential against Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella enteritidis. It also revealed moderate (36.08%) and strong (43.27%) antimutagenic inhibitory effects against TA 98 and TA 100 strains. The cytotoxicity of the extract was assessed on cancerous (A549, T47D-KBluc, MCF-7) and normal (human gingival fibroblasts (HGF)) cell lines. Flow cytometry measurements confirmed the cytotoxicity of the extract in the cancerous cell lines. Additionally, the extract demonstrated antioxidant activity on all four cell types, as well as anti-inflammatory activity by lowering the inflammatory cytokines (interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-1 β (IL-1β)) evaluated in HGF cells. To the best of our knowledge, most of the cellular model analyses were performed for the first time in this matrix. The results prove that walnut septum may be a potential phytochemical source for pharmaceutical and food industry.
Collapse
Affiliation(s)
- Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (M.E.R.); (L.V.)
| | - Ionel Fizesan
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.P.); (D.-S.P.)
| | - Anca Pop
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.P.); (D.-S.P.)
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-M.G.); (M.B.)
| | - Ana-Maria Gheldiu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-M.G.); (M.B.)
| | - Mihai Babota
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-M.G.); (M.B.)
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania;
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (I.B.-N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (I.B.-N.)
- MEDFUTURE—Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (M.E.R.); (L.V.)
| | - Daniela-Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.P.); (D.-S.P.)
| |
Collapse
|
33
|
|
34
|
Chen J, Tang M, Liu M, Jiang Y, Liu B, Liu S. Neferine and lianzixin extracts have protective effects on undifferentiated caffeine-damaged PC12 cells. BMC Complement Med Ther 2020; 20:76. [PMID: 32143612 PMCID: PMC7076826 DOI: 10.1186/s12906-020-2872-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The embryos of Nelumbo nucifera Gaertn seeds, lianzixin, are used in China as food and traditional herbal medicine. Principal therapeutic indications are insomnia, anxiety and pyrexia. Caffeine is a psychostimulant and excessive use predisposes to cell damage and neurotoxicity. We aimed to investigate the potential protect effect of Neferine and lianzixin extracts on undifferentiated caffeine-damaged phaeochromocytoma cells (PC12 cells). METHODS A cell damage model based on undifferentiated PC12 was established with caffeine. Effect of Lianzixin extracts (total alkaloids, alcohol extract and water extract) and neferine on caffeine-damaged PC12 cells was evaluated. Cell viability was assessed using the methyl thiazolyl tetrazolium (MTT) assay, cellular morphology by inverted microscope, the nucleus by Hoechst 33342 staining and cleaved poly ADP-ribose polymerase (PARP) expression by western blot analysis. RESULTS Lianzixin extracts (total alkaloids, alcohol extract and water extract) and neferine improved the viability of PC12 cells damaged by caffeine. The morphology of PC12 cells pretreated with neferine, or alcohol or water extract of lianzixin aggregated and attached better than caffeine-damaged cells, but cells pretreated with total alkaloids of lianzixin showed abnormal morphology. Compared with caffeine-damaged cells, cells pretreated with neferine, or alcohol or water extract of lianzixin showed a notable increase in nucleus staining and an obvious decrease in cleaved PARP expression. CONCLUSIONS Lianzixin extracts and neferine have protective effects against caffeine-induced damage in PC12 cells, which laid a foundation for finding a new medicine value of Lianzixin.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Manhua Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Bin Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China. .,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
35
|
Zhao Y, Fan C, Zhang A, Zhang Y, Wang F, Weng Q, Xu M. Walnut Polyphenol Extract Protects against Malathion- and Chlorpyrifos-Induced Immunotoxicity by Modulating TLRx-NOX-ROS. Nutrients 2020; 12:E616. [PMID: 32120800 PMCID: PMC7146534 DOI: 10.3390/nu12030616] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
Malathion (MT) and chlorpyrifos (CPF) are immunotoxic organophosphate pesticides that are used extensively in agriculture worldwide. Dietary polyphenols protect against a variety of toxins. In this study, walnut polyphenol extract (WPE) prevents MT- or CPF-induced toxicity to splenic lymphocytes in vitro. WPE promotes the proliferation of MT-exposed splenocytes, as indicated by increases in the proportions of splenic T-lymphocyte subpopulations (CD3+, CD4+, and CD8+ T cells) and levels of T-cell-related cytokines interleukin (IL)-2, interferon-γ, IL-4, and granzyme B, and decreases the apoptosis-associated proteins Bax and p53. WPE also significantly enhances the proliferation of CPF-exposed splenic B lymphocytes (CD19+ B cells) and levels of the B-cell-related cytokine IL-6, leading to decreases of the apoptosis-associated proteins Bax and p53. These effects are related to reduced production of reactive oxygen species (ROS), as evidenced by normalized hydroxyl radical (•OH), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and glutathione (GSH) levels, which are associated with decreased expression of NADPH oxidase 2 (NOX2) and dual oxidase 1 (DUOX1). WPE inhibits the production of ROS and expression of NOX by regulating toll-like receptors 4 and 7 in MT- and CPF-exposed splenic lymphocytes. In conclusion, WPE protects against MT- or CPF-mediated immunotoxicity and inhibits oxidative damage by modulating toll-like receptor (TLR)x-NOX-ROS.
Collapse
Affiliation(s)
- Yue Zhao
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (C.F.); (A.Z.); (Y.Z.); (F.W.); (Q.W.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Chang Fan
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (C.F.); (A.Z.); (Y.Z.); (F.W.); (Q.W.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Ao Zhang
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (C.F.); (A.Z.); (Y.Z.); (F.W.); (Q.W.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yue Zhang
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (C.F.); (A.Z.); (Y.Z.); (F.W.); (Q.W.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Fengjun Wang
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (C.F.); (A.Z.); (Y.Z.); (F.W.); (Q.W.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Qiang Weng
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (C.F.); (A.Z.); (Y.Z.); (F.W.); (Q.W.)
| | - Meiyu Xu
- Collage of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (C.F.); (A.Z.); (Y.Z.); (F.W.); (Q.W.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
36
|
Chauhan A, Chauhan V. Beneficial Effects of Walnuts on Cognition and Brain Health. Nutrients 2020; 12:nu12020550. [PMID: 32093220 PMCID: PMC7071526 DOI: 10.3390/nu12020550] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and neuroinflammation have important roles in the aging process, mild cognitive impairment (MCI), Alzheimer’s disease (AD), and other brain disorders. Amyloid beta protein (Aβ) is the main component of amyloid plaques in the brains of people with AD. Several studies suggest that Aβ increases the generation of free radicals in neurons, which leads to oxidative damage and cell death. Aβ can also induce neuroinflammation by increasing pro-inflammatory cytokines and enzymes. Walnuts contain several components that have antioxidant and anti-inflammatory effects. Animal and human studies from our and other groups suggest that supplementation with walnuts in the diet may improve cognition and reduce the risk and/or progression of MCI and AD. In the transgenic AD mouse model (AD-tg), we have reported the beneficial effects of a diet with walnuts on memory, learning, motor coordination, anxiety, and locomotor activity. Human clinical trials have also suggested an association of walnut consumption with better cognitive performance and improvement in memory when compared to baseline in adults. Our recent study in AD-tg mice has shown that a walnut-enriched diet significantly improves antioxidant defense and decreases free radicals’ levels, lipid peroxidation, and protein oxidation when compared to a control diet without walnuts. These findings suggest that a diet with walnuts can reduce oxidative stress by decreasing the generation of free radicals and by boosting antioxidant defense, thus resulting in decreased oxidative damage to lipids and proteins. An in vitro study with synthetic Aβ showed that walnut extract can inhibit Aβ fibrillization and solubilize the preformed Aβ fibrils, suggesting an anti-amyloidogenic property of walnuts. Because it takes many years for cognitive impairment and dementia to develop, we suggest that early and long-term dietary supplementation with walnuts may help to maintain cognitive functions and may reduce the risk of developing, or delay the onset and/or slow the progression of, MCI and dementia by decreasing Aβ fibrillization, reducing oxidative damage, increasing antioxidant defense, and decreasing neuroinflammation. Furthermore, several animal and human studies have suggested that walnuts may also decrease the risk or progression of other brain disorders such as Parkinson’s disease, stroke, and depression, as well as of cardiovascular disease and type 2 diabetes. Together, these reports suggest the benefits of a walnut-enriched diet in brain disorders and in other chronic diseases, due to the additive or synergistic effects of walnut components for protection against oxidative stress and inflammation in these diseases.
Collapse
Affiliation(s)
- Abha Chauhan
- Correspondence: ; Tel.: +1-718-494-5258; Fax: +1-718-698-7916
| | | |
Collapse
|
37
|
Haramiishi R, Okuyama S, Yoshimura M, Nakajima M, Furukawa Y, Ito H, Amakura Y. Identification of the characteristic components in walnut and anti-inflammatory effect of glansreginin A as an indicator for quality evaluation. Biosci Biotechnol Biochem 2020; 84:187-197. [DOI: 10.1080/09168451.2019.1670046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
ABSTRACT
Walnut is a nutritious food material, but only a few studies have been conducted on the mechanisms of its functions and the technique for quality evaluation. Therefore, we analyzed the components in aqueous methanol extract of walnut, and characterized 30 components, including three new compounds, glansreginin C, ellagic acid 4-O-(3′-O-galloyl)-β-D-xyloside, and platycaryanin A methyl ester. We analyzed the extracts of other nuts using HPLC and clarified that a characteristic peak corresponding to glansreginin A was mainly observed in walnut. These results suggested that glansreginin A might be an indicator component of the quality of walnut. We then examined whether glansreginin A has neuroprotective effect, using lipopolysaccharide (LPS)-induced inflammatory model mice. The results revealed that oral administration of glansreginin A prevented LPS-induced abnormal behavior and LPS-induced hyper-activation of microglia in the hippocampus. These results suggested that glansreginin A has the ability to exert neuroprotective effect via anti-inflammation in the brain.
Collapse
Affiliation(s)
- Rie Haramiishi
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Morio Yoshimura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Hideyuki Ito
- Faculty of Health and Welfare Science, Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Yoshiaki Amakura
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| |
Collapse
|
38
|
Fu Y, Hu X, Zheng C, Sun G, Xu J, Luo S, Cao P. Intrahippocampal miR-342-3p inhibition reduces β-amyloid plaques and ameliorates learning and memory in Alzheimer's disease. Metab Brain Dis 2019; 34:1355-1363. [PMID: 31134481 DOI: 10.1007/s11011-019-00438-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/20/2019] [Indexed: 12/26/2022]
Abstract
Accumulation of extracellular amyloid-β (Aβ) in hippocampal subregions is a hallmark of Alzheimer's disease (AD), which promotes neuronal apoptosis, potentiates cognitive decline and play a causative role in AD pathogenesis. However, whether this process is controlled by distinct miRNAs at the posttranscriptional level remain fascinating but poorly understood. Using post mortem hippocampal samples from human AD patients and 3xTg-AD mouse, we demonstrate that miR-342-3p expression was significantly induced during the AD development. With the aid of intrahippocampal injection of miR-342-3p antagomir, we further show that in vivo miR-342-3p inhibition synergistically improved cognitive deficits in 3xTg-AD mice. The hippocampal Aβ-plaque burden in 3xTg-AD mice, as revealed by immunohistochemical analysis with 4G8 antibody, was attenuated also. Mechanistically, the upregulation of neuronal miR-342-3p is linked to an increase in the activation of the stress kinase c-Jun N-terminal kinase with the subsequent death of the neurons in Aβ-challenged HT22 hippocampal neuronal cells. These findings support the model that derangement of hippocampus signal transduction and subsequent neuronal apoptosis in AD arises as a consequence of increased Aβ burden and chronic activation of the JNK MAPK cascade in a miR-342-3p-dependent manner. Overall, we described for the first time the regulatory activity of miR-342-3p on relevant Aβ metabolism pathways in Alzheimer's disease.
Collapse
Affiliation(s)
- Yin Fu
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiaoyang Hu
- Basic Medical College of Heilongjiang University of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Chunyu Zheng
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Guicai Sun
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Jiangxi, 330003, China
| | - Jianyu Xu
- Department of Radiation Oncology, Tumor Hospital of Harbin Medical University, Harbin, 150000, China
| | - Shanshan Luo
- Department of Pharmacy, No.211 Hospital of PLA, Harbin, 50000, China
| | - Peigang Cao
- Department of Cardiology, General Hospital of Heilongjiang Agricultural Reclamation Bureau, No. 235 Hashuang Road, Harbin, 150088, Heilongjiang Province, China.
| |
Collapse
|
39
|
Wang M, Amakye WK, Guo L, Gong C, Zhao Y, Yao M, Ren J. Walnut-Derived Peptide PW5 Ameliorates Cognitive Impairments and Alters Gut Microbiota in APP/PS1 Transgenic Mice. Mol Nutr Food Res 2019; 63:e1900326. [PMID: 31237989 DOI: 10.1002/mnfr.201900326] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/06/2019] [Indexed: 12/18/2022]
Abstract
SCOPE Decreasing β-amyloid (Aβ) accumulation is of significance in finding therapeutic candidates for cognitive impairments in Alzheimer's disease (AD). The aim of this study is to investigate the potency of the active components of walnut protein in decreasing Aβ aggregation and ameliorating cognitive impairments. METHODS AND RESULTS Cell model of intracellular Aβ42 aggregation is used to explore the active ingredients in walnut protein hydrolysate (WPH). A bioactive peptide (Pro-Pro-Lys-Asn-Trp, PW5) with great anti-Aβ42 aggregation activity identified from the WPH is synthesized for in vitro and in vivo experiments. Using classic APP/PS1 mouse model, it is validated that PW5 exerts its effects on cognitive improvement through reducing Aβ plaques accumulation. Moreover, metabolomic analysis reveals that serum norepinephrine (NE) and isovalerate levels are significantly increased in response to PW5 intervention, with decreased serum levels of acetylcholine (AChe) and valerate, compared with the vehicle-treated APP/PS1 mice. PW5 feeding also improves gut dysbiosis in APP/PS1 transgenic mice by increasing the relative abundance of Firmicutes and decreasing Proteobacteria and Verrucomicrobia as displayed by 16s rRNA analyses. CONCLUSIONS These promising results support the utilization of peptide PW5 as an active ingredient in functional foods or potential drug candidate for the prevention and/or treatment of AD.
Collapse
Affiliation(s)
- Min Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Lu Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Congcong Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Maojin Yao
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Jefferson Park Ave, Charlottesville, VA, 22908, USA
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
- Research Institute for Food Nutrition and Human Health, Guangzhou, P. R. China
| |
Collapse
|
40
|
Mairuae N, Connor JR, Buranrat B, Lee SY. Oroxylum indicum (L.) extract protects human neuroblastoma SH‑SY5Y cells against β‑amyloid‑induced cell injury. Mol Med Rep 2019; 20:1933-1942. [PMID: 31257498 DOI: 10.3892/mmr.2019.10411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/06/2019] [Indexed: 11/05/2022] Open
Abstract
It has been reported that amyloid β peptide, the major component of senile plaques, serves a critical role in the development and progression of Alzheimer's disease (AD) by generating reactive oxygen species (ROS), leading to oxidative stress. The aim of the present study was to investigate the protective effect of Oroxylum indicum (L.) extract against Aβ25‑35‑induced oxidative stress and cell injury using SH‑SY5Y cells as a model, and at exploring the underlying mechanisms. The results revealed that the exposure of cells to 20 µM Aβ25‑35 significantly increased cellular oxidative stress, as evidenced by the increased ROS levels. Aβ25‑35 treatment also increased caspase‑3/7 activity and lactate dehydrogenase (LDH) release, and caused viability loss. Oroxylum indicum treatment not only attenuated the generation of ROS and suppressed caspase‑3/7 activity but also reduced the neurotoxicity of Aβ25‑35 in a concentration‑dependent manner, as evidenced by the increased cell viability and decreased LDH release. Treatment with Oroxylum indicum also increased superoxide dismutase (SOD) and catalase (CAT) activity, increased the phosphorylation of Akt and cAMP‑responsive element binding protein (CREB), and contributed to the upregulation of Bcl‑2 protein. In combination, these results indicated that Oroxylum indicum extract could protect SH‑SY5Y cells against Aβ25‑35‑induced cell injury, at least partly, by inhibiting oxidative stress, increasing SOD and CAT activity, attenuating caspase 3/7 activity and promoting the cell survival pathway, Akt/CREB/Bcl‑2. The approach used in the present study may also be useful for preventing the neurotoxicity induced by Aβ in AD and related neurodegenerative diseases. Further studies investigating the activity of Oroxylum indicum extract in vivo are now required.
Collapse
Affiliation(s)
- Nootchanat Mairuae
- Biomedical Research Unit, Faculty of Medicine, Mahasarakham University, Mueang, Maha Sarakham 44000, Thailand
| | - James R Connor
- George M. Leader Laboratory, Department of Neurosurgery, Pennsylvania State University, Hershey Medical Center, Hershey, PA 17033, USA
| | - Benjaporn Buranrat
- Biomedical Research Unit, Faculty of Medicine, Mahasarakham University, Mueang, Maha Sarakham 44000, Thailand
| | - Sang Y Lee
- George M. Leader Laboratory, Department of Neurosurgery, Pennsylvania State University, Hershey Medical Center, Hershey, PA 17033, USA
| |
Collapse
|
41
|
Jeyakumar M, Sathya S, Gandhi S, Tharra P, Suryanarayanan V, Singh SK, Baire B, Pandima Devi K. α-bisabolol β-D-fucopyranoside as a potential modulator of β-amyloid peptide induced neurotoxicity: An in vitro &in silico study. Bioorg Chem 2019; 88:102935. [PMID: 31030060 DOI: 10.1016/j.bioorg.2019.102935] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder affecting the elderly people. For the AD treatment, there is inefficiency in the existing medication, as these drugs reduce only the symptoms of the disease. Since multiple pathological proteins are involved in the development of AD, searching for a single molecule targeting multiple AD proteins will be a new strategy for the management of AD. In view of this, the present study was designed to synthesize and evaluate the multifunctional neuroprotective ability of the sesquiterpene glycoside α-bisabolol β-D-fucopyranoside (ABFP) against multiple targets like acetylcholinesterase, oxidative stress and β-amyloid peptide aggregation induced cytotoxicity. In silico computational docking and simulation studies of ABFP with acetylcholinesterase (AChE) showed that it can interact with Asp74 and Thr75 residues of the enzyme. The in vitro studies showed that the compound possess significant ability to inhibit the AChE enzyme apart from exhibiting antioxidant, anti-aggregation and disaggregation properties. In addition, molecular dynamics simulation studies proved that the interacting residue between Aβ peptide and ABFP was found to be involved in Leu34 and Ile31. Furthermore, the compound was able to protect the Neuro2 a cells against Aβ25-35 peptide induced toxicity. Overall, the present study evidently proved ABFP as a neuroprotective agent, which might act as a multi-target compound for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Mahalingam Jeyakumar
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Sethuraman Sathya
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Soniya Gandhi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Prabhakarrao Tharra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Venkatesan Suryanarayanan
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Beeraiah Baire
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
42
|
Sheng J, Yang X, Chen J, Peng T, Yin X, Liu W, Liang M, Wan J, Yang X. Antioxidative Effects and Mechanism Study of Bioactive Peptides from Defatted Walnut ( Juglans regia L.) Meal Hydrolysate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3305-3312. [PMID: 30817142 DOI: 10.1021/acs.jafc.8b05722] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The peptide components of defatted walnut ( Juglans regia L.) meal hydrolysate (DWMH) remain unclear, hindering the investigation of biological mechanisms and exploitation of bioactive peptides. The present study aims to identify the peptide composition of DWMH, followed by to evaluate in vitro antioxidant effects of selected peptides and investigate mechanisms of antioxidative effect. First, more than 1 000 peptides were identified by de novo sequencing in DWMH. Subsequently, a scoring method was established to select promising bioactive peptides by structure based screening. Eight brand new peptides were selected due to their highest scores in two different batches of DWMH. All of them showed potent in vitro antioxidant effects on H2O2-injured nerve cells. Four of them even possessed significantly stronger effects than DWMH, making the selected bioactive peptides useful for further research as new bioactive entities. Two mechanisms of hydroxyl radical scavenging and ROS reduction were involved in their antioxidative effects at different degrees. The results showed peptides possessing similar capacity of hydroxyl radical scavenging or ROS reduction may have significantly different in vitro antioxidative effects. Therefore, comprehensive consideration of different antioxidative mechanisms were suggested in selecting antioxidative peptides from DWMH.
Collapse
Affiliation(s)
- Jianyong Sheng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , People's Republic of China
| | - Xiaoyu Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , People's Republic of China
| | - Jitang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , People's Republic of China
| | - Tianhao Peng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , People's Republic of China
| | - Xiquan Yin
- Joint Laboratory for The Research of Modern Preparation Technology-Huazhong University of Science and Technology and Infinitus , Guangzhou , Guangdong 510663 , People's Republic of China
| | - Wei Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , People's Republic of China
| | - Ming Liang
- Joint Laboratory for The Research of Modern Preparation Technology-Huazhong University of Science and Technology and Infinitus , Guangzhou , Guangdong 510663 , People's Republic of China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , People's Republic of China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , People's Republic of China
| |
Collapse
|
43
|
Low-molecular-weight chondroitin sulfate attenuated injury by inhibiting oxidative stress in amyloid β-treated SH-SY5Y cells. Neuroreport 2019; 29:1174-1179. [PMID: 29985831 DOI: 10.1097/wnr.0000000000001092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The neurotoxicity of aggregated amyloid β (Aβ) has been implicated as a critical cause in the pathogenesis of Alzheimer's disease. In a previous work, we have shown that low-molecular-weight chondroitin sulfate (LMWCS), a derivative of chondroitin sulfate, protected the SH-SY5Y neuroblastoma cells from Aβ25-35-induced neurotoxicity, decreased intracellular reactive oxygen species level and inhibited the cell apoptosis. However, the underlying mechanism of the antioxidative effect of LMWCS in the SH-SY5Y cells has not been well explored. In the present study, the SH-SY5Y cells were cultured and exposed to 30 μM Aβ25-35 in the absence or presence of LMWCS (50, 100 and 200 μg/ml). Results indicate that incubation of cells with LMWCS before Aβ25-35 exposure increased superoxide dismutase, glutathione peroxidase and Na/K-ATPase activities and decreased the malondialdehyde content. In addition, LMWCS inhibited the imbalance of Bcl-2 and Bax and decreased caspase-3 and caspase-9 expressions. LMWCS antagonizes Aβ25-35-induced neurotoxicity by attenuating oxidative stress, and our results suggest that LMWCS might be used as a potential compound for Alzheimer's disease prevention.
Collapse
|
44
|
Pohl F, Kong Thoo Lin P. The Potential Use of Plant Natural Products and Plant Extracts with Antioxidant Properties for the Prevention/Treatment of Neurodegenerative Diseases: In Vitro, In Vivo and Clinical Trials. Molecules 2018; 23:E3283. [PMID: 30544977 PMCID: PMC6321248 DOI: 10.3390/molecules23123283] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and Huntington's disease, present a major health issue and financial burden for health care systems around the world. The impact of these diseases will further increase over the next decades due to increasing life expectancies. No cure is currently available for the treatment of these conditions; only drugs, which merely alleviate the symptoms. Oxidative stress has long been associated with neurodegeneration, whether as a cause or as part of the downstream results caused by other factors. Thus, the use of antioxidants to counter cellular oxidative stress within the nervous system has been suggested as a potential treatment option for neurological disorders. Over the last decade, significant research has focused on the potential use of natural antioxidants to target oxidative stress. However, clinical trial results have lacked success for the treatment of patients with neurological disorders. The knowledge that natural extracts show other positive molecular activities in addition to antioxidant activity, however, has led to further research of natural extracts for their potential use as prevention or treatment/management of neurodegenerative diseases. This review will cover several in vitro and in vivo research studies, as well as clinical trials, and highlight the potential of natural antioxidants.
Collapse
Affiliation(s)
- Franziska Pohl
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK.
| | - Paul Kong Thoo Lin
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK.
| |
Collapse
|
45
|
Jha AB, Panchal SS, Shah A. Ellagic acid: Insights into its neuroprotective and cognitive enhancement effects in sporadic Alzheimer's disease. Pharmacol Biochem Behav 2018; 175:33-46. [DOI: 10.1016/j.pbb.2018.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
|
46
|
Search of Neuroprotective Polyphenols Using the "Overlay" Isolation Method. Molecules 2018; 23:molecules23081840. [PMID: 30042342 PMCID: PMC6222604 DOI: 10.3390/molecules23081840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/25/2022] Open
Abstract
Previous studies of the neuroprotective activity of polyphenols have used ununiform culture systems, making it difficult to compare their neuroprotective potency. We have established a new and simple method for preparing differentiated PC12 cells by removing the toxic coating step. Cells were induced to differentiate with the nerve growth factor (NGF) in a serum-free medium, without a medium change, but with a one-time overlay supplementation of NGF. The optimal inoculation density of the cells was 6–12 × 103 cells/cm2, and the presence of serum inhibited the differentiation. Neuroprotective activity could be quantified by the specific index (SI) value, that is, the ratio of the 50% cytotoxic concentration to the 50% effective concentration. Alkaline extract from the leaves of Sasa senanensis Rehder (SE), having had hormetic growth stimulation, showed the highest SI value, followed by epigallocatechin gallate. The SI value of curcumin and resveratrol was much lower. This simple overly method, that can prepare massive differentiated neuronal cells, may be applicable for the study of the differentiation-associated changes in intracellular metabolites, and the interaction between neuronal cells and physiological factors.
Collapse
|
47
|
SAKAGAMI HIROSHI, HARA YAEKO, SHI HAIXIA, IWAMA SOICHI, NAKAGAWA MIKA, SUZUKI HAYATO, TANAKA KENTA, ABE TOMOYUKI, TAMURA NOBUAKI, TAKESHIMA HIROSHI, HORIE NORIO, KANEKO TAKAHIRO, SHIRATSUCHI HIROSHI, KANEKO TADAYOSHI. Change in Anticancer Drug Sensitivity During Neuronal Differentiation of PC12 Cells. In Vivo 2018; 32. [PMID: 29936457 PMCID: PMC6117783 DOI: 10.21873/invivo.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND/AIM Although there are many reports of anticancer drug-induced neurotoxicity, most previous data have been derived from neuronal cell models grown in a variety of culture conditions. This has prevented accurate assessment of the potency of their neurotoxicity and of changes in drug sensitivity of neuronal cells during differentiation. In this study, a simple neuronal differentiation induction system was established and the relative potency of neurotoxicity of eight anticancer drugs was compared during neuronal cell differentiation. MATERIALS AND METHODS Rat PC12 cells were induced to differentiate into neuronal cells by 50 ng/ml nerve growth factor in serum-free Dulbecco's modified Eagle's medium, followed by overlay of fresh nutrients at day 3, without medium change. Cell viability was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. RESULTS During differentiation, PC12 cells became 1.1-to more than 10,000-fold resistant to anticancer drugs. Topoisomerase inhibitors (doxorubicin, SN-38, etoposide) were the most toxic to differentiated PC12 cells, followed by docetaxel, gefitinib, melphalan, 5-fluorouracil and methotrexate. Docetaxel showed the highest cytotoxicity against undifferentiated PC12 cells, but its cytotoxicity was dramatically reduced during differentiation. CONCLUSION The present study demonstrated considerable variation in the neurotoxicity of anticancer drugs during the cell differentiation process. The present simple assay system may be useful to search for neuroprotective substances.
Collapse
Affiliation(s)
| | - YAEKO HARA
- Department of Oral Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - HAIXIA SHI
- Meikai University School of Dentistry, Saitama, Japan,Department of Traditional Chinese Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiatong University School of Medicine, Shanghai, P.R. China
| | - SOICHI IWAMA
- Meikai University School of Dentistry, Saitama, Japan
| | - MIKA NAKAGAWA
- Meikai University School of Dentistry, Saitama, Japan
| | - HAYATO SUZUKI
- Meikai University School of Dentistry, Saitama, Japan
| | - KENTA TANAKA
- Meikai University School of Dentistry, Saitama, Japan
| | - TOMOYUKI ABE
- Meikai University School of Dentistry, Saitama, Japan
| | | | | | - NORIO HORIE
- Department of Oral and Maxillofacial Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - TAKAHIRO KANEKO
- Department of Oral and Maxillofacial Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - HIROSHI SHIRATSUCHI
- Department of Oral Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - TADAYOSHI KANEKO
- Department of Oral Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
48
|
Sakagami H, Hara Y, Shi H, Iwama S, Nakagawa M, Suzuki H, Tanaka K, Abe T, Tamura N, Takeshima H, Horie N, Kaneko T, Shiratsuchi H, Kaneko T. Change in Anticancer Drug Sensitivity During Neuronal Differentiation of PC12 Cells. In Vivo 2018; 32:765-770. [PMID: 29936457 PMCID: PMC6117783 DOI: 10.21873/invivo.11306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Although there are many reports of anticancer drug-induced neurotoxicity, most previous data have been derived from neuronal cell models grown in a variety of culture conditions. This has prevented accurate assessment of the potency of their neurotoxicity and of changes in drug sensitivity of neuronal cells during differentiation. In this study, a simple neuronal differentiation induction system was established and the relative potency of neurotoxicity of eight anticancer drugs was compared during neuronal cell differentiation. MATERIALS AND METHODS Rat PC12 cells were induced to differentiate into neuronal cells by 50 ng/ml nerve growth factor in serum-free Dulbecco's modified Eagle's medium, followed by overlay of fresh nutrients at day 3, without medium change. Cell viability was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. RESULTS During differentiation, PC12 cells became 1.1-to more than 10,000-fold resistant to anticancer drugs. Topoisomerase inhibitors (doxorubicin, SN-38, etoposide) were the most toxic to differentiated PC12 cells, followed by docetaxel, gefitinib, melphalan, 5-fluorouracil and methotrexate. Docetaxel showed the highest cytotoxicity against undifferentiated PC12 cells, but its cytotoxicity was dramatically reduced during differentiation. CONCLUSION The present study demonstrated considerable variation in the neurotoxicity of anticancer drugs during the cell differentiation process. The present simple assay system may be useful to search for neuroprotective substances.
Collapse
Affiliation(s)
| | - Yaeko Hara
- Department of Oral Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - Haixia Shi
- Meikai University School of Dentistry, Saitama, Japan
- Department of Traditional Chinese Medicine, Shanghai Ninth People's Hospital, Shanghai Jiatong University School of Medicine, Shanghai, P.R. China
| | - Soichi Iwama
- Meikai University School of Dentistry, Saitama, Japan
| | - Mika Nakagawa
- Meikai University School of Dentistry, Saitama, Japan
| | - Hayato Suzuki
- Meikai University School of Dentistry, Saitama, Japan
| | - Kenta Tanaka
- Meikai University School of Dentistry, Saitama, Japan
| | - Tomoyuki Abe
- Meikai University School of Dentistry, Saitama, Japan
| | | | | | - Norio Horie
- Department of Oral and Maxillofacial Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Takahiro Kaneko
- Department of Oral and Maxillofacial Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Hiroshi Shiratsuchi
- Department of Oral Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - Tadayoshi Kaneko
- Department of Oral Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
49
|
Protein Hydrolyzates from Changbai Mountain Walnut ( Juglans mandshurica Maxim.) Boost Mouse Immune System and Exhibit Immunoregulatory Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4576561. [PMID: 29997676 PMCID: PMC5994573 DOI: 10.1155/2018/4576561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 11/17/2022]
Abstract
The Changbai Mountain walnut (Juglans mandshurica Maxim.) is a rich source of essential amino acids. Walnut dregs are byproducts of edible oil production and primarily used as fodder and fertilizers. We systematically examined the effect of three types of walnut protein hydrolyzates—albumin, glutelin, and globin—on the immune system of mice and aimed to provide the theoretical basis for developing and utilizing J. mandshurica Maxim. protein resources. In comparison with the normal control mice, those treated with different doses of walnut proteins showed improved immune indices, including organ index, spleen lymphocyte proliferation, macrophage activity, number of CD4+ and CD8+ T cells, immunoglobulin A (IgA) and secretory IgA content, and mRNA and protein expression levels of cytokine factors. Our results indicated that these walnut proteins may have positive effects on the immune system and perform their immunomodulatory functions by inducing splenic enlargement. These findings support the use of walnut proteins as nutritional sources to boost the immune system.
Collapse
|
50
|
Che H, Fu X, Zhang L, Gao X, Wen M, Du L, Xue C, Xu J, Wang Y. Neuroprotective Effects of n-3 Polyunsaturated Fatty Acid-Enriched Phosphatidylserine Against Oxidative Damage in PC12 Cells. Cell Mol Neurobiol 2018; 38:657-668. [PMID: 28689275 PMCID: PMC11481886 DOI: 10.1007/s10571-017-0516-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/22/2017] [Indexed: 01/06/2023]
Abstract
Neurodegenerative diseases are defined by progressive loss of specific neuronal cell populations and are associated with protein aggregates. Oxidative stress has been implicated in their pathological processes. Previous studies revealed that docosahexaenoic acid (DHA) is beneficial in neurodegenerative diseases. Phospholipids (PLs) derived from marine products are rich in DHA and eicosapentaenoic acid (EPA). In the present study, we investigated the neuroprotective effects of DHA-enriched and unenriched phosphatidylcholine (PC) and phosphatidylserine (PS) on oxidative stress induced by hydrogen peroxide (H2O2) and tert-butylhydroperoxide in PC12 cells. Cell viability and leakage of lactate dehydrogenase results showed that the neuroprotective effect of PS was superior to that of PC. DHA- and EPA-enriched PC and PS were superior to that without DHA or EPA; in addition, the improvement with n-3 polyunsaturated fatty acid-enriched PS (n-3 PS) was dose dependent. Acridine orange/ethidium bromide staining showed that DHA- and EPA-enriched PS (DHA/EPA-PS) could significantly inhibit apoptosis. Mechanistic studies revealed that EPA-PS and DHA-PS were effective to increase superoxide dismutase (SOD) levels by 48.4 and 58.2 % and total antioxidant capacity (T-AOC) level by 51 and 94 %, respectively, in the H2O2 model. Similar results for SOD and T-AOC levels were shown in the t-BHP model. EPA/DHA-PS could downregulate the messenger RNA level of Caspase-3, Caspase-9, and Bax, upregulate Bcl-2, inhibit Bax, and increase Bcl-2 at protein level. In conclusion, EPA/DHA-PS could protect PC12 cells from oxidative stress and prevent mitochondrial-mediated apoptosis. Our findings indicate that the neuroprotective effects of DHA/EPA-PLs depend on the molecular form. Further studies are necessary to reveal detailed mechanisms and structure-effect relationships.
Collapse
Affiliation(s)
- Hongxia Che
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Xueyuan Fu
- Marine Biomedical Research Institute of Qingdao, No. 23 Hong Kong East Road, Qingdao, Shandong, China
| | - Lingyu Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Xiang Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Min Wen
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Lei Du
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong University, 44 Wenhua Xilu, Jinan, 250012, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|