1
|
Sin YC, Hosny N, Batti Angulski AB, Kim DH, Metzger JM, Chen Y. Isotopic Labeling-Enabled Chemical Proteomics Analysis Revealed Structural and Functional Features of Allysine Modifications in Mammalian Cells and Tissues. Anal Chem 2025; 97:9944-9952. [PMID: 40296250 DOI: 10.1021/acs.analchem.5c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Allysine is a pivotal protein post-translational modification that regulates protein interaction and activities. It is also recognized as a marker of oxidative stress under certain metabolic and physiological conditions. In this study, we developed a capture-and-release chemical proteomics workflow with heavy isotopic labeling that enables system-wide enrichment and site-specific identification of allysine as well as other carbonylated peptides, such as peptides containing glutamic semialdehyde derived from the oxidative damage of arginine and proline, with high confidence. The streamlined workflow led to the identification of 434 allysine sites on 349 proteins in human 293T and HCT116 cells and 317 allysine sites on 157 proteins in mouse muscle tissues without any treatment with an oxidative stress-inducing chemical reagent. We identified 48 histone allysine sites, including 38 sites on core histones in human 293T cells, many of which overlapped with well-characterized histone acetylation and methylation epigenetic marks. Bioinformatic analysis revealed notable characteristics of the amino acid preferences of allysine flanking sequences and the significant depletion of allysine sites in the protein secondary structure in cultured human cells. Pathway analysis showed that allysine substrates were involved in diverse cellular processes including translation, protein folding, and RNA processing in human cells and were enriched with muscle contractile fiber proteins and metabolic enzymes in mouse muscle tissue. Thus, our integrated chemical proteomics analysis revealed the structural and functional features of allysine targets under regular growth conditions in cultured human cells and mouse tissues.
Collapse
Affiliation(s)
- Yi-Cheng Sin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota 55455, United States
- Bioinformatics and Computational Biology Program, University of Minnesota at Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Nora Hosny
- Department of Integrative Biology and Physiology, University of Minnesota at Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Addeli Bez Batti Angulski
- Department of Integrative Biology and Physiology, University of Minnesota at Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota at Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Lalunio H, Stupka N, Goodman CA, Hayes A. The Potential of Targeting APE1/Ref-1 as a Therapeutic Intervention for Duchenne Muscular Dystrophy. Antioxid Redox Signal 2025; 42:641-654. [PMID: 39729027 DOI: 10.1089/ars.2024.0620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Significance: Inflammation and oxidative stress play crucial roles in the development and progression of skeletal muscle diseases. This review aims to examine the existing evidence regarding the involvement and inhibition of APE1/Ref-1 (apurinic/apyrimidinic endonuclease 1/redox factor 1) in diseases, then extrapolate this evidence to the context of skeletal muscle and discuss the potential beneficial effects of APE1/Ref-1 inhibition in ameliorating myopathy with a particular focus on dystrophic pathology. Critical Issues: Currently, therapeutic interventions targeting pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor erythroid 2-related factor 2 (NRF2), have shown limited efficacy in both clinical and preclinical settings. Thus, there is a need for a more comprehensive treatment approach. Recent Advances: APE1/Ref-1 is a multifunctional protein that was initially identified as being involved in DNA repair. However, newer research has revealed its additional role as a redox-sensitive regulator of transcription factors, including NF-κB and NRF2. Numerous studies have reported increased expression of APE1/Ref-1 in various disorders and have demonstrated the beneficial effects of inhibiting its redox function using the small molecular inhibitor, APX3330. Although these pathways are similarly dysregulated in neuromuscular disorders, the specific role of APE1/Ref-1 in skeletal muscle remains unclear, with only a limited number of studies noting its presence in this tissue. Future Directions: Further studies investigating the role of APE1/Ref-1 in skeletal muscle and identifying whether APE1/Ref-1 is up- or downregulated in dystrophic skeletal muscle would be required to determine whether upregulating or inhibiting the redox function of APE1/Ref-1 will alleviate chronic inflammation and heightened oxidative stress. Antioxid. Redox Signal. 42, 641-654.
Collapse
Affiliation(s)
- Hannah Lalunio
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Parkville, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Australia
| | - Nicole Stupka
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Parkville, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Australia
| | - Craig A Goodman
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Australia
- Institute of Health and Sport (IHeS), Victoria University, Melbourne, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, Australia
| | - Alan Hayes
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Parkville, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Australia
- Institute of Health and Sport (IHeS), Victoria University, Melbourne, Australia
| |
Collapse
|
3
|
Peterson JM, Leclair V, Oyebode OE, Herzallah DM, Nestor-Kalinoski AL, Morais J, Zahedi RP, Alamr M, Di Battista JA, Hudson M. A window into intracellular events in myositis through subcellular proteomics. Inflamm Res 2025; 74:31. [PMID: 39890639 PMCID: PMC11785624 DOI: 10.1007/s00011-025-01996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/15/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025] Open
Abstract
OBJECTIVE AND DESIGN Idiopathic inflammatory myopathies (IIM) are a heterogeneous group of inflammatory muscle disorders of unknown etiology. It is postulated that mitochondrial dysfunction and protein aggregation in skeletal muscle contribute to myofiber degeneration. However, molecular pathways that lead to protein aggregation in skeletal muscle are not well defined. SUBJECTS Here we have isolated membrane-bound organelles (e.g., nuclei, mitochondria, sarcoplasmic/endoplasmic reticulum, Golgi apparatus, and plasma membrane) from muscle biopsies of normal (n = 3) and muscle disease patients (n = 11). Of the myopathy group, 10 patients displayed mitochondrial abnormalities (IIM (n = 9); mitochondrial myopathy (n = 1)), and one IIM patient did not show mitochondrial abnormalities (polymyositis). METHODS Global proteomic analysis was performed using an Orbitrap Fusion mass spectrometer. Upon unsupervised clustering, normal and mitochondrial myopathy muscle samples clustered separately from IIM samples. RESULTS We have confirmed previously known protein alterations in IIM and identified several new ones. For example, we found differential expression of (i) nuclear proteins that control cell division, transcription, RNA regulation, and stability, (ii) ER and Golgi proteins involved in protein folding, degradation, and protein trafficking in the cytosol, and (iii) mitochondrial proteins involved in energy production/metabolism and alterations in cytoskeletal and contractile machinery of the muscle. CONCLUSIONS Our data demonstrates that molecular alterations are not limited to protein aggregations in the cytosol (inclusions) and occur in nuclear, mitochondrial, and membrane compartments of IIM skeletal muscle.
Collapse
Affiliation(s)
- Jennifer M Peterson
- Department of Exercise and Rehabilitative Sciences, The University of Toledo, 2801 W. Bancroft St., MS 119, Toledo, OH, 43606, USA.
| | - Valérie Leclair
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Olumide E Oyebode
- Department of Exercise and Rehabilitative Sciences, The University of Toledo, 2801 W. Bancroft St., MS 119, Toledo, OH, 43606, USA
| | - Dema M Herzallah
- Department of Exercise and Rehabilitative Sciences, The University of Toledo, 2801 W. Bancroft St., MS 119, Toledo, OH, 43606, USA
| | - Andrea L Nestor-Kalinoski
- Department of Surgery, Advanced Microscopy and Imaging Center, University of Toledo, Toledo, OH, USA
| | - Jose Morais
- Division of Geriatric Medicine and Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - René P Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Mazen Alamr
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - John A Di Battista
- Department of Medicine and Experimental Medicine, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Marie Hudson
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Sun S, Yu T, Huh JY, Cai Y, Yoon S, Javaid HMA. Aminoguanidine hemisulfate improves mitochondrial autophagy, oxidative stress, and muscle force in Duchenne muscular dystrophy via the AKT/FOXO1 pathway in mdx mice. Skelet Muscle 2025; 15:2. [PMID: 39806512 PMCID: PMC11726948 DOI: 10.1186/s13395-024-00371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear. This study investigates the effects of aminoguanidine hemisulfate (AGH), an inhibitor of reactive oxygen species (ROS), on mitochondrial autophagy, oxidative stress, and muscle force in mdx mice. METHODS Male wild-type (WT) and mdx mice were divided into three groups: WT, mdx, and AGH-treated mdx mice (40 mg/kg intraperitoneally for two weeks) at 6 weeks of age. Gene expression, western blotting, H&E staining, immunofluorescence, ROS assays, TUNEL apoptosis, glutathione activity, and muscle force measurements were performed. Statistical comparisons used one-way ANOVA. RESULTS AGH treatment significantly reduced the protein levels of LC3, and p62 in mdx mice, indicating improved autophagy activity and the ability to clear damaged mitochondria. AGH restored the expression of mitophagy-related genes Pink1 and Parkin and increased Mfn1, rebalancing mitochondrial dynamics. It also increased Pgc1α and mtTFA levels, promoting mitochondrial biogenesis. ROS levels were reduced, with higher Prdx3 and MnSOD expression, improving mitochondrial antioxidant defenses. AGH normalized the GSSG/GSH ratio and decreased glutathione reductase and peroxidase activities, further improving redox homeostasis. Additionally, AGH reduced apoptosis, shown by fewer TUNEL-positive cells and lower caspase-3 expression. Histological analysis revealed decreased muscle damage and fewer embryonic and neonatal myosin-expressing fibers. AGH altered fiber composition, decreasing MyH7 while increasing MyH4 and MyH2. Muscle force improved significantly, with greater twitch and tetanic forces. Mechanistically, AGH modulated the AKT/FOXO1 pathway, decreasing myogenin and Foxo1 while increasing MyoD. CONCLUSIONS AGH treatment restored mitochondrial autophagy, reduced oxidative stress, apoptosis, and altered muscle fiber composition via the AKT/FOXO1 pathway, collectively improving muscle force in mdx mice. We propose AGH as a potential therapeutic strategy for DMD and related muscle disorders.
Collapse
Affiliation(s)
- Shiyue Sun
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- College of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Tongtong Yu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Joo Young Huh
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Yujie Cai
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Somy Yoon
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea.
| | - Hafiz Muhammad Ahmad Javaid
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
5
|
Budzińska M, Malcher A, Zimna A, Kurpisz M. In Vitro Gene Therapy Using Human iPS-Derived Mesoangioblast-Like Cells (HIDEMs) Combined with Microdystrophin ( μDys) Expression as the New Strategy for Duchenne Muscular Dystrophy (DMD) Experimental Treatment. Int J Mol Sci 2024; 25:11869. [PMID: 39595938 PMCID: PMC11593506 DOI: 10.3390/ijms252211869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a genetic disorder characterized by disruptions in the dystrophin gene. This study aims to investigate potential a therapeutic approach using genetically modified human iPS-derived mesoangioblast-like cells (HIDEMs) in mdx mouse model. This study utilizes patient-specific myoblasts reprogrammed to human induced pluripotent stem cells (iPSCs) and then differentiated into HIDEMs. Lentiviral vectors carrying microdystrophin sequences have been employed to deliver the genetic construct to express a shortened, functional dystrophin protein in HIDEMs. The study indicated significant changes within redox potential between healthy and pathological HIDEM cells derived from DMD patients studied by catalase and superoxide dismutase activities. Microdystrophin expressing HIDEMs also improved expression of genes involved in STARS (striated muscle activator of Rho signaling) pathway albeit in selective DMD patients (with mild phenotype). Although in vivo observations did not bring progress in the mobility of mdx mice with HIDEMs, microdystrophin interventions this may argue against "treadmill test" as suitable for assessment of mdx mice recovery. Low-level signaling of the Rho pathway and inflammation-related factors in DMD myogenic cells can also contribute to the lack of success in a functional study. Overall, this research contributes to the understanding of DMD pathogenesis and provides insights into potential novel therapeutic strategy, highlighting the importance of personalized gene therapy.
Collapse
Affiliation(s)
| | | | | | - Maciej Kurpisz
- Institute of Human Genetics Polish Academy of Sciences, 60-479 Poznan, Poland (A.M.); (A.Z.)
| |
Collapse
|
6
|
Casati SR, Cervia D, Roux-Biejat P, Moscheni C, Perrotta C, De Palma C. Mitochondria and Reactive Oxygen Species: The Therapeutic Balance of Powers for Duchenne Muscular Dystrophy. Cells 2024; 13:574. [PMID: 38607013 PMCID: PMC11011272 DOI: 10.3390/cells13070574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic progressive muscle-wasting disorder that leads to rapid loss of mobility and premature death. The absence of functional dystrophin in DMD patients reduces sarcolemma stiffness and increases contraction damage, triggering a cascade of events leading to muscle cell degeneration, chronic inflammation, and deposition of fibrotic and adipose tissue. Efforts in the last decade have led to the clinical approval of novel drugs for DMD that aim to restore dystrophin function. However, combination therapies able to restore dystrophin expression and target the myriad of cellular events found impaired in dystrophic muscle are desirable. Muscles are higher energy consumers susceptible to mitochondrial defects. Mitochondria generate a significant source of reactive oxygen species (ROS), and they are, in turn, sensitive to proper redox balance. In both DMD patients and animal models there is compelling evidence that mitochondrial impairments have a key role in the failure of energy homeostasis. Here, we highlighted the main aspects of mitochondrial dysfunction and oxidative stress in DMD and discussed the recent findings linked to mitochondria/ROS-targeted molecules as a therapeutic approach. In this respect, dual targeting of both mitochondria and redox homeostasis emerges as a potential clinical option in DMD.
Collapse
Affiliation(s)
- Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via Fratelli Cervi 93, 20054 Segrate, Italy; (S.R.C.); (C.D.P.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; (P.R.-B.); (C.M.)
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; (P.R.-B.); (C.M.)
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; (P.R.-B.); (C.M.)
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via Fratelli Cervi 93, 20054 Segrate, Italy; (S.R.C.); (C.D.P.)
| |
Collapse
|
7
|
Naume MM, Zhao Q, Haslund-Krog SS, Krag T, Winter BCMD, Revsbech KL, Vissing J, Holst H, Møller MH, Hornsyld TM, Dunø M, Hoei-Hansen CE, Born AP, Bo Jensen P, Cathrine Ørngreen M. Acetaminophen treatment in children and adults with spinal muscular atrophy: a lower tolerance and higher risk of hepatotoxicity. Neuromuscul Disord 2024; 34:9-18. [PMID: 38052667 DOI: 10.1016/j.nmd.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023]
Abstract
Acute liver failure has been reported sporadically in patients with spinal muscular atrophy (SMA) and other neuromuscular disorders with low skeletal muscle mass receiving recommended dosages of acetaminophen. It is suggested that low skeletal muscle mass may add to the risk of toxicity. We aimed to describe the pharmacokinetics and safety of acetaminophen in patients with SMA. We analyzed acetaminophen metabolites and liver biomarkers in plasma from SMA patients and healthy controls (HC) every hour for six or eight hours on day 1 and day 3 of treatment with therapeutic doses of acetaminophen. Twelve patients with SMA (six adults and six children) and 11 HC participated in the study. Adult patients with SMA had significantly lower clearance of acetaminophen compared to HC (14.1 L/h vs. 21.5 L/h). Formation clearance of acetaminophen metabolites, glucuronide, sulfate, and oxidative metabolites were two-fold lower in the patients compared to HC. The liver transaminases and microRNAs increased nine-fold in one adult SMA patient after two days of treatment. The other patients and HC did not develop abnormal liver biomarkers. In this study, patients with SMA had lower clearance and slower metabolism of acetaminophen, and one patient developed liver involvement. We recommend giving 15 mg/kg/dose to SMA adults (with a maximum of 4000 mg/day) and monitoring standard liver biomarkers 48 h after first-time treatment of acetaminophen.
Collapse
Affiliation(s)
- Marie Mostue Naume
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark.
| | - Qiaolin Zhao
- Department of Hospital Pharmacy, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Rotterdam Clinical Pharmacometrics Group, the Netherlands
| | | | - Thomas Krag
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Brenda C M de Winter
- Department of Hospital Pharmacy, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands; Rotterdam Clinical Pharmacometrics Group, the Netherlands
| | - Karoline Lolk Revsbech
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Helle Holst
- Rare disease and advance therapies, Novo Nordisk, Denmark
| | - Morten Hylander Møller
- Department of Intensive Care, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Tessa Munkeboe Hornsyld
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Morten Dunø
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christina Engel Hoei-Hansen
- Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark; Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Alfred Peter Born
- Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Per Bo Jensen
- Department of Clinical Biochemistry, Bispebjerg Hospital, Copenhagen, Denmark
| | - Mette Cathrine Ørngreen
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
8
|
Careccia G, Mangiavini L, Cirillo F. Regulation of Satellite Cells Functions during Skeletal Muscle Regeneration: A Critical Step in Physiological and Pathological Conditions. Int J Mol Sci 2023; 25:512. [PMID: 38203683 PMCID: PMC10778731 DOI: 10.3390/ijms25010512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal muscle regeneration is a complex process involving the generation of new myofibers after trauma, competitive physical activity, or disease. In this context, adult skeletal muscle stem cells, also known as satellite cells (SCs), play a crucial role in regulating muscle tissue homeostasis and activating regeneration. Alterations in their number or function have been associated with various pathological conditions. The main factors involved in the dysregulation of SCs' activity are inflammation, oxidative stress, and fibrosis. This review critically summarizes the current knowledge on the role of SCs in skeletal muscle regeneration. It examines the changes in the activity of SCs in three of the most common and severe muscle disorders: sarcopenia, muscular dystrophy, and cancer cachexia. Understanding the molecular mechanisms involved in their dysregulations is essential for improving current treatments, such as exercise, and developing personalized approaches to reactivate SCs.
Collapse
Affiliation(s)
- Giorgia Careccia
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Laura Mangiavini
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Federica Cirillo
- IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy
| |
Collapse
|
9
|
Arabshomali A, Bazzazzadehgan S, Mahdi F, Shariat-Madar Z. Potential Benefits of Antioxidant Phytochemicals in Type 2 Diabetes. Molecules 2023; 28:7209. [PMID: 37894687 PMCID: PMC10609456 DOI: 10.3390/molecules28207209] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The clinical relationship between diabetes and inflammation is well established. Evidence clearly indicates that disrupting oxidant-antioxidant equilibrium and elevated lipid peroxidation could be a potential mechanism for chronic kidney disease associated with type 2 diabetes mellitus (T2DM). Under diabetic conditions, hyperglycemia, especially inflammation, and increased reactive oxygen species generation are bidirectionally associated. Inflammation, oxidative stress, and tissue damage are believed to play a role in the development of diabetes. Although the exact mechanism underlying oxidative stress and its impact on diabetes progression remains uncertain, the hyperglycemia-inflammation-oxidative stress interaction clearly plays a significant role in the onset and progression of vascular disease, kidney disease, hepatic injury, and pancreas damage and, therefore, holds promise as a therapeutic target. Evidence strongly indicates that the use of multiple antidiabetic medications fails to achieve the normal range for glycated hemoglobin targets, signifying treatment-resistant diabetes. Antioxidants with polyphenols are considered useful as adjuvant therapy for their potential anti-inflammatory effect and antioxidant activity. We aimed to analyze the current major points reported in preclinical, in vivo, and clinical studies of antioxidants in the prevention or treatment of inflammation in T2DM. Then, we will share our speculative vision for future diabetes clinical trials.
Collapse
Affiliation(s)
- Arman Arabshomali
- Department of Pharmacy Administration, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (A.A.); (S.B.)
| | - Shadi Bazzazzadehgan
- Department of Pharmacy Administration, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (A.A.); (S.B.)
| | - Fakhri Mahdi
- Department of BioMolecular Sciences, Division of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| | - Zia Shariat-Madar
- Department of BioMolecular Sciences, Division of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| |
Collapse
|
10
|
Gowthami N, Pursotham N, Dey G, Ghose V, Sathe G, Pruthi N, Shukla D, Gayathri N, Santhoshkumar R, Padmanabhan B, Chandramohan V, Mahadevan A, Srinivas Bharath MM. Neuroanatomical zones of human traumatic brain injury reveal significant differences in protein profile and protein oxidation: Implications for secondary injury events. J Neurochem 2023; 167:218-247. [PMID: 37694499 DOI: 10.1111/jnc.15953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Traumatic brain injury (TBI) causes significant neurological deficits and long-term degenerative changes. Primary injury in TBI entails distinct neuroanatomical zones, i.e., contusion (Ct) and pericontusion (PC). Their dynamic expansion could contribute to unpredictable neurological deterioration in patients. Molecular characterization of these zones compared with away from contusion (AC) zone is invaluable for TBI management. Using proteomics-based approach, we were able to distinguish Ct, PC and AC zones in human TBI brains. Ct was associated with structural changes (blood-brain barrier (BBB) disruption, neuroinflammation, axonal injury, demyelination and ferroptosis), while PC was associated with initial events of secondary injury (glutamate excitotoxicity, glial activation, accumulation of cytoskeleton proteins, oxidative stress, endocytosis) and AC displayed mitochondrial dysfunction that could contribute to secondary injury events and trigger long-term degenerative changes. Phosphoproteome analysis in these zones revealed that certain differentially phosphorylated proteins synergistically contribute to the injury events along with the differentially expressed proteins. Non-synaptic mitochondria (ns-mito) was associated with relatively more differentially expressed proteins (DEPs) compared to synaptosomes (Syn), while the latter displayed increased protein oxidation including tryptophan (Trp) oxidation. Proteomic analysis of immunocaptured complex I (CI) from Syn revealed increased Trp oxidation in Ct > PC > AC (vs. control). Oxidized W272 in the ND1 subunit of CI, revealed local conformational changes in ND1 and the neighboring subunits, as indicated by molecular dynamics simulation (MDS). Taken together, neuroanatomical zones in TBI show distinct protein profile and protein oxidation representing different primary and secondary injury events with potential implications for TBI pathology and neurological status of the patients.
Collapse
Affiliation(s)
- Niya Gowthami
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Nithya Pursotham
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Gourav Dey
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Vivek Ghose
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Gajanan Sathe
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Nupur Pruthi
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Dhaval Shukla
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Rashmi Santhoshkumar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology (SIT), Tumakuru, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
11
|
Bencze M. Mechanisms of Myofibre Death in Muscular Dystrophies: The Emergence of the Regulated Forms of Necrosis in Myology. Int J Mol Sci 2022; 24:ijms24010362. [PMID: 36613804 PMCID: PMC9820579 DOI: 10.3390/ijms24010362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
Myofibre necrosis is a central pathogenic process in muscular dystrophies (MD). As post-lesional regeneration cannot fully compensate for chronic myofibre loss, interstitial tissue accumulates and impairs muscle function. Muscle regeneration has been extensively studied over the last decades, however, the pathway(s) controlling muscle necrosis remains largely unknown. The recent discovery of several regulated cell death (RCD) pathways with necrotic morphology challenged the dogma of necrosis as an uncontrolled process, opening interesting perspectives for many degenerative disorders. In this review, we focus on how cell death affects myofibres in MDs, integrating the latest research in the cell death field, with specific emphasis on Duchenne muscular dystrophy, the best-known and most common hereditary MD. The role of regulated forms of necrosis in myology is still in its infancy but there is increasing evidence that necroptosis, a genetically programmed form of necrosis, is involved in muscle degenerating disorders. The existence of apoptosis in myofibre demise will be questioned, while other forms of non-apoptotic RCDs may also have a role in myonecrosis, illustrating the complexity and possibly the heterogeneity of the cell death pathways in muscle degenerating conditions.
Collapse
Affiliation(s)
- Maximilien Bencze
- “Biology of the Neuromuscular System” Team, Institut Mondor de Recherche Biomédicale (IMRB), University Paris-Est Créteil, INSERM, U955 IMRB, 94010 Créteil, France;
- École Nationale Vétérinaire d’Alfort, IMRB, 94700 Maisons-Alfort, France
| |
Collapse
|
12
|
Alves FM, Kysenius K, Caldow MK, Hardee JP, Chung JD, Trieu J, Hare DJ, Crouch PJ, Ayton S, Bush AI, Lynch GS, Koopman R. Iron overload and impaired iron handling contribute to the dystrophic pathology in models of Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2022; 13:1541-1553. [PMID: 35249268 PMCID: PMC9178167 DOI: 10.1002/jcsm.12950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Oxidative stress is implicated in the pathophysiology of Duchenne muscular dystrophy (DMD, caused by mutations in the dystrophin gene), which is the most common and severe of the muscular dystrophies. To our knowledge, the distribution of iron, an important modulator of oxidative stress, has not been assessed in DMD. We tested the hypotheses that iron accumulation occurs in mouse models of DMD and that modulation of iron through the diet or chelation could modify disease severity. METHODS We assessed iron distribution and total elemental iron using LA-ICP-MS on skeletal muscle cross-sections of 8-week-old Bl10 control mice and dystrophic mdx mice (with moderate dystrophy) and dystrophin/utrophin-null mice (dko, with severe dystrophy). In addition, mdx mice (4 weeks) were treated with either an iron chelator (deferiprone 150 mg/kg/day) or iron-enriched feed (containing 1% added iron as carbonyl iron). Immunoblotting was used to determine the abundance of iron- and mitochondria-related proteins. (Immuno)histochemical and mRNA assessments of fibrosis and inflammation were also performed. RESULTS We observed a significant increase in total elemental iron in hindlimb muscles of dko mice (+50%, P < 0.05) and in the diaphragm of mdx mice (+80%, P < 0.05), with both tissues exhibiting severe pathology. Iron dyshomeostasis was further evidenced by an increase in the storage protein ferritin (dko: +39%, P < 0.05) and ferroportin compared with Bl10 control mice (mdx: +152% and dko: +175%, P < 0.05). Despite having features of iron overload, dystrophic muscles had lower protein expression of ALAS-1, the rate-limiting enzyme for haem synthesis (dko -44%, P < 0.05), and the haem-containing protein myoglobin (dko -54%, P < 0.05). Deferiprone treatment tended to decrease muscle iron levels in mdx mice (-30%, P < 0.1), which was associated with lower oxidative stress and fibrosis, but suppressed haem-containing proteins and mitochondrial content. Increasing iron via dietary intervention elevated total muscle iron (+25%, P < 0.05) but did not aggravate the pathology. CONCLUSIONS Muscles from dystrophic mice have increased iron levels and dysregulated iron-related proteins that are associated with dystrophic pathology. Muscle iron levels were manipulated by iron chelation and iron enriched feed. Iron chelation reduced fibrosis and reactive oxygen species (ROS) but also suppressed haem-containing proteins and mitochondrial activity. Conversely, iron supplementation increased ferritin and haem-containing proteins but did not alter ROS, fibrosis, or mitochondrial activity. Further studies are required to investigate the contribution of impaired ferritin breakdown in the dysregulation of iron homeostasis in DMD.
Collapse
Affiliation(s)
- Francesca M Alves
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kai Kysenius
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marissa K Caldow
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Justin P Hardee
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jin D Chung
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dominic J Hare
- Monash eResearch Centre, Monash University, Clayton, Victoria, Australia
| | - Peter J Crouch
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - René Koopman
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
The Role of Oxidative Stress in Skeletal Muscle Myogenesis and Muscle Disease. Antioxidants (Basel) 2022; 11:antiox11040755. [PMID: 35453440 PMCID: PMC9026549 DOI: 10.3390/antiox11040755] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
The contractile activity, high oxygen consumption and metabolic rate of skeletal muscle cause it to continuously produce moderate levels of oxidant species, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Under normal physiological conditions, there is a dynamic balance between the production and elimination of ROS/RNS. However, when the oxidation products exceed the antioxidant defense capacity, the body enters a state of oxidative stress. Myogenesis is an important process to maintain muscle homeostasis and the physiological function of skeletal muscle. Accumulating evidence suggests that oxidative stress plays a key role in myogenesis and skeletal muscle physiology and pathology. In this review, we summarize the sources of reactive oxygen species in skeletal muscle and the causes of oxidative stress and analyze the key role of oxidative stress in myogenesis. Then, we discuss the relationship between oxidative stress and muscle homeostasis and physiopathology. This work systematically summarizes the role of oxidative stress in myogenesis and muscle diseases and provides targets for subsequent antioxidant therapy and repair of inflammatory damage in noninflammatory muscle diseases.
Collapse
|
14
|
González-Jamett A, Vásquez W, Cifuentes-Riveros G, Martínez-Pando R, Sáez JC, Cárdenas AM. Oxidative Stress, Inflammation and Connexin Hemichannels in Muscular Dystrophies. Biomedicines 2022; 10:biomedicines10020507. [PMID: 35203715 PMCID: PMC8962419 DOI: 10.3390/biomedicines10020507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of congenital neuromuscular disorders whose clinical signs include myalgia, skeletal muscle weakness, hypotonia, and atrophy that leads to progressive muscle disability and loss of ambulation. MDs can also affect cardiac and respiratory muscles, impairing life-expectancy. MDs in clude Duchenne muscular dystrophy, Emery-Dreifuss muscular dystrophy, facioscapulohumeral muscular dystrophy and limb-girdle muscular dystrophy. These and other MDs are caused by mutations in genes that encode proteins responsible for the structure and function of skeletal muscles, such as components of the dystrophin-glycoprotein-complex that connect the sarcomeric-actin with the extracellular matrix, allowing contractile force transmission and providing stability during muscle contraction. Consequently, in dystrophic conditions in which such proteins are affected, muscle integrity is disrupted, leading to local inflammatory responses, oxidative stress, Ca2+-dyshomeostasis and muscle degeneration. In this scenario, dysregulation of connexin hemichannels seem to be an early disruptor of the homeostasis that further plays a relevant role in these processes. The interaction between all these elements constitutes a positive feedback loop that contributes to the worsening of the diseases. Thus, we discuss here the interplay between inflammation, oxidative stress and connexin hemichannels in the progression of MDs and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Arlek González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile; (G.C.-R.); (R.M.-P.)
- Correspondence: (A.G.-J.); (A.M.C.)
| | - Walter Vásquez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
| | - Gabriela Cifuentes-Riveros
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile; (G.C.-R.); (R.M.-P.)
| | - Rafaela Martínez-Pando
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile; (G.C.-R.); (R.M.-P.)
| | - Juan C. Sáez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
| | - Ana M. Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
- Correspondence: (A.G.-J.); (A.M.C.)
| |
Collapse
|
15
|
Careccia G, Saclier M, Tirone M, Ruggieri E, Principi E, Raffaghello L, Torchio S, Recchia D, Canepari M, Gorzanelli A, Ferrara M, Castellani P, Rubartelli A, Rovere-Querini P, Casalgrandi M, Preti A, Lorenzetti I, Bruno C, Bottinelli R, Brunelli S, Previtali SC, Bianchi ME, Messina G, Vénéreau E. Rebalancing expression of HMGB1 redox isoforms to counteract muscular dystrophy. Sci Transl Med 2021; 13:13/596/eaay8416. [PMID: 34078746 DOI: 10.1126/scitranslmed.aay8416] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/03/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022]
Abstract
Muscular dystrophies (MDs) are a group of genetic diseases characterized by progressive muscle wasting associated to oxidative stress and persistent inflammation. It is essential to deepen our knowledge on the mechanism connecting these two processes because current treatments for MDs have limited efficacy and/or are associated with side effects. Here, we identified the alarmin high-mobility group box 1 (HMGB1) as a functional link between oxidative stress and inflammation in MDs. The oxidation of HMGB1 cysteines switches its extracellular activities from the orchestration of tissue regeneration to the exacerbation of inflammation. Extracellular HMGB1 is present at high amount and undergoes oxidation in patients with MDs and in mouse models of Duchenne muscular dystrophy (DMD) and limb-girdle muscular dystrophy 3 (LGMDR3) compared to controls. Genetic ablation of HMGB1 in muscles of DMD mice leads to an amelioration of the dystrophic phenotype as evidenced by the reduced inflammation and muscle degeneration, indicating that HMGB1 oxidation is a detrimental process in MDs. Pharmacological treatment with an engineered nonoxidizable variant of HMGB1, called 3S, improves functional performance, muscle regeneration, and satellite cell engraftment in dystrophic mice while reducing inflammation and fibrosis. Overall, our data demonstrate that the balance between HMGB1 redox isoforms dictates whether skeletal muscle is in an inflamed or regenerating state, and that the nonoxidizable form of HMGB1 is a possible therapeutic approach to counteract the progression of the dystrophic phenotype. Rebalancing the HMGB1 redox isoforms may also be a therapeutic strategy for other disorders characterized by chronic oxidative stress and inflammation.
Collapse
Affiliation(s)
- Giorgia Careccia
- Division of Genetics and Cell Biology, Tissue Regeneration and Homeostasis Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Marielle Saclier
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Mario Tirone
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elena Ruggieri
- Division of Genetics and Cell Biology, Tissue Regeneration and Homeostasis Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Elisa Principi
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Lizzia Raffaghello
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Silvia Torchio
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Deborah Recchia
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Monica Canepari
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Andrea Gorzanelli
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Michele Ferrara
- Division of Genetics and Cell Biology, Tissue Regeneration and Homeostasis Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Patrizia Castellani
- Unità di Biologia Cellulare, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Anna Rubartelli
- Unità di Biologia Cellulare, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, 20132 Milan, Italy.,Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | | | | | - Isabella Lorenzetti
- Division of Neuroscience and Inspe, Neuromuscular Repair Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.,ICS-Maugeri (IRCCS), Scientific Institute of Pavia, 27100 Pavia, Italy
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Stefano Carlo Previtali
- Division of Neuroscience and Inspe, Neuromuscular Repair Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco Emilio Bianchi
- Vita-Salute San Raffaele University, 20132 Milan, Italy.,Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Emilie Vénéreau
- Division of Genetics and Cell Biology, Tissue Regeneration and Homeostasis Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
16
|
Nguyen TH, Conotte S, Belayew A, Declèves AE, Legrand A, Tassin A. Hypoxia and Hypoxia-Inducible Factor Signaling in Muscular Dystrophies: Cause and Consequences. Int J Mol Sci 2021; 22:7220. [PMID: 34281273 PMCID: PMC8269128 DOI: 10.3390/ijms22137220] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies (MDs) are a group of inherited degenerative muscle disorders characterized by a progressive skeletal muscle wasting. Respiratory impairments and subsequent hypoxemia are encountered in a significant subgroup of patients in almost all MD forms. In response to hypoxic stress, compensatory mechanisms are activated especially through Hypoxia-Inducible Factor 1 α (HIF-1α). In healthy muscle, hypoxia and HIF-1α activation are known to affect oxidative stress balance and metabolism. Recent evidence has also highlighted HIF-1α as a regulator of myogenesis and satellite cell function. However, the impact of HIF-1α pathway modifications in MDs remains to be investigated. Multifactorial pathological mechanisms could lead to HIF-1α activation in patient skeletal muscles. In addition to the genetic defect per se, respiratory failure or blood vessel alterations could modify hypoxia response pathways. Here, we will discuss the current knowledge about the hypoxia response pathway alterations in MDs and address whether such changes could influence MD pathophysiology.
Collapse
Affiliation(s)
- Thuy-Hang Nguyen
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Stephanie Conotte
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Belayew
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Anne-Emilie Declèves
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium;
| | - Alexandre Legrand
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Tassin
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| |
Collapse
|
17
|
Beneficial Role of Exercise in the Modulation of mdx Muscle Plastic Remodeling and Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10040558. [PMID: 33916762 PMCID: PMC8066278 DOI: 10.3390/antiox10040558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive lethal disorder caused by the lack of dystrophin, which determines myofibers mechanical instability, oxidative stress, inflammation, and susceptibility to contraction-induced injuries. Unfortunately, at present, there is no efficient therapy for DMD. Beyond several promising gene- and stem cells-based strategies under investigation, physical activity may represent a valid noninvasive therapeutic approach to slow down the progression of the pathology. However, ethical issues, the limited number of studies in humans and the lack of consistency of the investigated training interventions generate loss of consensus regarding their efficacy, leaving exercise prescription still questionable. By an accurate analysis of data about the effects of different protocol of exercise on muscles of mdx mice, the most widely-used pre-clinical model for DMD research, we found that low intensity exercise, especially in the form of low speed treadmill running, likely represents the most suitable exercise modality associated to beneficial effects on mdx muscle. This protocol of training reduces muscle oxidative stress, inflammation, and fibrosis process, and enhances muscle functionality, muscle regeneration, and hypertrophy. These conclusions can guide the design of appropriate studies on human, thereby providing new insights to translational therapeutic application of exercise to DMD patients.
Collapse
|
18
|
Identification of a Sesquiterpene Lactone from Arctium lappa Leaves with Antioxidant Activity in Primary Human Muscle Cells. Molecules 2021; 26:molecules26051328. [PMID: 33801315 PMCID: PMC7958318 DOI: 10.3390/molecules26051328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Many pathologies affecting muscles (muscular dystrophies, sarcopenia, cachexia, renal insufficiency, obesity, diabetes type 2, etc.) are now clearly linked to mechanisms involving oxidative stress. In this context, there is a growing interest in exploring plants to find new natural antioxidants to prevent the appearance and the development of these muscle disorders. In this study, we investigated the antioxidant properties of Arctium lappa leaves in a model of primary human muscle cells exposed to H2O2 oxidative stress. We identified using bioassay-guided purification, onopordopicrin, a sesquiterpene lactone as the main molecule responsible for the antioxidant activity of A. lappa leaf extract. According to our findings, onopordopicrin inhibited the H2O2-mediated loss of muscle cell viability, by limiting the production of free radicals and abolishing DNA cellular damages. Moreover, we showed that onopordopicrin promoted the expression of the nuclear factor-erythroid-2-related factor 2 (Nrf2) downstream target protein heme oxygenase-1 (HO-1) in muscle cells. By using siRNA, we demonstrated that the inhibition of the expression of Nrf2 reduced the protective effect of onopordopicrin, indicating that the activation of the Nrf2/HO-1 signaling pathway mediates the antioxidant effect of onopordopicrin in primary human muscle cells. Therefore, our results suggest that onopordopicrin may be a potential therapeutic molecule to fight against oxidative stress in pathological specific muscle disorders.
Collapse
|
19
|
Luthra R, Roy A. Role of medicinal plants against neurodegenerative diseases. Curr Pharm Biotechnol 2021; 23:123-139. [PMID: 33573549 DOI: 10.2174/1389201022666210211123539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
Diseases with a significant loss of neurons, structurally and functionally are termed as neurodegenerative diseases. Due to the present therapeutic interventions and progressive nature of diseases, a variety of side effects have risen up, thus leading the patients to go for an alternative medication. The role of medicinal plants in such cases has been beneficial because of their exhibition via different cellular and molecular mechanisms. Alleviation in inflammatory responses, suppression of the functionary aspect of pro-inflammatory cytokines like a tumor, improvement in antioxidative properties is among few neuroprotective mechanisms of traditional plants. Variation in transcription and transduction pathways play a vital role in the preventive measures of plants in such diseases. Neurodegenerative diseases are generally caused by depletion of proteins, oxidative and inflammatory stress, environmental changes and so on, with aging being the most important cause. Natural compounds can be used in order to treat neurodegenerative diseases Medicinal plants such as Ginseng, Withania somnifera, Bacopa monnieri, Ginkgo biloba, etc. are some of the medicinal plants for prevention of neurological symptoms. This review deals with the use of different medicinal plants for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ritika Luthra
- Department of Biotechnology, Delhi Technological University, Delhi. India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida. India
| |
Collapse
|
20
|
Terrill JR, Al-Mshhdani BA, Duong MN, Wingate CD, Abbas Z, Baustista AP, Bettis AK, Balog-Alvarez CJ, Kornegay JN, Nghiem PP, Grounds MD, Arthur PG. Oxidative damage to urinary proteins from the GRMD dog and mdx mouse as biomarkers of dystropathology in Duchenne muscular dystrophy. PLoS One 2020; 15:e0240317. [PMID: 33031394 PMCID: PMC7544076 DOI: 10.1371/journal.pone.0240317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-chromosome linked muscle-wasting disease affecting about 1 in 3500–6000 boys worldwide. Myofibre necrosis and subsequent loss of muscle mass are due to several molecular sequelae, such as inflammation and oxidative stress. We have recently shown increased neutrophils, highly reactive oxidant hypochlorous acid (HOCl) generation by myeloperoxidase (MPO), and associated oxidative stress in muscle from the GRMD dog and mdx mouse models for DMD. These findings have led us to hypothesise that generation of HOCl by myeloperoxidase released from neutrophils has a significant role in dystropathology. Since access to muscle from DMD patients is limited, the aim of this study was to develop methods to study this pathway in urine. Using immunoblotting to measure markers of protein oxidation, we show increased labelling of proteins with antibodies to dinitrophenylhydrazine (DNP, oxidative damage) and DiBrY (halogenation by reactive oxidants from myeloperoxidase) in GRMD and mdx urine. A strong positive correlation was observed between DiBrY labelling in dog urine and muscle. A strong positive correlation was also observed when comparing DNP and DiBrY labelling (in muscle and urine) to markers of dystropathology (plasma creatine kinase) and neutrophil presence (muscle MPO). Our results indicate the presence of neutrophil mediated oxidative stress in both models, and suggest that urine is a suitable bio-fluid for the measurement of such biomarkers. These methods could be employed in future studies into the role of neutrophil mediated oxidative stress in DMD and other inflammatory pathologies.
Collapse
Affiliation(s)
- Jessica R. Terrill
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
- * E-mail:
| | - Basma A. Al-Mshhdani
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Marisa N. Duong
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Catherine D. Wingate
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Zahra Abbas
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Angelo P. Baustista
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Amanda K. Bettis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Cynthia J. Balog-Alvarez
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Joe N. Kornegay
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Peter P. Nghiem
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Miranda D. Grounds
- School of Human Sciences, The University of Western Australia, Perth, Australia
| | - Peter G. Arthur
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
21
|
Gupta P, Dutt V, Kaur N, Kalra P, Gupta S, Dua A, Dabur R, Saini V, Mittal A. S-allyl cysteine: A potential compound against skeletal muscle atrophy. Biochim Biophys Acta Gen Subj 2020; 1864:129676. [PMID: 32649980 DOI: 10.1016/j.bbagen.2020.129676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Oxidative stress is crucial player in skeletal muscle atrophy pathogenesis. S-allyl cysteine (SAC), an organosulfur compound of Allium sativum, possesses broad-spectrum properties including immuno- and redox-modulatory impact. Considering the role of SAC in regulating redox balance, we hypothesize that SAC may have a protective role in oxidative-stress induced atrophy. METHODS C2C12 myotubes were treated with H2O2 (100 μM) in the presence or absence of SAC (200 μM) to study morphology, redox status, inflammatory cytokines and proteolytic systems using fluorescence microscopy, biochemical analysis, real-time PCR and immunoblotting approaches. The anti-atrophic potential of SAC was confirmed in denervation-induced atrophy model. RESULTS SAC pre-incubation (4 h) could protect the myotube morphology (i.e. length/diameter/fusion index) from atrophic effects of H2O2. Lower levels of ROS, lipid peroxidation, oxidized glutathione and altered antioxidant enzymes were observed in H2O2-exposed cells upon pre-treatment with SAC. SAC supplementation also suppressed the rise in cytokines levels (TWEAK/IL6/myostatin) caused by H2O2. SAC treatment also moderated the degradation of muscle-specific proteins (MHCf) in the H2O2-treated myotubes supported by lower induction of diverse proteolytic systems (i.e. cathepsin, calpain, ubiquitin-proteasome E3-ligases, caspase-3, autophagy). Denervation-induced atrophy in mice illustrates that SAC administration alleviates the negative effects (i.e. mass loss, decreased cross-sectional area, up-regulation of proteolytic systems, and degradation of total/specific protein) of denervation on muscles. CONCLUSIONS SAC exerts significant anti-atrophic effects to protect myotubes from H2O2-induced protein loss and myofibers from denervation-induced muscle loss, due to the prevention of elevated proteolytic systems and inflammatory/oxidative molecules. GENERAL SIGNIFICANCE The results signify the potential of SAC against muscle atrophy.
Collapse
Affiliation(s)
- Prachi Gupta
- Skeletal Muscle Laboratory, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Vikas Dutt
- Skeletal Muscle Laboratory, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Nirmaljeet Kaur
- Skeletal Muscle Laboratory, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Priya Kalra
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanjeev Gupta
- Skeletal Muscle Laboratory, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Anita Dua
- Skeletal Muscle Laboratory, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Rajesh Dabur
- Biochemistry Department, MD University, Rohtak, Haryana 124001, India
| | - Vikram Saini
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ashwani Mittal
- Skeletal Muscle Laboratory, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| |
Collapse
|
22
|
N-Acetylcysteine Reduces Skeletal Muscles Oxidative Stress and Improves Grip Strength in Dysferlin-Deficient Bla/J Mice. Int J Mol Sci 2020; 21:ijms21124293. [PMID: 32560255 PMCID: PMC7352960 DOI: 10.3390/ijms21124293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 12/25/2022] Open
Abstract
Dysferlinopathy is an autosomal recessive muscular dystrophy resulting from mutations in the dysferlin gene. Absence of dysferlin in the sarcolemma and progressive muscle wasting are hallmarks of this disease. Signs of oxidative stress have been observed in skeletal muscles of dysferlinopathy patients, as well as in dysferlin-deficient mice. However, the contribution of the redox imbalance to this pathology and the efficacy of antioxidant therapy remain unclear. Here, we evaluated the effect of 10 weeks diet supplementation with the antioxidant agent N-acetylcysteine (NAC, 1%) on measurements of oxidative damage, antioxidant enzymes, grip strength and body mass in 6 months-old dysferlin-deficient Bla/J mice and wild-type (WT) C57 BL/6 mice. We found that quadriceps and gastrocnemius muscles of Bla/J mice exhibit high levels of lipid peroxidation, protein carbonyls and superoxide dismutase and catalase activities, which were significantly reduced by NAC supplementation. By using the Kondziela’s inverted screen test, we further demonstrated that NAC improved grip strength in dysferlin deficient animals, as compared with non-treated Bla/J mice, without affecting body mass. Together, these results indicate that this antioxidant agent improves skeletal muscle oxidative balance, as well as muscle strength and/or resistance to fatigue in dysferlin-deficient animals.
Collapse
|
23
|
Grounds MD, Terrill JR, Al-Mshhdani BA, Duong MN, Radley-Crabb HG, Arthur PG. Biomarkers for Duchenne muscular dystrophy: myonecrosis, inflammation and oxidative stress. Dis Model Mech 2020; 13:13/2/dmm043638. [PMID: 32224496 PMCID: PMC7063669 DOI: 10.1242/dmm.043638] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease that causes severe loss of muscle mass and function in young children. Promising therapies for DMD are being developed, but the long lead times required when using clinical outcome measures are hindering progress. This progress would be facilitated by robust molecular biomarkers in biofluids, such as blood and urine, which could be used to monitor disease progression and severity, as well as to determine optimal drug dosing before a full clinical trial. Many candidate DMD biomarkers have been identified, but there have been few follow-up studies to validate them. This Review describes the promising biomarkers for dystrophic muscle that have been identified in muscle, mainly using animal models. We strongly focus on myonecrosis and the associated inflammation and oxidative stress in DMD muscle, as the lack of dystrophin causes repeated bouts of myonecrosis, which are the key events that initiate the resultant severe dystropathology. We discuss the early events of intrinsic myonecrosis, along with early regeneration in the context of histological and other measures that are used to quantify its incidence. Molecular biomarkers linked to the closely associated events of inflammation and oxidative damage are discussed, with a focus on research related to protein thiol oxidation and to neutrophils. We summarise data linked to myonecrosis in muscle, blood and urine of dystrophic animal species, and discuss the challenge of translating such biomarkers to the clinic for DMD patients, especially to enhance the success of clinical trials. Summary: This Review discusses biomarkers in blood and urine linked to myonecrosis, inflammation and oxidative stress, to enhance development of therapies for DMD, and the challenges to be overcome for clinical translation.
Collapse
Affiliation(s)
- Miranda D Grounds
- School of Human Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Jessica R Terrill
- School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Basma A Al-Mshhdani
- School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Marisa N Duong
- School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Hannah G Radley-Crabb
- School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Peter G Arthur
- School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
24
|
Muscular Dystrophy and Rehabilitation Interventions with Regenerative Treatment. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020. [DOI: 10.1007/s40141-019-00255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Lao YE, Molden E, Kringen MK, Annexstad EJ, Saeverud HA, Jacobsen D, Hovda KE. Fatal liver failure after therapeutic doses of paracetamol in a patient with Duchenne muscular dystrophy and atypical pharmacogenetic profile of drug-metabolizing enzymes. Basic Clin Pharmacol Toxicol 2020; 127:47-51. [PMID: 31977139 DOI: 10.1111/bcpt.13389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Paracetamol has a good safety profile, but pharmacogenetic differences in drug-metabolizing enzymes may have an impact on its risk of hepatotoxicity. We present a case of fatal acute liver failure (ALF) after therapeutic doses of paracetamol in a patient with Duchenne muscular dystrophy, where pharmacogenetic screening was conducted. This 30-year-old man was electively admitted for a tracheostomy. A total of 14.5 g paracetamol was given over four days. He developed a severe ALF and died 11 days after admission. Pharmacogenetic screening showed absent CYP2D6 metabolism and increased CYP1A2 activity, which may have increased the formation of toxic intermediate metabolite, N-acetyl-p-benzo-quinone imine (NAPQI). He also had decreased function of UGT2B15, which increases the amount of paracetamol available for metabolism to NAPQI. Having a reduced muscle mass and thus a reduced glutathione levels to detoxify produced NAPQI may add to the risk of toxicity. This case may indicate that pharmacogenetic variability is of potential relevance for the risk of paracetamol-induced hepatotoxicity in patients with neuromuscular diseases. Further studies should investigate if pharmacogenetic screening could be a tool to detect potentially increased risk of hepatotoxicity in these patients at therapeutic doses of paracetamol and hence provide information for selection of analgesic treatment.
Collapse
Affiliation(s)
- Yvonne Elisabeth Lao
- Norwegian National Unit for CBRNE Medicine, Department of Acute Medicine, Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Marianne Kristiansen Kringen
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Ellen Johanne Annexstad
- Department of Neurology, Unit for Congenital and Inherited Neuromuscular Disorders, Oslo University Hospital, Oslo, Norway
| | | | - Dag Jacobsen
- Department of Acute Medicine, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Knut Erik Hovda
- Norwegian National Unit for CBRNE Medicine, Department of Acute Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
26
|
Human muscle pathology is associated with altered phosphoprotein profile of mitochondrial proteins in the skeletal muscle. J Proteomics 2020; 211:103556. [PMID: 31655151 DOI: 10.1016/j.jprot.2019.103556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 12/29/2022]
Abstract
Analysis of human muscle diseases highlights the role of mitochondrial dysfunction in the skeletal muscle. Our previous work revealed that diverse upstream events correlated with altered mitochondrial proteome in human muscle biopsies. However, several proteins showed relatively unchanged expression suggesting that post-translational modifications, mainly protein phosphorylation could influence their activity and regulate mitochondrial processes. We conducted mitochondrial phosphoprotein profiling, by proteomics approach, of healthy human skeletal muscle (n = 10) and three muscle diseases (n = 10 each): Dysferlinopathy, Polymyositis and Distal Myopathy with Rimmed Vacuoles. Healthy human muscle mitochondrial proteins displayed 253 phosphorylation sites (phosphosites), which contributed to metabolic and redox processes and mitochondrial organization etc. Electron transport chain complexes accounted for 84 phosphosites. Muscle pathologies displayed 33 hyperphosphorylated and 14 hypophorphorylated sites with only 5 common proteins, indicating varied phosphorylation profile across muscle pathologies. Molecular modelling revealed altered local structure in the phosphorylated sites of Voltage-Dependent Anion Channel 1 and complex V subunit ATP5B1. Molecular dynamics simulations in complex I subunits NDUFV1, NDUFS1 and NDUFV2 revealed that phosphorylation induced structural alterations thereby influencing electron transfer and potentially altering enzyme activity. We propose that altered phosphorylation at specific sites could regulate mitochondrial protein function in the skeletal muscle during physiological and pathological processes.
Collapse
|
27
|
N-acetylcysteine Decreases Fibrosis and Increases Force-Generating Capacity of mdx Diaphragm. Antioxidants (Basel) 2019; 8:antiox8120581. [PMID: 31771272 PMCID: PMC6943616 DOI: 10.3390/antiox8120581] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/10/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
Respiratory muscle weakness occurs due to dystrophin deficiency in Duchenne muscular dystrophy (DMD). The mdx mouse model of DMD shows evidence of impaired respiratory muscle performance with attendant inflammation and oxidative stress. We examined the effects of N-acetylcysteine (NAC) supplementation on respiratory system performance in mdx mice. Eight-week-old male wild type (n = 10) and mdx (n = 20) mice were studied; a subset of mdx (n = 10) received 1% NAC in the drinking water for 14 days. We assessed breathing, diaphragm, and external intercostal electromyogram (EMG) activities and inspiratory pressure during ventilatory and non-ventilatory behaviours. Diaphragm muscle structure and function, cytokine concentrations, glutathione status, and mRNA expression were determined. Diaphragm force-generating capacity was impaired in mdx compared with wild type. Diaphragm muscle remodelling was observed in mdx, characterized by increased muscle fibrosis, immune cell infiltration, and central myonucleation. NAC supplementation rescued mdx diaphragm function. Collagen content and immune cell infiltration were decreased in mdx + NAC compared with mdx diaphragms. The cytokines IL-1β, IL-6 and KC/GRO were increased in mdx plasma and diaphragm compared with wild type; NAC decreased systemic IL-1β and KC/GRO concentrations in mdx mice. We reveal that NAC treatment improved mdx diaphragm force-generating capacity associated with beneficial anti-inflammatory and anti-fibrotic effects. These data support the potential use of NAC as an adjunctive therapy in human dystrophinopathies.
Collapse
|
28
|
Unni S, Thiyagarajan S, Srinivas Bharath MM, Padmanabhan B. Tryptophan Oxidation in the UQCRC1 Subunit of Mitochondrial Complex III (Ubiquinol-Cytochrome C Reductase) in a Mouse Model of Myodegeneration Causes Large Structural Changes in the Complex: A Molecular Dynamics Simulation Study. Sci Rep 2019; 9:10694. [PMID: 31337785 PMCID: PMC6650490 DOI: 10.1038/s41598-019-47018-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/08/2019] [Indexed: 11/09/2022] Open
Abstract
Muscle diseases display mitochondrial dysfunction and oxidative damage. Our previous study in a cardiotoxin model of myodegeneration correlated muscle damage with mitochondrial dysfunction, which in turn entailed altered mitochondrial proteome and oxidative damage of mitochondrial proteins. Proteomic identification of oxidized proteins in muscle biopsies from muscular dystrophy patients and cardiotoxin model revealed specific mitochondrial proteins to be targeted for oxidation. These included respiratory complexes which displayed oxidative modification of Trp residues in different subunits. Among these, Ubiquinol-Cytochrome C Reductase Core protein 1 (UQCRC1), a subunit of Ubiquinol-Cytochrome C Reductase Complex or Cytochrome b-c1 Complex or Respiratory Complex III displayed oxidation of Trp395, which could be correlated with the lowered activity of Complex III. We hypothesized that Trp395 oxidation might contribute to altered local conformation and overall structure of Complex III, thereby potentially leading to altered protein activity. To address this, we performed molecular dynamics simulation of Complex III (oxidized at Trp395 of UQCRC1 vs. non-oxidized control). Molecular dynamic simulation analyses revealed local structural changes in the Trp395 site. Intriguingly, oxidized Trp395 contributed to decreased plasticity of Complex III due to significant cross-talk among the subunits in the matrix-facing region and subunits in the intermembrane space, thereby leading to impaired electron flow from cytochrome C.
Collapse
Affiliation(s)
- Sruthi Unni
- Department of Biophysics, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - S Thiyagarajan
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City Phase I, Electronic City, Bangalore, 560100, Karnataka, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, NIMHANS, Hosur Road, Bangalore, 560029, Karnataka, India. .,Neurotoxicology Laboratory at the Neurobiology Research Center, NIMHANS, Hosur Road, Bangalore, 560029, Karnataka, India.
| | - B Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India.
| |
Collapse
|
29
|
Dynamic thiol/disulphide homeostasis in children with Duchenne muscular dystrophy. Acta Neurol Belg 2019; 119:215-218. [PMID: 30607902 DOI: 10.1007/s13760-018-01072-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a disorder that alter the expression of the dystrophin protein. Dystrophin deficiency alters the structural integrity of the contractile apparatus/sarcolemmal integrity, leading to dystrophic changes. Dystrophin deficiency results in an increase in oxidative stress. We aimed to investigate the thiol/disulfide balance as an oxidative stress marker in children with DMD. We included 24 DMD, and 22 healthy control group subjects in the study. The total thiol, native thiol, and disulphide levels were measured and the disulphide/native thiol, disulphide/total thiol and native thiol/total thiol ratios were calculated in DMD patients and healthy subjects. The mean age distribution of the patients and the healthy control group subjects was similar. The total thiol, native thiol, and disulfide levels were lower in DMD group than the healthy controls. In conclusion, the markers and ratios were measured and calculated in the blood, and we detected that the total thiol, and native thiol levels were lower in DMD group than the healthy controls. These results indicate that dynamic thiol-disulphide homeostasis can be used as a marker of oxidative stress in clinical trials with DMD.
Collapse
|
30
|
Hentilä J, Nissinen TA, Korkmaz A, Lensu S, Silvennoinen M, Pasternack A, Ritvos O, Atalay M, Hulmi JJ. Activin Receptor Ligand Blocking and Cancer Have Distinct Effects on Protein and Redox Homeostasis in Skeletal Muscle and Liver. Front Physiol 2019; 9:1917. [PMID: 30713500 PMCID: PMC6345696 DOI: 10.3389/fphys.2018.01917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/20/2018] [Indexed: 12/25/2022] Open
Abstract
Muscle wasting in cancer cachexia can be alleviated by blocking activin receptor type 2 (ACVR2) ligands through changes in protein synthesis/degradation. These changes in cellular and protein metabolism may alter protein homeostasis. First, we elucidated the acute (1–2 days) and 2-week effects of blocking ACVR2 ligands by soluble activin receptor 2B (sACVR2B-Fc) on unfolded protein response (UPR), heat shock proteins (HSPs) and redox balance in a healthy mouse skeletal muscle. Second, we examined UPR, autophagy and redox balance with or without sACVR2B-Fc administration in muscle and liver of C26 tumor-bearing mice. The indicators of UPR and HSPs were not altered 1–2 days after a single sACVR2B-Fc administration in healthy muscles, but protein carbonyls increased (p < 0.05). Two weeks of sACVR2B-Fc administration increased muscle size, which was accompanied by increased UPR markers: GRP78 (p < 0.05), phosphorylated eIF2α (p < 0.01) and HSP47 (p < 0.01). Additionally, protein carbonyls and reduced form of glutathione increased (GSH) (p < 0.05). On the other hand, C26 cancer cachexia manifested decreased UPR markers (p-eIF2α, HSP47, p-JNK; p < 0.05) and antioxidant GSH (p < 0.001) in muscle, whereas the ratio of oxidized to reduced glutathione increased (GSSG/GSH; p < 0.001). Administration of sACVR2B-Fc prevented the decline in GSH and increased some of the UPR indicators in tumor-bearing mice. Additionally, autophagy markers LC3II/I (p < 0.05), Beclin-1 (p < 0.01), and P62 (p < 0.05) increased in the skeletal muscle of tumor-bearing mice. Finally, indicators of UPR, PERK, p-eIF2α and GRP78, increased (p < 0.05), whereas ATF4 was strongly decreased (p < 0.01) in the liver of tumor-bearing mice while sACVR2B-Fc had no effect. Muscle GSH and many of the altered UPR indicators correlated with tumor mass, fat mass and body mass loss. In conclusion, experimental cancer cachexia is accompanied by distinct and tissue-specific changes in proteostasis. Muscle hypertrophy induced by blocking ACVR2B ligands may be accompanied by the induction of UPR and increased protein carbonyls but blocking ACVR2B ligands may upregulate antioxidant protection.
Collapse
Affiliation(s)
- Jaakko Hentilä
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Tuuli A Nissinen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Ayhan Korkmaz
- Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio, Finland
| | - Sanna Lensu
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Mika Silvennoinen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mustafa Atalay
- Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio, Finland
| | - Juha J Hulmi
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland.,Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Petrillo S, Pelosi L, Piemonte F, Travaglini L, Forcina L, Catteruccia M, Petrini S, Verardo M, D'Amico A, Musarò A, Bertini E. Oxidative stress in Duchenne muscular dystrophy: focus on the NRF2 redox pathway. Hum Mol Genet 2018; 26:2781-2790. [PMID: 28472288 DOI: 10.1093/hmg/ddx173] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/26/2017] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is involved in the pathogenesis of Duchenne muscular dystrophy (DMD), an X-linked genetic disorder caused by mutations in the dystrophin gene and characterized by progressive, lethal muscle degeneration and chronic inflammation. In this study, we explored the expression and signaling pathway of a master player of the anti-oxidant and anti-inflammatory response, namely NF-E2-related Factor 2, in muscle biopsies of DMD patients. We classified DMD patients in two age groups (Class I, 0-2 years and Class II, 2-9 years), in order to evaluate the antioxidant pathway expression during the disease progression. We observed that altered enzymatic antioxidant responses, increased levels of oxidized glutathione and oxidative damage are differently modulated in the two age classes of patients and well correlate with the severity of pathology. Interestingly, we also observed a modulation of relevant markers of the inflammatory response, such as heme oxygenase 1 and Inteleukin-6 (IL-6), suggesting a link between oxidative stress and chronic inflammatory response. Of note, using a transgenic mouse model, we demonstrated that IL-6 overexpression parallels the antioxidant expression profile and the severity of dystrophic muscle observed in DMD patients. This study advances our understanding of the pathogenic mechanisms underlying DMD and defines the critical role of oxidative stress on muscle wasting with clear implications for disease pathogenesis and therapy in human.
Collapse
Affiliation(s)
- Sara Petrillo
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital and Research Institute Bambino Gesú, 00146 Rome, Italy
| | - Laura Pelosi
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fiorella Piemonte
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital and Research Institute Bambino Gesú, 00146 Rome, Italy
| | - Lorena Travaglini
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital and Research Institute Bambino Gesú, 00146 Rome, Italy
| | - Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Michela Catteruccia
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital and Research Institute Bambino Gesú, 00146 Rome, Italy
| | - Stefania Petrini
- Laboratory of Research, Children's Hospital and Research Institute Bambino Gesù, 00146 Rome, Italy
| | - Margherita Verardo
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital and Research Institute Bambino Gesú, 00146 Rome, Italy
| | - Adele D'Amico
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital and Research Institute Bambino Gesú, 00146 Rome, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital and Research Institute Bambino Gesú, 00146 Rome, Italy
| |
Collapse
|
32
|
Mâncio RD, Hermes TDA, Macedo AB, Mizobuti DS, Valduga AH, Rupcic IF, Minatel E. Vitamin E treatment decreases muscle injury in mdx mice. Nutrition 2017; 43-44:39-46. [DOI: 10.1016/j.nut.2017.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/19/2023]
|
33
|
Le Moal E, Pialoux V, Juban G, Groussard C, Zouhal H, Chazaud B, Mounier R. Redox Control of Skeletal Muscle Regeneration. Antioxid Redox Signal 2017; 27:276-310. [PMID: 28027662 PMCID: PMC5685069 DOI: 10.1089/ars.2016.6782] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022]
Abstract
Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.
Collapse
Affiliation(s)
- Emmeran Le Moal
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France
- Movement, Sport and Health Sciences Laboratory, M2S, EA1274, University of Rennes 2, Bruz, France
| | - Vincent Pialoux
- Laboratoire Interuniversitaire de Biologie de la Motricité, EA7424, Université Claude Bernard Lyon 1, Univ Lyon, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | - Gaëtan Juban
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France
| | - Carole Groussard
- Movement, Sport and Health Sciences Laboratory, M2S, EA1274, University of Rennes 2, Bruz, France
| | - Hassane Zouhal
- Movement, Sport and Health Sciences Laboratory, M2S, EA1274, University of Rennes 2, Bruz, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France
| | - Rémi Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France
| |
Collapse
|
34
|
Terrill JR, Duong MN, Turner R, Le Guiner C, Boyatzis A, Kettle AJ, Grounds MD, Arthur PG. Levels of inflammation and oxidative stress, and a role for taurine in dystropathology of the Golden Retriever Muscular Dystrophy dog model for Duchenne Muscular Dystrophy. Redox Biol 2016; 9:276-286. [PMID: 27611888 PMCID: PMC5018082 DOI: 10.1016/j.redox.2016.08.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 01/29/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal skeletal muscle wasting disease presenting with excessive myofibre necrosis and increased inflammation and oxidative stress. In the mdx mouse model of DMD, homeostasis of the amino acid taurine is altered, and taurine administration drastically decreases muscle necrosis, dystropathology, inflammation and protein thiol oxidation. Since the severe pathology of the Golden Retriever Muscular Dystrophy (GRMD) dog model more closely resembles the human DMD condition, we aimed to assess the generation of oxidants by inflammatory cells and taurine metabolism in this species. In muscles of 8 month GRMD dogs there was an increase in the content of neutrophils and macrophages, and an associated increase in elevated myeloperoxidase, a protein secreted by neutrophils that catalyses production of the highly reactive hypochlorous acid (HOCl). There was also increased chlorination of tyrosines, a marker of HOCl generation, increased thiol oxidation of many proteins and irreversible oxidative protein damage. Taurine, which functions as an antioxidant by trapping HOCl, was reduced in GRMD plasma; however taurine was increased in GRMD muscle tissue, potentially due to increased muscle taurine transport and synthesis. These data indicate a role for HOCl generated by neutrophils in the severe dystropathology of GRMD dogs, which may be exacerbated by decreased availability of taurine in the blood. These novel data support continued research into the precise roles of oxidative stress and taurine in DMD and emphasise the value of the GRMD dogs as a suitable pre-clinical model for testing taurine as a therapeutic intervention for DMD boys.
Collapse
Affiliation(s)
- Jessica R Terrill
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia, Australia; School of Anatomy, Physiology and Human Biology, the University of Western Australia, Perth, Western Australia, Australia.
| | - Marisa N Duong
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia, Australia
| | - Rufus Turner
- Centre for Free Radical Research, Department of Pathology, the University of Otago, Christchurch, New Zealand
| | - Caroline Le Guiner
- Atlantic Gene Therapies, INSERM UMR1089, Nantes, France; Genethon, Evry, France
| | - Amber Boyatzis
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia, Australia
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology, the University of Otago, Christchurch, New Zealand
| | - Miranda D Grounds
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Perth, Western Australia, Australia
| | - Peter G Arthur
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
35
|
Limbu S, Hoang-Trong TM, Prosser BL, Lederer WJ, Jafri MS. Modeling Local X-ROS and Calcium Signaling in the Heart. Biophys J 2016; 109:2037-50. [PMID: 26588563 DOI: 10.1016/j.bpj.2015.09.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/20/2015] [Accepted: 09/23/2015] [Indexed: 01/08/2023] Open
Abstract
Stretching single ventricular cardiac myocytes has been shown experimentally to activate transmembrane nicotinamide adenine dinucleotide phosphate oxidase type 2 to produce reactive oxygen species (ROS) and increase the Ca2+ spark rate in a process called X-ROS signaling. The increase in Ca2+ spark rate is thought to be due to an increase in ryanodine receptor type 2 (RyR2) open probability by direct oxidation of the RyR2 protein complex. In this article, a computational model is used to examine the regulation of ROS and calcium homeostasis by local, subcellular X-ROS signaling and its role in cardiac excitation-contraction coupling. To this end, a four-state RyR2 model was developed that includes an X-ROS-dependent RyR2 mode switch. When activated, [Ca2+]i-sensitive RyR2 open probability increases, and the Ca2+ spark rate changes in a manner consistent with experimental observations. This, to our knowledge, new model is used to study the transient effects of diastolic stretching and subsequent ROS production on RyR2 open probability, Ca2+ sparks, and the myoplasmic calcium concentration ([Ca2+]i) during excitation-contraction coupling. The model yields several predictions: 1) [ROS] is produced locally near the RyR2 complex during X-ROS signaling and increases by an order of magnitude more than the global ROS signal during myocyte stretching; 2) X-ROS activation just before the action potential, corresponding to ventricular filling during diastole, increases the magnitude of the Ca2+ transient; 3) during prolonged stretching, the X-ROS-induced increase in Ca2+ spark rate is transient, so that long-sustained stretching does not significantly increase sarcoplasmic reticulum Ca2+ leak; and 4) when the chemical reducing capacity of the cell is decreased, activation of X-ROS signaling increases sarcoplasmic reticulum Ca2+ leak and contributes to global oxidative stress, thereby increases the possibility of arrhythmia. The model provides quantitative information not currently obtainable through experimental means and thus provides a framework for future X-ROS signaling experiments.
Collapse
Affiliation(s)
- Sarita Limbu
- Department of Molecular Neuroscience, School of Systems Biology and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia
| | - Tuan M Hoang-Trong
- Department of Molecular Neuroscience, School of Systems Biology and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology and Department of Physiology University of Maryland School of Medicine, Baltimore, Maryland
| | - M Saleet Jafri
- Department of Molecular Neuroscience, School of Systems Biology and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia; Center for Biomedical Engineering and Technology and Department of Physiology University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
36
|
Fuller HR, Graham LC, Llavero Hurtado M, Wishart TM. Understanding the molecular consequences of inherited muscular dystrophies: advancements through proteomic experimentation. Expert Rev Proteomics 2016; 13:659-71. [PMID: 27329572 DOI: 10.1080/14789450.2016.1202768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/14/2016] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Proteomic techniques offer insights into the molecular perturbations occurring in muscular-dystrophies (MD). Revisiting published datasets can highlight conserved downstream molecular alterations, which may be worth re-assessing to determine whether their experimental manipulation is capable of modulating disease severity. AREAS COVERED Here, we review the MD literature, highlighting conserved molecular insights warranting mechanistic investigation for therapeutic potential. We also describe a workflow currently proving effective for efficient identification of biomarkers & therapeutic targets in other neurodegenerative conditions, upon which future MD proteomic investigations could be modelled. Expert commentary: Studying disease models can be useful for identifying biomarkers and model specific degenerative cascades, but rarely offer translatable mechanistic insights into disease pathology. Conversely, direct analysis of human samples undergoing degeneration presents challenges derived from complex chronic degenerative molecular processes. This requires a carefully planed & reproducible experimental paradigm accounting for patient selection through to grouping by disease severity and ending with proteomic data filtering and processing.
Collapse
Affiliation(s)
- Heidi R Fuller
- a Wolfson Centre for Inherited Neuromuscular Disease , RJAH Orthopaedic Hospital , Oswestry , UK
- b Institute for Science and Technology in Medicine , Keele University , Staffordshire , UK
| | - Laura C Graham
- c Euan MacDonald Centre for Motor Neurone Disease Research , University of Edinburgh , Edinburgh , UK
- d Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies , University of Edinburgh , Edinburgh , UK
| | - Maica Llavero Hurtado
- c Euan MacDonald Centre for Motor Neurone Disease Research , University of Edinburgh , Edinburgh , UK
- d Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies , University of Edinburgh , Edinburgh , UK
| | - Thomas M Wishart
- c Euan MacDonald Centre for Motor Neurone Disease Research , University of Edinburgh , Edinburgh , UK
- d Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies , University of Edinburgh , Edinburgh , UK
| |
Collapse
|
37
|
Sunitha B, Gayathri N, Kumar M, Keshava Prasad TS, Nalini A, Padmanabhan B, Srinivas Bharath MM. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function. J Neurochem 2016; 138:174-91. [PMID: 27015874 DOI: 10.1111/jnc.13626] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 01/17/2023]
Abstract
Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from dysferlinopathy (Dysfy), polymyositis (PM), and distal myopathy with rimmed vacuoles (DMRV) displayed morphological and biochemical evidences of mitochondrial dysfunction. Proteomic analysis revealed down-regulation of electron transport chain (ETC) subunits, assembly factors, and tricarboxylic acid (TCA) cycle enzymes, with 80 proteins common among the three pathologies. Mitochondrial proteins from muscle pathologies also displayed higher Trp oxidation that could alter the local structure. Cover image for this issue: doi: 10.1111/jnc.13324.
Collapse
Affiliation(s)
- Balaraju Sunitha
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India.,Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Manish Kumar
- Institute of Bioinformatics, Whitefield, Bangalore, Karnataka, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, Whitefield, Bangalore, Karnataka, India.,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | | |
Collapse
|
38
|
SIRT1: A Novel Target for the Treatment of Muscular Dystrophies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6714686. [PMID: 27073590 PMCID: PMC4814699 DOI: 10.1155/2016/6714686] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/28/2016] [Indexed: 12/13/2022]
Abstract
Muscular dystrophies are inherited myogenic disorders accompanied by progressive skeletal muscle weakness and degeneration. Duchenne muscular dystrophy (DMD) is the most common and severe form of muscular dystrophy and is caused by mutations in the gene that encodes the cytoskeletal protein dystrophin. The treatment for DMD is limited to glucocorticoids, which are associated with multiple side effects. Thus, the identification of novel therapeutic targets is urgently needed. SIRT1 is an NAD+-dependent histone/protein deacetylase that plays roles in diverse cellular processes, including stress resistance and cell survival. Studies have shown that SIRT1 activation provides beneficial effects in the dystrophin-deficient mdx mouse, a model of DMD. SIRT1 activation leads to the attenuation of oxidative stress and inflammation, a shift from the fast to slow myofiber phenotype, and the suppression of tissue fibrosis. Although further research is needed to clarify the molecular mechanisms underlying the protective role of SIRT1 in mdx mice, we propose SIRT1 as a novel therapeutic target for patients with muscular dystrophies.
Collapse
|
39
|
Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96:253-305. [PMID: 26676145 DOI: 10.1152/physrev.00007.2015] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease.
Collapse
Affiliation(s)
- David G Allen
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Nicholas P Whitehead
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Stanley C Froehner
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
40
|
Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A, Dulak J. The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J Muscle Res Cell Motil 2016; 36:377-93. [PMID: 26728750 PMCID: PMC4762917 DOI: 10.1007/s10974-015-9438-9] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) are generated in skeletal muscle both during the rest and contractile activity. Myogenic cells are equipped with antioxidant enzymes, like superoxide dismutase, catalase, glutathione peroxidase, γ-glutamylcysteine synthetase and heme oxygenase-1. These enzymes not only neutralise excessive ROS, but also affect myogenic regeneration at several stages: influence post-injury inflammatory reaction, enhance viability and proliferation of muscle satellite cells and myoblasts and affect their differentiation. Finally, antioxidant enzymes regulate also processes accompanying muscle regeneration-induce angiogenesis and reduce fibrosis. Elevated ROS production was also observed in Duchenne muscular dystrophy (DMD), a disease characterised by degeneration of muscle tissue and therefore-increased rate of myogenic regeneration. Antioxidant enzymes are consequently considered as target for therapies counteracting dystrophic symptoms. In this review we present current knowledge regarding the role of oxidative stress and systems of enzymatic antioxidant defence in muscular regeneration after both acute injury and persistent muscular degeneration.
Collapse
Affiliation(s)
- Magdalena Kozakowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Katarzyna Pietraszek-Gremplewicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland. .,Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
41
|
Hyzewicz J, Tanihata J, Kuraoka M, Ito N, Miyagoe-Suzuki Y, Takeda S. Low intensity training of mdx mice reduces carbonylation and increases expression levels of proteins involved in energy metabolism and muscle contraction. Free Radic Biol Med 2015; 82:122-36. [PMID: 25660994 DOI: 10.1016/j.freeradbiomed.2015.01.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 01/01/2023]
Abstract
High intensity training induces muscle damage in dystrophin-deficient mdx mice, an animal model for Duchenne muscular dystrophy. However, low intensity training (LIT) rescues the mdx phenotype and even reduces the level of protein carbonylation, a marker of oxidative damage. Until now, beneficial effects of LIT were mainly assessed at the physiological level. We investigated the effects of LIT at the molecular level on 8-week-old wild-type and mdx muscle using 2D Western blot and protein-protein interaction analysis. We found that the fast isoforms of troponin T and myosin binding protein C as well as glycogen phosphorylase were overcarbonylated and downregulated in mdx muscle. Some of the mitochondrial enzymes of the citric acid cycle were overcarbonylated, whereas some proteins of the respiratory chain were downregulated. Of functional importance, ATP synthase was only partially assembled, as revealed by Blue Native PAGE analysis. LIT decreased the carbonylation level and increased the expression of fast isoforms of troponin T and of myosin binding protein C, and glycogen phosphorylase. In addition, it increased the expression of aconitate hydratase and NADH dehydrogenase, and fully restored the ATP synthase complex. Our study demonstrates that the benefits of LIT are associated with lowered oxidative damage as revealed by carbonylation and higher expression of proteins involved in energy metabolism and muscle contraction. Potentially, these results will help to design therapies for DMD based on exercise mimicking drugs.
Collapse
Affiliation(s)
- Janek Hyzewicz
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Mutsuki Kuraoka
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Naoki Ito
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Yuko Miyagoe-Suzuki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
42
|
Comim CM, Mathia GB, Hoepers A, Tuon L, Kapczinski F, Dal-Pizzol F, Quevedo J, Rosa MI. Neurotrophins, cytokines, oxidative parameters and funcionality in Progressive Muscular Dystrophies. AN ACAD BRAS CIENC 2015; 87:1809-18. [PMID: 25910175 DOI: 10.1590/0001-3765201520140508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We investigated the levels of brain derived-neurotrophic factor (BDNF), cytokines and oxidative parameters in serum and tried to correlate them with the age and functionality of patients with Progressive Muscle Dystrophies (PMD). The patients were separated into six groups (case and controls pared by age and gender), as follows: Duchenne Muscular Dystrophy (DMD); Steinert Myotonic Dystrophy (SMD); and Limb-girdle Muscular Dystrophy type-2A (LGMD2A). DMD patients (± 17.9 years old) had a decrease of functionality, an increase in the IL-1β and TNF-α levels and a decrease of IL-10 levels and superoxide dismutase activity in serum. SMD patients (± 25.8 years old) had a decrease of BDNF and IL-10 levels and superoxide dismutase activity and an increase of IL-1β levels in serum. LGMD2A patients (± 27.7 years old) had an decrease only in serum levels of IL-10. This research showed the first evidence of BDNF involvement in the SMD patients and a possible unbalance between pro-inflammatory and anti-inflammatory cytokine levels, along with decreased superoxide dismutase activity in serum of DMD and SMD patients.
Collapse
Affiliation(s)
| | | | | | - Lisiane Tuon
- Universidade do Extremo Sul Catarinense, Criciúma, SC, BR
| | - Flávio Kapczinski
- Centro de Pesquisas, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, BR
| | | | - João Quevedo
- Universidade do Extremo Sul Catarinense, Criciúma, SC, BR
| | - Maria I Rosa
- Universidade do Extremo Sul Catarinense, Criciúma, SC, BR
| |
Collapse
|
43
|
Short-lived recombinant adeno-associated virus transgene expression in dystrophic muscle is associated with oxidative damage to transgene mRNA. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15010. [PMID: 26029721 PMCID: PMC4445007 DOI: 10.1038/mtm.2015.10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/15/2015] [Accepted: 02/17/2015] [Indexed: 12/27/2022]
Abstract
Preclinical gene therapy strategies using recombinant adeno-associated virus (AAV) vectors in animal models of Duchenne muscular dystrophy have shown dramatic phenotype improvements, but long-lasting efficacy remains questionable. It is believed that in dystrophic muscles, transgene persistence is hampered, notably by the progressive loss of therapeutic vector genomes resulting from muscle fibers degeneration. Intracellular metabolic perturbations resulting from dystrophin deficiency could also be additional factors impacting on rAAV genomes and transgene mRNA molecular fate. In this study, we showed that rAAV genome loss is not the only cause of reduced transgene mRNA level and we assessed the contribution of transcriptional and post-transcriptional factors. We ruled out the implication of transgene silencing by epigenetic mechanisms and demonstrated that rAAV inhibition occurred mostly at the post-transcriptional level. Since Duchenne muscular dystrophy (DMD) physiopathology involves an elevated oxidative stress, we hypothesized that in dystrophic muscles, transgene mRNA could be damaged by oxidative stress. In the mouse and dog dystrophic models, we found that rAAV-derived mRNA oxidation was increased. Interestingly, when a high expression level of a therapeutic transgene is achieved, oxidation is less pronounced. These findings provide new insights into rAAV transductions in dystrophic muscles, which ultimately may help in the design of more effective clinical trials.
Collapse
|
44
|
Harish G, Mahadevan A, Pruthi N, Sreenivasamurthy SK, Puttamallesh VN, Keshava Prasad TS, Shankar SK, Srinivas Bharath MM. Characterization of traumatic brain injury in human brains reveals distinct cellular and molecular changes in contusion and pericontusion. J Neurochem 2015; 134:156-72. [PMID: 25712633 DOI: 10.1111/jnc.13082] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/07/2015] [Accepted: 02/19/2015] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury (TBI) contributes to fatalities and neurological disabilities worldwide. While primary injury causes immediate damage, secondary events contribute to long-term neurological defects. Contusions (Ct) are primary injuries correlated with poor clinical prognosis, and can expand leading to delayed neurological deterioration. Pericontusion (PC) (penumbra), the region surrounding Ct, can also expand with edema, increased intracranial pressure, ischemia, and poor clinical outcome. Analysis of Ct and PC can therefore assist in understanding the pathobiology of TBI and its management. This study on human TBI brains noted extensive neuronal, astroglial and inflammatory changes, alterations in mitochondrial, synaptic and oxidative markers, and associated proteomic profile, with distinct differences in Ct and PC. While Ct displayed petechial hemorrhages, thrombosis, inflammation, neuronal pyknosis, and astrogliosis, PC revealed edema, vacuolation of neuropil, axonal loss, and dystrophic changes. Proteomic analysis demonstrated altered immune response, synaptic, and mitochondrial dysfunction, among others, in Ct, while PC displayed altered regulation of neurogenesis and cytoskeletal architecture, among others. TBI brains displayed oxidative damage, glutathione depletion, mitochondrial dysfunction, and loss of synaptic proteins, with these changes being more profound in Ct. We suggest that analysis of markers specific to Ct and PC may be valuable in the evaluation of TBI pathobiology and therapeutics. We have characterized the primary injury in human traumatic brain injury (TBI). Contusions (Ct) - the injury core displayed hemorrhages, inflammation, and astrogliosis, while the surrounding pericontusion (PC) revealed edema, vacuolation, microglial activation, axonal loss, and dystrophy. Proteomic analysis demonstrated altered immune response, synaptic and mitochondrial dysfunction in Ct, and altered regulation of neurogenesis and cytoskeletal architecture in PC. Ct displayed more oxidative damage, mitochondrial, and synaptic dysfunction compared to PC.
Collapse
Affiliation(s)
- Gangadharappa Harish
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Nupur Pruthi
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | | | | | | | - Susarla Krishna Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | | |
Collapse
|
45
|
Improvement of endurance of DMD animal model using natural polyphenols. BIOMED RESEARCH INTERNATIONAL 2015; 2015:680615. [PMID: 25861640 PMCID: PMC4377377 DOI: 10.1155/2015/680615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/13/2014] [Accepted: 08/27/2014] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD), the most common form of muscular dystrophy, is characterized by muscular wasting caused by dystrophin deficiency that ultimately ends in force reduction and premature death. In addition to primary genetic defect, several mechanisms contribute to DMD pathogenesis. Recently, antioxidant supplementation was shown to be effective in the treatment of multiple diseases including muscular dystrophy. Different mechanisms were hypothesized such as reduced hydroxyl radicals, nuclear factor-κB deactivation, and NO protection from inactivation. Following these promising evidences, we investigated the effect of the administration of a mix of dietary natural polyphenols (ProAbe) on dystrophic mdx mice in terms of muscular architecture and functionality. We observed a reduction of muscle fibrosis deposition and myofiber necrosis together with an amelioration of vascularization. More importantly, the recovery of the morphological features of dystrophic muscle leads to an improvement of the endurance of treated dystrophic mice. Our data confirmed that ProAbe-based diet may represent a strategy to coadjuvate the treatment of DMD.
Collapse
|
46
|
Rajakumar D, Senguttuvan S, Alexander M, Oommen A. Involvement of oxidative stress, Nuclear Factor kappa B and the Ubiquitin proteasomal pathway in dysferlinopathy. Life Sci 2014; 108:54-61. [DOI: 10.1016/j.lfs.2014.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/17/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
|
47
|
Naturally occurring plant polyphenols as potential therapies for inherited neuromuscular diseases. Future Med Chem 2014; 5:2091-101. [PMID: 24215348 DOI: 10.4155/fmc.13.165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There are several lines of laboratory-based evidence emerging to suggest that purified polyphenol compounds such as resveratrol, found naturally in red grapes, epigallocatechin galate from green tea and curcumin from turmeric, might be useful for the treatment of various inherited neuromuscular diseases, including spinal muscular atrophy, Duchenne muscular dystrophy and Charcot-Marie-Tooth disease. Here, we critically examine the scientific evidence related to the known molecular effects that these polyphenols have on different models of inherited neuromuscular disease, with particular attention to problems with the validity of in vitro evidence. We also present proteomic evidence that polyphenols have in vitro effects on cells related to metal ion chelation in cell-culture media. Although their precise mechanisms of action remain somewhat elusive, polyphenols could be an attractive approach to therapy for inherited neuromuscular disease, especially since they may be safer to use on young children, compared with some of the other drug candidates.
Collapse
|
48
|
Pagano G, Aiello Talamanca A, Castello G, Cordero MD, d'Ischia M, Gadaleta MN, Pallardó FV, Petrović S, Tiano L, Zatterale A. Oxidative stress and mitochondrial dysfunction across broad-ranging pathologies: toward mitochondria-targeted clinical strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:541230. [PMID: 24876913 PMCID: PMC4024404 DOI: 10.1155/2014/541230] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/24/2014] [Indexed: 02/07/2023]
Abstract
Beyond the disorders recognized as mitochondrial diseases, abnormalities in function and/or ultrastructure of mitochondria have been reported in several unrelated pathologies. These encompass ageing, malformations, and a number of genetic or acquired diseases, as diabetes and cardiologic, haematologic, organ-specific (e.g., eye or liver), neurologic and psychiatric, autoimmune, and dermatologic disorders. The mechanistic grounds for mitochondrial dysfunction (MDF) along with the occurrence of oxidative stress (OS) have been investigated within the pathogenesis of individual disorders or in groups of interrelated disorders. We attempt to review broad-ranging pathologies that involve mitochondrial-specific deficiencies or rely on cytosol-derived prooxidant states or on autoimmune-induced mitochondrial damage. The established knowledge in these subjects warrants studies aimed at elucidating several open questions that are highlighted in the present review. The relevance of OS and MDF in different pathologies may establish the grounds for chemoprevention trials aimed at compensating OS/MDF by means of antioxidants and mitochondrial nutrients.
Collapse
Affiliation(s)
- Giovanni Pagano
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Annarita Aiello Talamanca
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Giuseppe Castello
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Mario D. Cordero
- Research Laboratory, Dental School, Sevilla University, 41009 Sevilla, Spain
| | - Marco d'Ischia
- Department of Chemical Sciences, Federico II University, 80126 Naples, Italy
| | - Maria Nicola Gadaleta
- National Research Council, Institute of Biomembranes and Bioenergetics, 70126 Bari, Italy
| | | | - Sandra Petrović
- “Vinca” Institute of Nuclear Sciences, University of Belgrade, 11070 Belgrade, Serbia
| | - Luca Tiano
- Department of Clinical and Dental Sciences, Polytechnical University of Marche, 60100 Ancona, Italy
| | | |
Collapse
|
49
|
Oxidative stress in muscular dystrophy: from generic evidence to specific sources and targets. J Muscle Res Cell Motil 2014; 35:23-36. [PMID: 24619215 DOI: 10.1007/s10974-014-9380-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/19/2014] [Indexed: 01/06/2023]
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of diseases that share a common end-point represented by muscular wasting. MDs are caused by mutations in a variety of genes encoding for different molecules, including extracellular matrix, transmembrane and membrane-associated proteins, cytoplasmic enzymes and nuclear proteins. However, it is still to be elucidated how genetic mutations can affect the molecular mechanisms underlying the contractile impairment occurring in these complex pathologies. The intracellular accumulation of reactive oxygen species (ROS) is widely accepted to play a key role in contractile derangements occurring in the different forms of MDs. However, scarce information is available concerning both the most relevant sources of ROS and their major molecular targets. This review focuses on (i) the sources of ROS, with a special emphasis on monoamine oxidase, a mitochondrial enzyme, and (ii) the targets of ROS, highlighting the relevance of the oxidative modification of myofilament proteins.
Collapse
|
50
|
Kombairaju P, Kerr JP, Roche JA, Pratt SJP, Lovering RM, Sussan TE, Kim JH, Shi G, Biswal S, Ward CW. Genetic silencing of Nrf2 enhances X-ROS in dysferlin-deficient muscle. Front Physiol 2014; 5:57. [PMID: 24600403 PMCID: PMC3928547 DOI: 10.3389/fphys.2014.00057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/29/2014] [Indexed: 11/13/2022] Open
Abstract
Oxidative stress is a critical disease modifier in the muscular dystrophies. Recently, we discovered a pathway by which mechanical stretch activates NADPH Oxidase 2 (Nox2) dependent ROS generation (X-ROS). Our work in dystrophic skeletal muscle revealed that X-ROS is excessive in dystrophin-deficient (mdx) skeletal muscle and contributes to muscle injury susceptibility, a hallmark of the dystrophic process. We also observed widespread alterations in the expression of genes associated with the X-ROS pathway and redox homeostasis in muscles from both Duchenne muscular dystrophy patients and mdx mice. As nuclear factor erythroid 2-related factor 2 (Nrf2) plays an essential role in the transcriptional regulation of genes involved in redox homeostasis, we hypothesized that Nrf2 deficiency may contribute to enhanced X-ROS signaling by reducing redox buffering. To directly test the effect of diminished Nrf2 activity, Nrf2 was genetically silenced in the A/J model of dysferlinopathy—a model with a mild histopathologic and functional phenotype. Nrf2-deficient A/J mice exhibited significant muscle-specific functional deficits, histopathologic abnormalities, and dramatically enhanced X-ROS compared to control A/J and WT mice, both with functional Nrf2. Having identified that reduced Nrf2 activity is a negative disease modifier, we propose that strategies targeting Nrf2 activation may address the generalized reduction in redox homeostasis to halt or slow dystrophic progression.
Collapse
Affiliation(s)
- Ponvijay Kombairaju
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University Baltimore, MD, USA
| | - Jaclyn P Kerr
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Joseph A Roche
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Stephen J P Pratt
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| | - Thomas E Sussan
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University Baltimore, MD, USA
| | - Jung-Hyun Kim
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University Baltimore, MD, USA
| | - Guoli Shi
- Department of Organizational Systems and Adult Health, University of Maryland School of Nursing Baltimore, MD, USA
| | - Shyam Biswal
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University Baltimore, MD, USA
| | - Christopher W Ward
- Department of Organizational Systems and Adult Health, University of Maryland School of Nursing Baltimore, MD, USA
| |
Collapse
|