1
|
Faysal M, Al Amin M, Zehravi M, Sweilam SH, Arjun UVNV, Gupta JK, Shanmugarajan TS, Prakash SS, Dayalan G, Kasimedu S, Madhuri YB, Reddy KTK, Rab SO, Al Fahaid AAF, Emran TB. Therapeutic potential of flavonoids in neuroprotection: brain and spinal cord injury focus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03888-4. [PMID: 40014123 DOI: 10.1007/s00210-025-03888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Flavonoids in fruits, vegetables, and plant-based drinks have potential neuroprotective properties, with clinical research focusing on their role in reducing oxidative stress, controlling inflammation, and preventing apoptosis. Some flavonoids, such as quercetin, kaempferol, fisetin, apigenin, luteolin, chrysin, baicalein, catechin, epigallocatechin gallate, naringenin, naringin, hesperetin, genistein, rutin, silymarin, and daidzein, have been presented to help heal damage to the central nervous system by affecting key signaling pathways including PI3K/Akt and NF-κB. This review systematically analyzed articles on flavonoids, neuroprotection, and brain and spinal cord injury from primary medical databases like Scopus, PubMed, and Web of Science. Flavonoids enhance antioxidant defenses, reduce pro-inflammatory cytokine production, and aid cell survival and repair by focusing on specific molecular pathways. Clinical trials are also exploring the application of preclinical results to therapeutic approaches for patients with spinal cord injury and traumatic brain injury. Flavonoids can enhance injury healing, reduce lesion size, and enhance synaptic plasticity and neurogenesis. The full potential of flavonoids lies in their bioavailability, dose, and administration methods, but there are still challenges to overcome. This review explores flavonoid-induced neuroprotection, its clinical implications, future research opportunities, and molecular mechanisms, highlighting the potential for innovative CNS injury therapies and improved patient health outcomes.
Collapse
Affiliation(s)
- Md Faysal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Md Al Amin
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Sarandeep Shanmugam Prakash
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Girija Dayalan
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Saravanakumar Kasimedu
- Department of Pharmaceutics, Seven Hills College of Pharmacy (Autonomous), Venkatramapuram, Tirupati, Andhra Pradesh, 517561, India
| | - Y Bala Madhuri
- Piramal Pharma Solutions in Sellersville, Sellersville, PA, USA
| | - Konatham Teja Kumar Reddy
- Department of Pharmacy, University College of Technology, Osmania University, Hyderabad, 500007, Telangana, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| |
Collapse
|
2
|
Utpal BK, Sutradhar B, Zehravi M, Sweilam SH, Durgawale TP, Arjun UVNV, Shanmugarajan TS, Kannan SP, Prasad PD, Usman MRM, Reddy KTK, Sultana R, Alshehri MA, Rab SO, Suliman M, Emran TB. Cellular stress response and neuroprotection of flavonoids in neurodegenerative diseases: Clinical insights into targeted therapy and molecular signaling pathways. Brain Res 2025; 1847:149310. [PMID: 39537124 DOI: 10.1016/j.brainres.2024.149310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative diseases (NDs) are caused by the gradual decline of neuronal structure and function, which presents significant challenges in treatment. Cellular stress responses significantly impact the pathophysiology of these disorders, often exacerbating neuronal damage. Plant-derived flavonoids have demonstrated potential as neuroprotective agents due to their potent anti-inflammatory, anti-apoptotic, and antioxidant properties. This review provides an in-depth analysis of the molecular processes and clinical insights that cause the neuroprotective properties of flavonoids in NDs. By controlling essential signaling pathways such as Nrf2/ARE, MAPK, and PI3K/Akt, flavonoids can lower cellular stress and improve neuronal survival. The study discusses the challenges of implementing these discoveries in clinical practice and emphasizes the therapeutic potential of specific flavonoids and their derivatives. Flavonoids are identified as potential therapeutic agents for NDs, potentially slowing progression by regulating cellular stress and improving neuroprotection despite their potential medicinal uses and clinical challenges. The study designed a strategy to identify literature published in prestigious journals, utilizing search results from PubMed, Scopus, and WOS. We selected and investigated original studies, review articles, and research reports published until 2024. It suggests future research and therapeutic approaches to effectively utilize the neuroprotective properties of flavonoids.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Baishakhi Sutradhar
- Department of Microbiology, Gono University (Bishwabidyalay), Nolam, Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Trupti Pratik Durgawale
- Department of Pharmaceutical Chemistry, KVV's Krishna Institute of Pharmacy, Karad, Maharashtra, India
| | - Uppuluri Varuna Naga Venkata Arjun
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - Thukani Sathanantham Shanmugarajan
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - Shruthi Paramasivam Kannan
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai 600117, Tamil Nadu, India
| | - P Dharani Prasad
- Department of Pharmacology, Mohan Babu University, MB School of Pharmaceutical Sciences, (Erstwhile, Sree Vidyaniketan College of Pharmacy), Tirupati, Andhra Pradesh 517102, India
| | - Md Rageeb Md Usman
- Department of Pharmacognosy, Smt. Sharadchandrika Suresh Patil College of Pharmacy, Chopda, Maharashtra, India
| | - Konatham Teja Kumar Reddy
- Department of Pharmacy, University College of Technology, Osmania University, Amberpet, Hyderabad, Telangana 500007, India
| | - Rokeya Sultana
- Department of Pharmacognosy, Yenepoya Pharmacy College and Research Centre, Yenepoya (deemed to be University), Mangalore, Karnataka, India
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1207, Bangladesh; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
3
|
Islam MR, Jony MH, Thufa GK, Akash S, Dhar PS, Rahman MM, Afroz T, Ahmed M, Hemeg HA, Rauf A, Thiruvengadam M, Venkidasamy B. A clinical study and future prospects for bioactive compounds and semi-synthetic molecules in the therapies for Huntington's disease. Mol Neurobiol 2024; 61:1237-1270. [PMID: 37698833 DOI: 10.1007/s12035-023-03604-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023]
Abstract
A neurodegenerative disorder (ND) refers to Huntington's disease (HD) which affects memory loss, weight loss, and movement dysfunctions such as chorea and dystonia. In the striatum and brain, HD most typically impacts medium-spiny neurons. Molecular genetics, excitotoxicity, oxidative stress (OS), mitochondrial, and metabolic dysfunction are a few of the theories advanced to explicit the pathophysiology of neuronal damage and cell death. Numerous in-depth studies of the literature have supported the therapeutic advantages of natural products in HD experimental models and other treatment approaches. This article briefly discusses the neuroprotective impacts of natural compounds against HD models. The ability of the discovered natural compounds to suppress HD was tested using either in vitro or in vivo models. Many bioactive compounds considerably lessened the memory loss and motor coordination brought on by 3-nitropropionic acid (3-NP). Reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and enhanced mitochondrial energy generation have profoundly decreased the biochemical change. It is significant since histology showed that therapy with particular natural compounds lessened damage to the striatum caused by 3-NP. Moreover, natural products displayed varying degrees of neuroprotection in preclinical HD studies because of their antioxidant and anti-inflammatory properties, maintenance of mitochondrial function, activation of autophagy, and inhibition of apoptosis. This study highlighted about the importance of bioactive compounds and their semi-synthetic molecules in the treatment and prevention of HD.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Maruf Hossain Jony
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Puja Sutra Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Tahmina Afroz
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Khyber Pukhtanukha, Pakistan.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, South Korea.
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
4
|
Li B, Mei XF. Naringin may promote functional recovery following spinal cord injury by modulating microglial polarization through the PPAR-γ/NF-κB signaling pathway. Brain Res 2023; 1821:148563. [PMID: 37661010 DOI: 10.1016/j.brainres.2023.148563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVE The flavonoid Naringin (Nar) has been extensively investigated and found to have multiple pharmacological properties, including neuroprotection. Although recent reports have shown that Nar can effectively treat spinal cord injury (SCI), its potential mechanism remains unknown. This study aimed to investigate the effects of Nar on motor recovery and inflammatory responses after SCI and to elucidate its mechanism. METHODS SCI rat models were established using Allen's weight-drop method. The rats were intragastrically given Nar (40 mg/kg) for 21 d, and their motor function before surgery and on the 1st, 3rd, 7th, 14th, 21st days after surgery was assessed by the Basso-Beattie-Bresnahan (BBB) scale and examined by the grid walking test (GWT). The enzyme linked immunosorbent assay (ELISA) was used to detect the interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1 levels in rat spinal cord tissues, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) to measure the mRNA expression levels of microglial activation markers CD68 and ionized calcium binding adaptor molecule 1 (Iba-1), M1 markers inducible nitric oxide synthase (iNOS) and IL-6, and M2 markers CD206 and Arginase 1 (Arg1). The expression levels of peroxisome proliferator-activated receptor gamma/nuclear factor kappa B (PPAR-γ/NF-κB) pathway-related proteins in rat spinal cord tissues were determined using western blotting. RESULTS Nar significantly increased the BBB score and decreased the mean error rate of GWT in SCI rats. Additionally, Nar effectively inhibited microglial activation and expression of M1 markers in spinal cord tissues. It also elevated M2 polarization-related gene expression and significantly lowered the levels of inflammatory factors. Further investigation showed that Nar enhanced the expression of PPAR-γ protein and inhibited NF-κB pathway activity. CONCLUSION Nar promotes functional recovery by regulating microglial polarization and inhibiting the inflammatory response in SCI, and its mechanism may be related to the PPAR-γ/NF-κB signaling pathway activity.
Collapse
Affiliation(s)
- Bo Li
- Suzhou Medical College of Soochow University. Suzhou, Jiangsu 215000, China; Department of Surgery, The Third Affiliated Hospital of Jin Zhou Medical University, Jinzhou, Liaoning 121000, China
| | - Xi-Fan Mei
- Department of Surgery, The Third Affiliated Hospital of Jin Zhou Medical University, Jinzhou, Liaoning 121000, China.
| |
Collapse
|
5
|
Adetunji JA, Fasae KD, Awe AI, Paimo OK, Adegoke AM, Akintunde JK, Sekhoacha MP. The protective roles of citrus flavonoids, naringenin, and naringin on endothelial cell dysfunction in diseases. Heliyon 2023; 9:e17166. [PMID: 37484296 PMCID: PMC10361329 DOI: 10.1016/j.heliyon.2023.e17166] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
The endothelial cells (ECs) make up the inner lining of blood vessels, acting as a barrier separating the blood and the tissues in several organs. ECs maintain endothelium integrity by controlling the constriction and relaxation of the vasculature, blood fluidity, adhesion, and migration. These actions of ECs are efficiently coordinated via an intricate signaling network connecting receptors, and a wide range of cellular macromolecules. ECs are naturally quiescent i.e.; they are not stimulated and do not proliferate. Upon infection or disease, ECs become activated, and this alteration is pivotal in the pathogenesis of a spectrum of human neurological, cardiovascular, diabetic, cancerous, and viral diseases. Considering the central position that ECs play in disease pathogenesis, therapeutic options have been targeted at improving ECs integrity, assembly, functioning, and health. The dietary intake of flavonoids present in citrus fruits has been associated with a reduced risk of endothelium dysfunction. Naringenin (NGN) and Naringin (NAR), major flavonoids in grapefruit, tomatoes, and oranges possess anti-inflammatory, antioxidant properties, and cell survival potentials, which improve the health of the vascular endothelium. In this review, we provide a comprehensive summary and present the advances in understanding of the mechanisms through which NGN and NAR modulate the biomarkers of vascular dysfunction and protect the endothelium against unresolved inflammation, oxidative stress, atherosclerosis, and angiogenesis. We also provide perspectives and suggest further studies that will help assess the efficacy of citrus flavonoids in the therapeutics of human vascular diseases.
Collapse
Affiliation(s)
- Joy A. Adetunji
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| | - Kehinde D. Fasae
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA
| | - Ayobami I. Awe
- Department of Biology, The Catholic University of America, Washington DC, USA
| | - Oluwatomiwa K. Paimo
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Ayodeji M. Adegoke
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, 200005, Nigeria
| | - Jacob K. Akintunde
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Mamello P. Sekhoacha
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
6
|
Sousa CS, Lima R, Cibrão JR, Gomes ED, Fernandes LS, Pinho TS, Silva D, Campos J, Salgado AJ, Silva NA. Pre-Clinical Assessment of Roflumilast Therapy in a Thoracic Model of Spinal Cord Injury. Pharmaceutics 2023; 15:1556. [PMID: 37242797 PMCID: PMC10222626 DOI: 10.3390/pharmaceutics15051556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The failure of axons to regenerate after a spinal cord injury (SCI) remains one of the greatest challenges in neuroscience. The initial mechanical trauma is followed by a secondary injury cascade, creating a hostile microenvironment, which not only is not permissive to regeneration but also leads to further damage. One of the most promising approaches for promoting axonal regeneration is to maintain the levels of cyclic adenosine monophosphate (cAMP), specifically by a phosphodiesterase-4 (PDE4) inhibitor expressed in neural tissues. Therefore, in our study, we evaluated the therapeutic effect of an FDA-approved PDE4 inhibitor, Roflumilast (Rof), in a thoracic contusion rat model. Results indicate that the treatment was effective in promoting functional recovery. Rof-treated animals showed improvements in both gross and fine motor function. Eight weeks post-injury, the animals significantly recovered by achieving occasional weight-supported plantar steps. Histological assessment revealed a significant decrease in cavity size, less reactive microglia, as well as higher axonal regeneration in treated animals. Molecular analysis revealed that IL-10 and IL-13 levels, as well as VEGF, were increased in the serum of Rof-treated animals. Overall, Roflumilast promotes functional recovery and supports neuroregeneration in a severe thoracic contusion injury model and may be important in SCI treatment.
Collapse
Affiliation(s)
- Carla S Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
- Department of Neurosurgery, Hospital Garcia de Orta, 2805-267 Almada, Portugal
| | - Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Jorge R Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Luís S Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Tiffany S Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Deolinda Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, 4805-017 Guimarães, Portugal
| |
Collapse
|
7
|
Abd-Elmawla MA, Essam RM, Ahmed KA, Abdelmonem M. Implication of Wnt/GSK-3β/β-Catenin Signaling in the Pathogenesis of Mood Disturbances Associated with Hyperthyroidism in Rats: Potential Therapeutic Effect of Naringin. ACS Chem Neurosci 2023. [PMID: 37196197 DOI: 10.1021/acschemneuro.3c00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
Patients with hyperthyroidism are commonly diagnosed with mood disorders. Naringin, (4',5,7-trihydrocyflavanone-7-O-rhamnoglucoside), a natural bioflavonoid, has many neurobehavioral activities including anxiolytic and antidepressant properties. The role of Wingless (Wnt) signaling in psychiatric disorders is considered substantial but debatable. Recently, regulation of Wnt signaling by naringin has been reported in different disorders. Therefore, the present study aimed to investigate the possible role of Wnt/GSK-3β/β-catenin signaling in hyperthyroidism-induced mood disturbances and explore the therapeutic effects of naringin. Hyperthyroidism was induced in rats by intraperitoneal injection of 0.3 mg/kg levothyroxine for 2 weeks. Naringin was orally administered to rats with hyperthyroidism at a dose of 50 or 100 mg/kg for 2 weeks. Hyperthyroidism induced mood alterations as revealed by behavioral tests and histopathological changes including marked necrosis and vacuolation of neurons in the hippocampus and cerebellum. Intriguingly, hyperthyroidism activated Wnt/p-GSK-3β/β-catenin/DICER1/miR-124 signaling pathway in the hippocampus along with an elevation in serotonin, dopamine, and noradrenaline contents and a reduction in brain-derived neurotrophic factor (BDNF) content. Additionally, hyperthyroidism induced upregulation of cyclin D-1 expression, malondialdehyde (MDA) elevation, and glutathione (GSH) reduction. Naringin treatment alleviated behavioral and histopathological alterations and reversed hyperthyroidism-induced biochemical changes. In conclusion, this study revealed, for the first time, that hyperthyroidism could affect mental status by stimulating Wnt/p-GSK-3β/β-catenin signaling in the hippocampus. The observed beneficial effects of naringin could be attributed to increasing hippocampal BDNF, controlling the expression of Wnt/p-GSK-3β/β-catenin signaling as well as its antioxidant properties.
Collapse
Affiliation(s)
- Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
- Department of Biology, School of Pharmacy, Newgiza University, First 6th of October, Giza 3296121, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12211 Cairo, Egypt
| | - Maha Abdelmonem
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| |
Collapse
|
8
|
Wang H, Yang Y, Pei G, Wang Z, Chen N. Neurotrophic basis to the pathogenesis of depression and phytotherapy. Front Pharmacol 2023; 14:1182666. [PMID: 37089920 PMCID: PMC10115971 DOI: 10.3389/fphar.2023.1182666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Depression is a major neuropsychiatric disease that considerably impacts individuals’ psychosocial function and life quality. Neurotrophic factors are now connected to the pathogenesis of depression, while the definitive neurotrophic basis remains elusive. Besides, phytotherapy is alternative to conventional antidepressants that may minimize undesirable adverse reactions. Thus, further research into the interaction between neurotrophic factors and depression and phytochemicals that repair neurotrophic factors deficit is highly required. This review highlighted the implication of neurotrophic factors in depression, with a focus on the brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF), and nerve growth factor (NGF), and detailed the antidepressant activities of various phytochemicals targeting neurotrophic factors. Additionally, we presented future opportunities for novel diagnostic and therapeutic strategies for depression and provided solutions to challenges in this area to accelerate the clinical translation of neurotrophic factors for the treatment of depression.
Collapse
Affiliation(s)
- Huiqin Wang
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, Hunan, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yantao Yang
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, Hunan, China
| | - Gang Pei
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, Hunan, China
| | - Zhenzhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Naihong Chen
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, Hunan, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Naihong Chen,
| |
Collapse
|
9
|
Naringin Prevents Cognitive Dysfunction in Aging Rats by Inhibiting Toll-Like Receptor 4 (TLR4)/NF- κB Pathway and Endoplasmic Reticulum Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:2919811. [PMID: 36865741 PMCID: PMC9974290 DOI: 10.1155/2023/2919811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 09/23/2022] [Indexed: 02/25/2023]
Abstract
Objective Naringin is a flavonoid derived from Chinese herbs. According to earlier studies, naringin may have the potential to alleviate aging-induced cognitive dysfunction. Therefore, this study attempted to explore the protective effect and underlying mechanism of naringin on aging rats with cognitive dysfunction. Methods After the construction of a model of aging rats with cognitive dysfunction through subcutaneous injection of D-galactose (D-gal; 150 mg/kg), intragastric administration of naringin (100 mg/kg) was performed for treatment. Behavioral tests, including Morris water maze test (MWM), novel object recognition test (NORT), and fear conditioning test, were used to measure the cognitive function; ELISA and biochemical tests were used to determine the levels of interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) in the hippocampus of rats in each group, respectively; H&E staining was used to observe the pathological changes in the hippocampus; Western blot was used to examine the expression of toll-like receptor 4 (TLR4)/NF-κB pathway-related proteins and endoplasmic reticulum (ER) stress-related proteins in the hippocampus. Results The model was successfully constructed by subcutaneous injection of D-gal (150 mg/kg). The behavioral test results showed that naringin could ameliorate the cognitive dysfunction and alleviate the histopathological damage of hippocampus. Moreover, naringin significantly improve the inflammatory response (the levels of IL-1β, IL-6, and MCP-1 were decreased), oxidative stress response (MDA level was increased while GSH-Px activity was decreased), and ER stress (the expression of glucose-regulated protein 78 (GRP78), C/-EBP homologous protein (CHOP), and transcription factor 6 (ATF6) expression was downregulated), and increased the levels of neurotrophic factors BDNF and NGF in D-gal rats. Besides, further mechanistic studies revealed the downregulation of naringin on TLR4/NF-κB pathway activity. Conclusion Naringin may inhibit inflammatory response, oxidative stress, and ER stress by downregulating TLR4/NF-κB pathway activity, thereby improving cognitive dysfunction and alleviating histopathological damage of hippocampus in aging rats. Briefly, naringin is an effective drug for the treatment of cognitive dysfunction.
Collapse
|
10
|
Nakajima K, Okubo S, Oiso S. Increasing Effect of Citrus natsudaidai on Brain-Derived Neurotrophic Factor. J Oleo Sci 2023; 72:245-255. [PMID: 36631105 DOI: 10.5650/jos.ess22324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The increase in brain-derived neurotrophic factor (BDNF) in the brain is beneficial for the treatment of depression, Alzheimer's disease (AD), and Parkinson's disease (PD); BDNF can cross the blood-brain barrier. Therefore, foods that elevate BDNF concentration in peripheral tissues may increase BDNF in the brain and thereby induce preventive and therapeutic effects against depression, AD, and PD. In this study, we aimed to determine whether Citrus natsudaidai extracts can increase BDNF concentration using the human kidney adenocarcinoma cell line ACHN, which has BDNF-producing and -secreting abilities. As test samples, methanol extracts of C. natsudaidai peel and pulp, and their n-hexane, ethyl acetate, n-butanol, and water fractions were prepared. The BDNF concentrations in culture medium of ACHN cells were assayed after 24 h cultivation in the presence of test samples. Compared with that of control (non-treated) cells, the BDNF concentration increased in the culture medium of ACHN cells treated with the methanol extract of C. natsudaidai peel and its hexane, butanol, and water fractions, as well as the butanol and water fractions of the pulp extract. Quantitative reverse transcription-polymerase chain reaction analysis revealed that ACHN cells treated with the butanol fractions of the peel and pulp extracts showed elevated levels of BDNF mRNA compared with those of non-treated cells. C. natsudaidai may increase BDNF concentration by acting on peripheral tissues and could be a medication for the prevention and treatment of depression, AD, and PD.
Collapse
Affiliation(s)
- Kensuke Nakajima
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Shinya Okubo
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Shigeru Oiso
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University.,Graduate School of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
11
|
Islam F, Bepary S, Nafady MH, Islam MR, Emran TB, Sultana S, Huq MA, Mitra S, Chopra H, Sharma R, Sweilam SH, Khandaker MU, Idris AM. Polyphenols Targeting Oxidative Stress in Spinal Cord Injury: Current Status and Future Vision. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8741787. [PMID: 36046682 PMCID: PMC9423984 DOI: 10.1155/2022/8741787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 08/03/2022] [Indexed: 02/07/2023]
Abstract
A spinal cord injury (SCI) occurs when the spinal cord is deteriorated or traumatized, leading to motor and sensory functions lost even totally or partially. An imbalance within the generation of reactive oxygen species and antioxidant defense levels results in oxidative stress (OS) and neuroinflammation. After SCI, OS and occurring pathways of inflammations are significant strenuous drivers of cross-linked dysregulated pathways. It emphasizes the significance of multitarget therapy in combating SCI consequences. Polyphenols, which are secondary metabolites originating from plants, have the promise to be used as alternative therapeutic agents to treat SCI. Secondary metabolites have activity on neuroinflammatory, neuronal OS, and extrinsic axonal dysregulated pathways during the early stages of SCI. Experimental and clinical investigations have noted the possible importance of phenolic compounds as important phytochemicals in moderating upstream dysregulated OS/inflammatory signaling mediators and axonal regeneration's extrinsic pathways after the SCI probable significance of phenolic compounds as important phytochemicals in mediating upstream dysregulated OS/inflammatory signaling mediators. Furthermore, combining polyphenols could be a way to lessen the effects of SCI.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sristy Bepary
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, Egypt
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
12
|
Zheng CY, Chu XY, Gao CY, Hu HY, He X, Chen X, Yang K, Zhang DL. TAT&RGD Peptide-Modified Naringin-Loaded Lipid Nanoparticles Promote the Osteogenic Differentiation of Human Dental Pulp Stem Cells. Int J Nanomedicine 2022; 17:3269-3286. [PMID: 35924260 PMCID: PMC9342892 DOI: 10.2147/ijn.s371715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Naringin is a naturally occurring flavanone that promotes osteogenesis. Owing to the high lipophilicity, poor in vivo bioavailability, and extensive metabolic alteration upon administration, the clinical efficacy of naringin is understudied. Additionally, information on the molecular mechanism by which it promotes osteogenesis is limited. METHODS In this study, we prepared TAT & RGD peptide-modified naringin-loaded nanoparticles (TAT-RGD-NAR-NPs), evaluated their potency on the osteogenic differentiation of human dental pulp stem cells (hDPSCs), and studied its mechanism of action through metabolomic analysis. RESULTS The particle size and zeta potential of TAT-RGD-NAR-NPs were 160.70±2.05 mm and -20.77±0.47mV, respectively. The result of cell uptake assay showed that TAT-RGD-NAR-NPs could effectively enter hDPSCs. TAT-RGD-NAR-NPs had a more significant effect on cell proliferation and osteogenic differentiation promotion. Furthermore, in metabolomic analysis, naringin particles showed a strong influence on the glycerophospholipid metabolism pathway of hDPSCs. Specifically, it upregulated the expression of PLA2G3 and PLA2G1B (two isozymes of phospholipase A2, PLA2), increased the biosynthesis of lysophosphatidic acid (LPA). CONCLUSION These results suggested that TAT-RGD-NPs might be used for transporting naringin to hDPSCs for modulating stem cell osteogenic differentiation. The metabolomic analysis was used for the first time to elucidate the mechanism by which naringin promotes hDPSCs osteogenesis by upregulating PLA2G3 and PLA2G1B.
Collapse
Affiliation(s)
- Chun-Yan Zheng
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
| | - Xiao-Yang Chu
- Department of Stomatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Chun-Yan Gao
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
| | - Hua-Ying Hu
- Birth Defects Prevention and Control Technology Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xin He
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
| | - Xu Chen
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Dong-Liang Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
13
|
Shen CL, Castro L, Fang CY, Castro M, Sherali S, White S, Wang R, Neugebauer V. Bioactive compounds for neuropathic pain: An update on preclinical studies and future perspectives. J Nutr Biochem 2022; 104:108979. [PMID: 35245654 DOI: 10.1016/j.jnutbio.2022.108979] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
Among different types of chronic pain, neuropathic pain (NP), arising from damage to the nervous system, including peripheral fibers and central neurons, is notoriously difficult to treat and affects 7-10% of the general population. Currently available treatment options for NP are limited and opioid analgesics have severe side effects and can result in opioid use disorder. Recent studies have exhibited the role of dietary bioactive compounds in the mitigation of NP. Here, we assessed the effects of commonly consumed bioactive compounds (ginger, curcumin, omega-3 polyunsaturated fatty acids, epigallocatechin gallate, resveratrol, soy isoflavones, lycopene, and naringin) on NP and NP-related neuroinflammation. Cellular studies demonstrated that these bioactive compounds reduce inflammation via suppression of NF-κB and MAPK signaling pathways that regulate apoptosis/cell survival, antioxidant, and anti-inflammatory responses. Animal studies strongly suggest that these regularly consumed bioactive compounds have a pronounced anti-NP effect as shown by decreased mechanical allodynia, mechanical hyperalgesia, thermal hyperalgesia, and cold hyperalgesia. The proposed molecular mechanisms include (1) the enhancement of neuron survival, (2) the reduction of neuronal hyperexcitability by activation of antinociceptive cannabinoid 1 receptors and opioid receptors, (3) the suppression of sodium channel current, and (4) enhancing a potassium outward current in NP-affected animals, triggering a cascade of chemical changes within, and between neurons for pain relief. Human studies administered in this area have been limited. Future randomized controlled trials are warranted to confirm the findings of preclinical efficacies using bioactive compounds in patients with NP.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
| | - Luis Castro
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Chih-Yu Fang
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Maribel Castro
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Samir Sherali
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Steely White
- Department of Microbiology, Texas Tech University, Lubbock, Texas, USA
| | - Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
14
|
Gao C, Wu M, Du Q, Deng J, Shen J. Naringin Mediates Adult Hippocampal Neurogenesis for Antidepression via Activating CREB Signaling. Front Cell Dev Biol 2022; 10:731831. [PMID: 35478969 PMCID: PMC9037031 DOI: 10.3389/fcell.2022.731831] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
The brain-derived neurotrophic factor/tropomyosin receptor kinase B/cAMP response element-binding protein (BDNF/TrkB/CREB) signaling pathway is a critical therapeutic target for inducing adult hippocampal neurogenesis and antidepressant therapy. In this study, we tested the hypothesis that naringin, a natural medicinal compound, could promote adult hippocampal neurogenesis and improve depression-like behaviors via regulating the BDNF/TrkB/CREB signaling pathway. We first investigated the effects of naringin on promoting adult hippocampal neurogenesis in both normal and chronic corticosterone (CORT)-induced depressive mice. Under physiological condition, naringin treatment enhanced the proliferation of neural stem/progenitor cells (NSPCs) and accelerated neuronal differentiation. In CORT-induced depression mouse model, naringin treatment promoted neuronal differentiation and maturation of NSPCs for hippocampal neurogenesis. Forced swim test, tail suspension test, and open field test confirmed the antidepressant and anxiolytic effects of naringin. Co-treatment of temozolomide (TMZ), a neurogenic inhibitor, abolished these antidepressant and anxiolytic effects. Meanwhile, naringin treatment increased phosphorylation of cAMP response element binding protein (CREB) but had no effect on the expression of brain-derived neurotrophic factor and phosphorylation of TrkB in the hippocampus of CORT-induced depressive mice. Co-treatment of CREB inhibitor 666-15, rather than TrkB inhibitor Cyc-B, abolished the neurogenesis-promoting and antidepressant effects of naringin. Taken together, naringin has antidepressant and anxiolytic effects, and the underlying mechanisms could be attributed to enhance hippocampal neurogenesis via activating CREB signaling.
Collapse
Affiliation(s)
- Chong Gao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hon Kong SAR, China
- The Institute of Brain and Cognitive Sciences, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hon Kong SAR, China
| | - Qiaohui Du
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hon Kong SAR, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hon Kong SAR, China
- *Correspondence: Jiangang Shen,
| |
Collapse
|
15
|
Uddin MS, Mamun AA, Rahman MM, Jeandet P, Alexiou A, Behl T, Sarwar MS, Sobarzo-Sánchez E, Ashraf GM, Sayed AA, Albadrani GM, Peluso I, Abdel-Daim MM. Natural Products for Neurodegeneration: Regulating Neurotrophic Signals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8820406. [PMID: 34239696 PMCID: PMC8241508 DOI: 10.1155/2021/8820406] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders (NDs) are heterogeneous groups of ailments typically characterized by progressive damage of the nervous system. Several drugs are used to treat NDs but they have only symptomatic benefits with various side effects. Numerous researches have been performed to prove the advantages of phytochemicals for the treatment of NDs. Furthermore, phytochemicals such as polyphenols might play a pivotal role in rescue from neurodegeneration due to their various effects as anti-inflammatory, antioxidative, and antiamyloidogenic agents by controlling apoptotic factors, neurotrophic factors (NTFs), free radical scavenging system, and mitochondrial stress. On the other hand, neurotrophins (NTs) including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), NT4/5, and NT3 might have a crucial neuroprotective role, and their diminution triggers the development of the NDs. Polyphenols can interfere directly with intracellular signaling molecules to alter brain activity. Several natural products also improve the biosynthesis of endogenous genes encoding antiapoptotic Bcl-2 as well as NTFs such as glial cell and brain-derived NTFs. Various epidemiological studies have demonstrated that the initiation of these genes could play an essential role in the neuroprotective function of dietary compounds. Hence, targeting NTs might represent a promising approach for the management of NDs. In this review, we focus on the natural product-mediated neurotrophic signal-modulating cascades, which are involved in the neuroprotective effects.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Md Motiar Rahman
- Laboratory of Clinical Biochemistry and Nutritional Sciences (LCBNS), Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, USC INRAe 1488, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, P.O. Box 1039, CEDEX 2, 51687 Reims, France
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, 2770 Hebersham, Australia
- AFNP Med Austria, 1010 Wien, Austria
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507 Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00142 Rome, Italy
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
16
|
Feng S, Wang S, Sun S, Su H, Zhang L. Effects of combination treatment with transcranial magnetic stimulation and bone marrow mesenchymal stem cell transplantation or Raf inhibition on spinal cord injury in rats. Mol Med Rep 2021; 23:294. [PMID: 33649786 PMCID: PMC7930933 DOI: 10.3892/mmr.2021.11934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/07/2021] [Indexed: 11/07/2022] Open
Abstract
Spinal cord injury (SCI) remains a global challenge due to limited treatment strategies. Transcranial magnetic stimulation (TMS), bone marrow mesenchymal stem cell (BMSC) transplantation and downregulation of Raf/MEK/ERK signaling effectively improve SCI. The combination of BMSCs and TMS displays synergistic effects on vascular dementia. However, whether TMS displays a synergistic effect when combined with BMSC transplantation or Raf inhibitor (RafI) therapy for the treatment of SCI is not completely understood. The present study aimed to compare the therapeutic effect of monotherapy and combination therapy on SCI. In the present study, 8‑week‑old female Sprague Dawley rats were used to establish a model of SCI using the weight‑drop method followed by treatment with monotherapy (TMS, BMSCs or RafI) or combination therapy (TMS+BMSCs or TMS+RafI). The effect of monotherapy and combination therapy on locomotor function, pathological alterations, neuronal apoptosis and expression of axonal regeneration‑associated factors and Raf/MEK/ERK signaling‑associated proteins in the spinal cord was analyzed by Basso, Beattie and Bresnahan (BBB) scoring, hematoxylin and eosin staining, TUNEL‑neuronal nuclei (NeuN) staining and immunofluorescence or western blotting, respectively. The results demonstrated that compared with untreated SCI model rats, monotherapy significantly enhanced locomotor functional recovery, as evidenced by higher BBB scores, and slightly alleviated histopathological lesions of the spinal cord in SCI model rats. Furthermore, monotherapy markedly suppressed neuronal apoptosis and promoted axonal regeneration, as well as inhibiting astroglial activation in SCI model rats. The aforementioned results were demonstrated by significantly decreased numbers of apoptotic neurons, markedly decreased expression levels of glial fibrillary acidic protein (GFAP), significantly increased numbers of NeuN+ cells, markedly increased expression levels of growth‑associated protein 43 (GAP‑43) and significantly upregulated nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) expression levels in monotherapy groups (excluding the RafI monotherapy group) compared with untreated SCI model rats. In addition, monotherapy markedly suppressed activation of the Raf/MEK/ERK signaling pathway, as evidenced by significantly reduced p‑Raf/Raf, p‑MEK/MEK and p‑ERK/ERK protein expression levels in monotherapy groups (excluding the BMSC monotherapy group) compared with untreated SCI model rats. Notably, combination therapy further alleviated SCI‑induced spinal cord lesions and neuronal apoptosis, increased GAP‑43, NGF and BDNF expression levels, downregulated GFAP expression levels and inhibited activation of the Raf/MEK/ERK signaling pathway in SCI model rats compared with the corresponding monotherapy groups. Therefore, it was hypothesized that compared with monotherapy, combination therapy displayed an improved therapeutic effect on SCI by further suppressing Raf/MEK/ERK signaling. The results of the present study provided an important basis for the clinical application of combination therapy.
Collapse
Affiliation(s)
- Sining Feng
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuai Wang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shi Sun
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Hao Su
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lixin Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
17
|
Zhang K, Ding Z, Duan W, Mo M, Su Z, Bi Y, Kong F. Optimized preparation process for naringenin and evaluation of its antioxidant and α‐glucosidase inhibitory activities. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kai Zhang
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou PR China
| | - Zhendong Ding
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou PR China
| | - Weijie Duan
- Yunnan Provincial Hospital of Chinese Medicine Kunming PR China
| | - Mengmiao Mo
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou PR China
| | - Zhipeng Su
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou PR China
| | - Yongguang Bi
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou PR China
| | - Fansheng Kong
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou PR China
| |
Collapse
|
18
|
Ebrahimi MH, Samadian H, Davani ST, Kolarijani NR, Mogharabian N, Salami MS, Salehi M. Peripheral nerve regeneration in rats by chitosan/alginate hydrogel composited with Berberine and Naringin nanoparticles: in vitro and in vivo study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
19
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
20
|
Samadian H, Vaez A, Ehterami A, Salehi M, Farzamfar S, Sahrapeyma H, Norouzi P. Sciatic nerve regeneration by using collagen type I hydrogel containing naringin. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:107. [PMID: 31512084 DOI: 10.1007/s10856-019-6309-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
In the present study, collagen hydrogel containing naringin was fabricated, characterized and used as the scaffold for peripheral nerve damage treatment. The collagen was dissolved in acetic acid, naringin added to the collagen solution, and cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide powder (EDC; 0.10 mM) to form the hydrogel. The microstructure, swelling behavior, biodegradation, and cyto/hemocompatibility of the fabricated hydrogels were assessed. Finally, the healing efficacy of the prepared collagen hydrogel loaded with naringin on the sciatic nerve crush injury was assessed in the animal model. The characterization results showed that the fabricated hydrogels have a porous structure containing interconnected pores with the average pore size of 90 µm. The degradation results demonstrated that about 70% of the primary weight of the naringin loaded hydrogel had been lost after 4 weeks of storage in PBS. The in vitro study showed that the proliferation of Schwann cells on the collagen/naringin hydrogel was higher than the control group (tissue culture plate) at both 48 and 72 h after cell seeding and even significantly higher than pure collagen 72 h after cell seeding (*p < 0.005, **p < 0.001). The animal study implied that the sciatic functional index reached to -22.13 ± 3.00 at the end of 60th days post-implantation which was statistically significant (p < 0.05) compared with the negative control (injury without the treatment) (-82.60 ± 1.06), and the pure collagen hydrogel (-59.80 ± 3.20) groups. The hot plate latency test, the compound muscle action potential, and wet weight-loss of the gastrocnemius muscle evaluation confirmed the positive effect of the prepared hydrogels on the healing process of the induced nerve injury. In the final, the histopathologic examinations depicted that the collagen/naringin hydrogel group reduced all the histological changes induced from the nerve injury and showed more resemblance to the normal sciatic nerve, with well-arranged fibers and intact myelin sheath. The overall results implied that the prepared collagen/naringin hydrogel can be utilized as a sophisticated alternative to healing peripheral nerve damages.
Collapse
Affiliation(s)
- Hadi Samadian
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arian Ehterami
- Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Saeed Farzamfar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Sahrapeyma
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pirasteh Norouzi
- Department of Physiology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
21
|
R, Shu B, Liu X, Zhou J, Huang H, Wang J, Sun X, Qin C, An Y. Polypyrrole/polylactic acid nanofibrous scaffold cotransplanted with bone marrow stromal cells promotes the functional recovery of spinal cord injury in rats. CNS Neurosci Ther 2019; 25:951-964. [PMID: 31486601 PMCID: PMC6698972 DOI: 10.1111/cns.13135] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
AIMS The objective of this study was to analyze the efficacy of polypyrrole/polylactic acid (PPy/PLA) nanofibrous scaffold cotransplanted with bone marrow stromal cells (BMSCs) in promoting the functional recovery in a rat spinal cord injury (SCI). METHODS Female Sprague-Dawley rats were randomly divided into three groups (n = 18/group): control group, PPy/PLA group, and PPy/PLA/BMSCs group. The SCI was induced in all rats. Consequently, rats in PPy/PLA/BMSCs group were transplanted with 1 × 105 BMSCs after implantation of PPy/PLA, while those in the PPy/PLA group were implanted with PPy/PLA only; no implantation was performed in the control group. Six weeks after surgery, immunofluorescence microscopy, electron microscope, and polymerase chain reaction (PCR) techniques were performed to assess the changes in the injured spinal cord tissues. RESULTS Electrophysiology and locomotor function testing suggested that PPy/PLA nanofibrous scaffold cotransplanted with BMSCs could promote the functional recovery of the spinal cord. Six weeks after the operation, lower amount of scar tissue was found in the PPy/PLA group compared with the control group. Abundant neurofilament (NF) and neuron-specific marker (NeuN) positive staining, and myelin formations were detected in the injured area. In addition, the transplantation of BMSCs not only improved the efficacy of PPy/PLA but also managed to survive well and was differentiated into neural and neuroglial cells. CONCLUSIONS The implantation of PPy/PLA nanofibrous scaffold and BMSCs has a great potential to restore the electrical conduction and to promote functional recovery by inhibiting the scar tissue formation, promoting axon regeneration, and bridging the gap lesion.
Collapse
Affiliation(s)
- Raynald
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine CentrePeking Union Medical College (PUMC)BeijingChina
- Department of Functional NeurosurgeryThe Third Medical Centre, Chinese PLA (People's Liberation Army) General HospitalBeijingChina
| | - Bing Shu
- Department of Neurosurgery, Beijing Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Xue‐Bin Liu
- Department of Functional NeurosurgeryThe Third Medical Centre, Chinese PLA (People's Liberation Army) General HospitalBeijingChina
| | - Jun‐Feng Zhou
- A State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
| | - Hua Huang
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Jing‐Yun Wang
- A State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
| | - Xiao‐Dan Sun
- A State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine CentrePeking Union Medical College (PUMC)BeijingChina
| | - Yi‐Hua An
- Department of Functional NeurosurgeryThe Third Medical Centre, Chinese PLA (People's Liberation Army) General HospitalBeijingChina
- Department of Neurosurgery, Beijing Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
22
|
Therapeutic potential of naringin in neurological disorders. Food Chem Toxicol 2019; 132:110646. [PMID: 31252025 DOI: 10.1016/j.fct.2019.110646] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/26/2019] [Accepted: 06/23/2019] [Indexed: 12/23/2022]
Abstract
Neurological illnesses are multifactorial incurable debilitating disorders that may cause neurodegeneration. These diseases influence approximately 30 million people around the world. Despite several therapies, effective management of such disorders remains a global challenge. Thus, natural products might offer an alternative therapy for the treatment of various neurological disorders. Polyphenols, such as curcumin, resveratrol, myricetin, mangiferin and naringin (NRG) have been shown to possess promising potential in the treatment of neurogenerative illness. In this review, we have targeted the therapeutic potential of naringin as a neuroprotective agent. The overall neuroprotective effects and different possible underlying mechanisms related to NRG are discussed. In light of the strong evidence for the neuropharmacological efficacy of NRG in various experimental paradigms, it is concluded that this molecule should be further considered and studied as a potential candidate for neurotherapeutics, focusing on mechanistic and clinical trials to ascertain its efficacy.
Collapse
|
23
|
Improvement of motor function induced by skeletal muscle contraction in spinal cord-injured rats. Spine J 2019; 19:1094-1105. [PMID: 30583107 DOI: 10.1016/j.spinee.2018.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND The involvement of neurotrophic factors such as brain-derived neurotrophic factor (BDNF) in functional recovery after spinal cord injury (SCI) by treadmill training has been suggested. The precise mechanism is poorly understood. However, muscle-derived bioactive molecules (myokines) are known to be produced by muscle contraction. Although BDNF is a myokine and is considered to be a potential mediator of neuroplasticity following exercise, its contribution to motor function recovery after SCI has not yet been described in detail. PURPOSE To investigate the role of muscle contraction in motor function recovery after SCI, with a focus on BDNF. STUDY DESIGN Male Sprague-Dawley rats (aged 8-9 weeks) were used to establish the SCI model. Percutaneous electrical muscle stimulation (10 mA, 2 Hz, 10 minutes) was applied to both hindlimbs of the rats immediately after SCI. The stimulation was performed once per day for 4 weeks. The sham, SCI only (SCI), and SCI with electrical muscle stimulation (SCI+ES) groups were compared. METHODS Spinal cord injury was induced by dropping a 20 g rod with an apex diameter of 2 mm from a height of 25 mm onto the spine of an anesthetized rat at the T9 level. Motor function was assessed using the Basso-Beattie-Bresnahan Locomotor Scale, inclined plane test, and rotarod test. One week after injury, terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells were counted at the injury epicenter, and the level of BDNF was measured in both the spinal cord and the anterior tibial muscle. Four weeks after injury, the cavity volume of the epicenter and the level of phosphorylated growth-associated protein 43 in the spinal cord were measured. RESULTS Significantly improved Basso-Beattie-Bresnahan scores and inclined plane test results were observed in the SCI+ES group compared with those in the SCI group at 4 weeks post-SCI. We also observed a decrease in the cavity volume and an increase in phosphorylated growth-associated protein 43 levels in the SCI+ES group. Electrical muscle stimulation decreased the numbers of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells in the epicenter and increased the levels of BDNF in the spinal cord and lower limb muscles at 1 week post-SCI. CONCLUSIONS Electrical muscle stimulation improved motor function and increased BDNF levels in both the muscles and the spinal cords of rats subjected to SCI. Muscle contraction-induced BDNF expression might be involved in motor recovery during rehabilitation. CLINICAL RELEVANCE Our study provides experimental evidence for a possible therapeutic role of peripheral electrical muscle stimulation to enhance motor recovery after SCI.
Collapse
|
24
|
The citrus flavonoids hesperidin and naringin alleviate alcohol-induced behavioural alterations and developmental defects in zebrafish larvae. Neurotoxicol Teratol 2019; 73:22-30. [DOI: 10.1016/j.ntt.2019.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 02/05/2023]
|
25
|
Bacova M, Bimbova K, Fedorova J, Lukacova N, Galik J. Epidural oscillating field stimulation as an effective therapeutic approach in combination therapy for spinal cord injury. J Neurosci Methods 2019; 311:102-110. [PMID: 30339879 DOI: 10.1016/j.jneumeth.2018.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) causes partial or total loss of sensory and motor functions. Despite enormous efforts, there is still no effective treatment which might improve patients' neurological status.The application of electric current to the injured spinal cord is known to promote healing and tissue regeneration. The use of this modality in treating the injured spinal cord to improve neurological recovery has been introduced as a potential treatment. NEW METHOD Here we describe the method of epidural implantation of a miniature oscillating field (OF) stimulator designed in our laboratory immediately after Th9 spinal compression in Wistar rats. Three groups of animals were analyzed (intact; SCI only; OFS + SCI; n = 8 each). Histological, immunohistological and behavioral analysis were used to show the favorable effect of epidural OF stimulation on axonal regeneration and modulation of astrogliosis. RESULTS Our study revealed considerable differences in white matter integrity in animals with an implanted OF stimulator. Moreover, we detected significantly increased numbers of neurofilaments and massive reduction in activated forms of astrocytes in the group of stimulated animals compared to the animals without stimulation. COMPARISON WITH EXISTING METHOD(S) Compared with previous research, our study revealed that epidural implantation of an OF stimulator immediately after spinal compression effectively reduced the expression of inflammatory response and suppressed activated astrocyte formation. CONCLUSIONS Our finding confirms that implanting an OF stimulator is safe, stable and suitable for future combined therapy which could effectively promote and accelerate regeneration and functional restoration after spinal trauma.
Collapse
Affiliation(s)
- Maria Bacova
- Institute of Neurobiology of Biomedical Research Center Slovak Academy of Sciences, Soltesovej 4, 040 01 Kosice, Slovakia
| | - Katarina Bimbova
- Institute of Neurobiology of Biomedical Research Center Slovak Academy of Sciences, Soltesovej 4, 040 01 Kosice, Slovakia
| | - Jana Fedorova
- Institute of Neurobiology of Biomedical Research Center Slovak Academy of Sciences, Soltesovej 4, 040 01 Kosice, Slovakia
| | - Nadezda Lukacova
- Institute of Neurobiology of Biomedical Research Center Slovak Academy of Sciences, Soltesovej 4, 040 01 Kosice, Slovakia
| | - Jan Galik
- Institute of Neurobiology of Biomedical Research Center Slovak Academy of Sciences, Soltesovej 4, 040 01 Kosice, Slovakia.
| |
Collapse
|
26
|
Zhao Z, Ma X, Ma J, Sun X, Li F, Lv J. Naringin enhances endothelial progenitor cell (EPC) proliferation and tube formation capacity through the CXCL12/CXCR4/PI3K/Akt signaling pathway. Chem Biol Interact 2018; 286:45-51. [DOI: 10.1016/j.cbi.2018.03.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/12/2018] [Accepted: 03/02/2018] [Indexed: 02/08/2023]
|
27
|
Gite S, Ross RP, Kirke D, Guihéneuf F, Aussant J, Stengel DB, Dinan TG, Cryan JF, Stanton C. Nutraceuticals to promote neuronal plasticity in response to corticosterone-induced stress in human neuroblastoma cells. Nutr Neurosci 2018; 22:551-568. [PMID: 29378496 DOI: 10.1080/1028415x.2017.1418728] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objectives: To search for novel compounds that will protect neuronal cells under stressed conditions that may help to restore neuronal plasticity. Methods: A model of corticosterone (CORT)-induced stress in human neuroblastoma cells (SH-SY5Y) was used to compare the efficacy of 6 crude extracts and 10 pure compounds (6 polyphenols, 2 carotenoids, 1 amino acid analogue, and 1 known antidepressant drug) to increase neuronal plasticity and to decrease cytotoxicity. Results: Astaxanthin (among pure compounds) and phlorotannin extract of Fucus vesiculosus (among crude extracts) showed a maximum increase in cell viability in the presence of excess CORT. BDNF-VI mRNA expression in SH-SY5Y cells was significantly improved by pretreatment with quercetine, astaxanthin, curcumin, fisetin, and resveratrol. Among crude extracts, xanthohumol, phlorotannin extract (Ecklonia cava), petroleum ether extract (Nannochloropsis oculata), and phlorotannin extract (F. vesiculosus) showed a significant increase in BDNF-VI mRNA expression. CREB1 mRNA expression was significantly improved by astaxanthin, β-carotene, curcumin, and fluoxetine whereas none of the crude extracts caused significant improvement. As an adjunct of fluoxetine, phlorotannin extract (F. vesiculosus), β-carotene, and xanthohumol have resulted in significant improvement in BDNF-VI mRNA expression and CREB1 mRNA expression was significantly improved by phlorotannin extract (F. vesiculosus). Significant improvement in mature BDNF protein expression by phlorotannin extract (F. vesiculosus) and β-carotene as an adjunct of fluoxetine confirm their potential to promote neuronal plasticity against CORT-induced stress. Discussion: The carotenoids, flavonoids, namely quercetine, curcumin, and low molecular weight phlorotannin-enriched extract of F. vesiculosus may serve as potential neuroprotective agents promoting neuronal plasticity in vitro. Graphical abstract: Cascade of events associated with disturbed homeostatic balance of glucocorticoids and impact of phlorotannin extract (F. vesiculosus) and β-carotene in restoring neuronal plasticity. Abbreviation: TrKB, tropomyosin receptor kinase B; P-ERK, phosphorylated extracellular signal-related kinase; PI3K, phosphatidylinositol 3-kinase; Akt, protein kinase B; Ca++/CaMK, calcium/calmodulin-dependent protein kinase; pCREB, phosphorylated cAMP response element-binding protein; CRE, cAMP response elements, CORT, corticosterone; and BDNF; brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Snehal Gite
- a Food Biosciences Department , Teagasc Food Research Centre , Moorepark, Fermoy, Co. Cork , Ireland
| | | | - Dara Kirke
- c Botany and Plant Science, School of Natural Sciences, Ryan Institute for Environmental, Marine and Energy Research , National University of Ireland Galway , Ireland.,d Department of Food Bioscience , Teagasc Food Research Centre , Ashtown, Dublin
| | - Freddy Guihéneuf
- c Botany and Plant Science, School of Natural Sciences, Ryan Institute for Environmental, Marine and Energy Research , National University of Ireland Galway , Ireland
| | - Justine Aussant
- c Botany and Plant Science, School of Natural Sciences, Ryan Institute for Environmental, Marine and Energy Research , National University of Ireland Galway , Ireland
| | - Dagmar B Stengel
- c Botany and Plant Science, School of Natural Sciences, Ryan Institute for Environmental, Marine and Energy Research , National University of Ireland Galway , Ireland
| | - Timothy G Dinan
- e Department of Psychiatry , University College Cork , Ireland
| | - John F Cryan
- f Department of Anatomy and Neuroscience , University College Cork , Western Gateway Building, Ireland
| | - Catherine Stanton
- a Food Biosciences Department , Teagasc Food Research Centre , Moorepark, Fermoy, Co. Cork , Ireland
| |
Collapse
|
28
|
Lyu Z, Cao J, Wang J, Lian H. Protective effect of vitexin reduces sevoflurane-induced neuronal apoptosis through HIF-1α, VEGF and p38 MAPK signaling pathway in vitro and in newborn rats. Exp Ther Med 2018; 15:3117-3123. [PMID: 29456715 DOI: 10.3892/etm.2018.5758] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 10/26/2017] [Indexed: 12/17/2022] Open
Abstract
Previous studies have demonstrated that Vitexin possesses antihypertensive, anti-inflammatory and potential anticancer effects. The present study aimed to investigate whether the protective effect of vitexin protects against sevoflurane-induced neuronal apoptosis and the underlying mechanisms of this protective effect. The results demonstrated that Vitexin pretreatment significantly reduced neuronal apoptosis, and inhibited caspase-3 activity, apoptosis regulator BAX protein expression and malondialdehyde levels in sevoflurane-induced newborn rats. In addition, Vitexin pretreatment increased superoxide dismutase and glutathione peroxidase activity. Furthermore, it was revealed that treatment with vitexin induced hypoxia inducible factor 1α subunit (HIF-1α) and vascular endothelial growth factor (VEGF) protein expression, and suppressed phosphorylated-p38 MAP kinase (p38) protein expression in sevoflurane-induced newborn rat. Together, the results of the current study suggest that the protective effect of vitexin reduces sevoflurane-induced neuronal apoptosis through HIF-1α-, VEGF- and p38-associated signaling pathways in newborn rats.
Collapse
Affiliation(s)
- Zhipai Lyu
- Department of Anesthesia, The Third Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou 450052, P.R. China
| | - Jing Cao
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou 450052, P.R. China
| | - Ju Wang
- Department of Anesthesia, The Third Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou 450052, P.R. China
| | - Hongmei Lian
- Department of Anesthesia, The Third Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou 450052, P.R. China
| |
Collapse
|
29
|
Zhang C, Rong W, Zhang GH, Wang AH, Wu CZ, Huo XL. Early electrical field stimulation prevents the loss of spinal cord anterior horn motoneurons and muscle atrophy following spinal cord injury. Neural Regen Res 2018; 13:869-876. [PMID: 29863018 PMCID: PMC5998640 DOI: 10.4103/1673-5374.232483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Our previous study revealed that early application of electrical field stimulation (EFS) with the anode at the lesion and the cathode distal to the lesion reduced injury potential, inhibited secondary injury and was neuroprotective in the dorsal corticospinal tract after spinal cord injury (SCI). The objective of this study was to further evaluate the effect of EFS on protection of anterior horn motoneurons and their target musculature after SCI and its mechanism. Rats were randomized into three equal groups. The EFS group received EFS for 30 minutes immediately after injury at T10. SCI group rats were only subjected to SCI and sham group rats were only subjected to laminectomy. Luxol fast blue staining demonstrated that spinal cord tissue in the injury center was better protected; cross-sectional area and perimeter of injured tissue were significantly smaller in the EFS group than in the SCI group. Immunofluorescence and transmission electron microscopy showed that the number of spinal cord anterior horn motoneurons was greater and the number of abnormal neurons reduced in the EFS group compared with the SCI group. Wet weight and cross-sectional area of vastus lateralis muscles were smaller in the SCI group to in the sham group. However, EFS improved muscle atrophy and behavioral examination showed that EFS significantly increased the angle in the inclined plane test and Tarlov's motor grading score. The above results confirm that early EFS can effectively impede spinal cord anterior horn motoneuron loss, promote motor function recovery and reduce muscle atrophy in rats after SCI.
Collapse
Affiliation(s)
- Cheng Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wei Rong
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, Beijing, China
| | - Guang-Hao Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ai-Hua Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Chang-Zhe Wu
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Lin Huo
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Sun CQ, Johnson KD, Wong H, Foo LY. Biotransformation of Flavonoid Conjugates with Fatty Acids and Evaluations of Their Functionalities. Front Pharmacol 2017; 8:759. [PMID: 29163154 PMCID: PMC5673637 DOI: 10.3389/fphar.2017.00759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Abstract
Enzymatic conjugation with fatty acids including omega-3 polyunsaturated fatty acids (ω-3 PUFAs) derived from fish oil to three citrus fruit-derived flavonoids: grapefruit extract, naringin, and neohesperidin dihydrochalcone were investigated. The conversions were achieved over 85% under the catalysis of lipase Novozyme 435 in acetone at 45°C at semi-preparative scale. The conjugates were purified via solvent partition and silica gel chromatography and achieved 90–98% in purity. The NMR analysis of the conjugates confirmed that the fatty acid carbon chain was linked onto the primary –OH group on the glucose moiety of the flavonoids. The purified flavonoid conjugates alongside their original flavonoids were analyzed for antioxidant activities via 2,2-diphenyl-1-picrylhydrazyl scavenging assay, and anti-peroxidation test via peroxide values measured during a 1-week fish oil storage trial. Vascular endothelial growth factor (VEGF) assay was conducted with 1, 10, and 100 μM of naringin and grapefruits and their conjugates, respectively, and total VEGF levels were measured at 24 and 48 h, respectively, using ELISA and dot blot analysis. The results from these functionality experiments demonstrated that flavonoid FA conjugates have at least comparable (if not higher) antioxidant activity, anti-peroxidation activity, and anti-angiogenic activity.
Collapse
Affiliation(s)
- Cynthia Q Sun
- Integrated Bioactive Technologies, Research and Technical Services, Callaghan Innovation, Lower Hutt, New Zealand
| | - Keryn D Johnson
- Integrated Bioactive Technologies, Research and Technical Services, Callaghan Innovation, Lower Hutt, New Zealand
| | - Herbert Wong
- Integrated Bioactive Technologies, Research and Technical Services, Callaghan Innovation, Lower Hutt, New Zealand
| | - L Y Foo
- Integrated Bioactive Technologies, Research and Technical Services, Callaghan Innovation, Lower Hutt, New Zealand
| |
Collapse
|
31
|
Neurotrophic function of phytochemicals for neuroprotection in aging and neurodegenerative disorders: modulation of intracellular signaling and gene expression. J Neural Transm (Vienna) 2017; 124:1515-1527. [PMID: 29030688 DOI: 10.1007/s00702-017-1797-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023]
Abstract
Bioactive compounds in food and beverages have been reported to promote health and prevent age-associated decline in cognitive, motor and sensory activities, and emotional function. Phytochemicals, a ubiquitous class of plant secondary metabolites, protect neuronal cells by interaction with cellular activities, in addition to the antioxidant and anti-inflammatory function. In aging and age-associated neurodegenerative disorders, phytochemicals protect neuronal cells by neurotrophic factor-mimic activity, in addition to suppression of apoptosis signaling in mitochondria. This review presents the cellular mechanisms underlying anti-apoptotic function and neurotrophic function of phytochemicals in the brain. Phytochemicals bind to receptors of neurotrophic factors, and also receptors for γ-aminobutyric acid, acetylcholine, serotonin, and glutamate and estrogen, and activate downstream signal pathways. Phytochemicals also directly intervene intracellular signaling molecules to modify the brain function. Finally, phytochemicals enhance the endogenous biosynthesis of genes coding anti-apoptotic Bcl-2 and neurotrophic factors, such as brain-derived and glial cell line-derived neurotrophic factor. The gene induction may play a major role in the neuroprotective function of dietary compounds shown by epidemiological studies. Quantitative measurement of neurotrophic factors induced by phytochemicals in the serum, cerebrospinal fluid, and other clinical samples is proposed as a surrogate assay method to evaluate the neuroprotective potency. Development of novel neuroprotective compounds is expected among compounds chemically synthesized from the brain-permeable basic structure of phytochemicals.
Collapse
|
32
|
Shangguan WJ, Zhang YH, Li ZC, Tang LM, Shao J, Li H. Naringin inhibits vascular endothelial cell apoptosis via endoplasmic reticulum stress‑ and mitochondrial‑mediated pathways and promotes intraosseous angiogenesis in ovariectomized rats. Int J Mol Med 2017; 40:1741-1749. [PMID: 29039439 PMCID: PMC5716435 DOI: 10.3892/ijmm.2017.3160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/06/2017] [Indexed: 12/27/2022] Open
Abstract
In this study, to investigate the effects of naringin on vascular endothelial cell (VEC) function, proliferation, apoptosis, and angiogenesis, rat VECs were cultured in vitro and randomly divided into four groups: control, serum‑starved, low‑concentration naringin treatment, and high‑concentration naringin treatment. MTT assay was used to detect cell proliferation while Hoechst 33258 staining and flow cytometry were used to detect apoptosis. Changes in the expression of apoptosis‑associated proteins [GRP78, CHOP, caspase‑12, and cytochrome c (Cyt.c)] were detected using western blotting. JC‑1 staining was employed to detect changes in mitochondrial membrane potential. Intracellular caspase‑3, ‑8, and ‑9 activity was determined by spectrophotometry. ELISA was used to detect endothelin (ET), and a Griess assay was used to detect changes in the expression of nitric oxide (NO) in culture medium. The study further divided an ovariectomized (OVX) rat model of osteoporosis randomly into four groups: OVX, sham‑operated, low‑concentration naringin treatment (100 mg/kg), and high‑concentration naringin treatment (200 mg/kg). After 3 months of treatment, changes in serum ET and NO expression, bone mineral density (BMD), and microvessel density of the distal femur (using CD34 labeling of VECs) were determined. At each concentration, naringin promoted VEC proliferation in a time‑ and dose‑dependent manner. Naringin also significantly reduced serum starvation‑induced apoptosis in endothelial cells, inhibited the expression of GRP78, CHOP, caspase‑12, and Cyt.c proteins, and reduced mitochondrial membrane potential as well as reduced the activities of caspase‑3 and ‑9. Furthermore, naringin suppressed ET in vitro and in vivo while enhancing NO synthesis. Distal femoral microvascular density assessment showed that the naringin treatment groups had a significantly higher number of microvessels than the OVX group, and that microvascular density was positively correlated with BMD. In summary, naringin inhibits apoptosis in VECs by blocking the endoplasmic reticulum (ER) stress‑ and mitochondrial‑mediated pathways. Naringin also regulates endothelial cell function and promotes angiogenesis to exert its anti‑osteoporotic effect.
Collapse
Affiliation(s)
- Wen-Ji Shangguan
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yue-Hui Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Zhan-Chun Li
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Lu-Min Tang
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Jiang Shao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - He Li
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
33
|
Viswanatha GL, Shylaja H, Moolemath Y. The beneficial role of Naringin- a citrus bioflavonoid, against oxidative stress-induced neurobehavioral disorders and cognitive dysfunction in rodents: A systematic review and meta-analysis. Biomed Pharmacother 2017; 94:909-929. [PMID: 28810519 DOI: 10.1016/j.biopha.2017.07.072] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/04/2017] [Accepted: 07/17/2017] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Naringin is a bioflavonoid, very abundantly found in citrus species. In literature, naringin has been scientifically well documented for its beneficial effects in various neurological disorders. In this systematic review and meta-analysis, we have made an attempt to correlate the protective role of naringin against oxidative stress-induced neurological disorders in rodents. METHODS The systematic search was performed using electronic databases; the search was mainly focused on the role of naringin in oxidative stress-induced neuropathological conditions in rodents. While, the meta-analysis was performed on the effect of naringin on oxidative stress markers [superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), reduced glutathione (GSH), lipid peroxidation (LPO)], nitrite, mitochondrial complexes (I to IV) and enzymes (acetylcholinesterase, Na+-K+-ATPase, Ca2+-ATPase, and Mg2+-ATPase) in the rodent brain. The data was analyzed using Review Manager Software. THE RESULTS Based on the inclusion and exclusion criteria, twenty studies were selected. The meta-analysis revealed that, naringin could significantly inhibit various physical and chemical stimuli- induced neurological perturbances in the rodent brain, mediated through oxidative stress. Further, naringin also significantly restored the levels of all the oxidative stress markers (oxidative, nitrosative, enzymes, and mitochondrial complexes) in different parts of the rodent brain. SUMMARY This systematic review and meta-analysis supports the available scientific evidence on the beneficial role of naringin in the management of various neurological ailments. However, further studies involving human subjects is recommended to establish the safety and therapeutic efficacy in humans.
Collapse
Affiliation(s)
| | - H Shylaja
- Independent Researcher, Kengeri, Bangalore, 560060, Karnataka, India
| | - Yogananda Moolemath
- Vittarthaa Life Sciences, Bommasandra Industrial Area, Bangalore, 560099, Karnataka, India
| |
Collapse
|
34
|
Bergamot Polyphenolic Fraction Supplementation Improves Cognitive Functioning in Schizophrenia: Data From an 8-Week, Open-Label Pilot Study. J Clin Psychopharmacol 2017; 37:468-471. [PMID: 28591067 DOI: 10.1097/jcp.0000000000000730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Novel treatment strategies for cognitive dysfunctions may prevent long-term disability in patients with schizophrenia, and polyphenolic compounds might be a promising strategy. Bergamot (Citrus bergamia), a citrus fruit characterized by a high amount of flavonoids and flavonoid glycosides, may represent a potential nutraceutical approach to cognitive dysfunction. The present study was aimed to explore the efficacy of bergamot polyphenolic fraction (BPF) supplementation on cognitive/executive functioning in a sample of patients with schizophrenia receiving second-generation antipsychotics. METHODS Twenty outpatients treated with second-generation antipsychotics assumed BPF at an oral daily dose of 1000 mg/d for 8 weeks. Brief Psychiatric Rating Scale, Wisconsin Card Sorting Test (WCST), Verbal Fluency Task-Controlled Oral Word Association Test, and Stroop Color-Word Test were administered. RESULTS At end point, (week 8) BPF supplementation significantly improved WCST "perseverative errors" (P = 0.004) and semantic fluency test (P = 0.004). Moreover, a trend for other cognitive variable (WCST "categories," phonemic fluency, and Stroop Color-Word Test) improvement was observed. CONCLUSIONS The findings provide evidence that BPF administration may be proposed as a potential supplementation strategy to improve cognitive outcome in schizophrenia. Further clinical trials with adequately powered and well-designed methodology are needed to better explore the BPF effectiveness on cognitive impairments in patients with schizophrenia.
Collapse
|
35
|
Cerkezkayabekir A, Sanal F, Bakar E, Ulucam E, Inan M. Naringin protects viscera from ischemia/reperfusion injury by regulating the nitric oxide level in a rat model. Biotech Histochem 2017; 92:252-263. [PMID: 28426254 DOI: 10.1080/10520295.2017.1305499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated the effects of naringin on small intestine, liver, kidney and lung recovery after ischemia/reperfusion (I/R) injury of the gut. Rats were divided randomly into four groups of eight. Group A was the sham control; group B was ischemic for 2 h; group C was ischemic for 2 h and re-perfused for 2 h (I/R); group D was treated with 50 mg/kg naringin after ischemia, then re-perfused for 2 h. Endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) expressions were detected by immunolabeling. We also measured arginase activity, amounts of nitric oxide (NO) and total protein. iNOS was increased significantly in the small intestine, liver and kidney in group C. iNOS was decreased significantly only in small intestine and lung in group D. eNOS was increased significantly in the small intestine, liver and lung in group C. eNOS was decreased in small intestine, liver and lung in group D; however, eNOS was decreased in the kidney in group C and increased in the kidney in group D. The amount of NO was decreased significantly in all tissues in group D, but arginase activity was decreased in the small intestine and lung, increased in the kidney and remained unchanged in the liver in group D. The total protein increased in the small intestine and liver in group D, but decreased significantly in the kidney and lung in group D. Naringin had significant, salutary effects on the biochemical parameters of I/R by decreasing the NO level, equilibrating iNOS and eNOS expressions, and decreasing arginase activity.
Collapse
Affiliation(s)
| | - F Sanal
- a Faculty of Science, Department of Biology
| | - E Bakar
- b Faculty of Pharmaceutical, Department of Pharmaceutical Technology
| | - E Ulucam
- c School of Medicine, Department of Anatomy
| | - M Inan
- d School of Medicine, Department of Pediatric Surgery , Trakya University , Edirne , Turkey
| |
Collapse
|
36
|
Sun Y, Gong F, Yin J, Wang X, Wang X, Sun Q, Zhu Z, Su X, Zheng J, Liu L, Li Y, Hu X, Li J. Therapeutic effect of apocynin through antioxidant activity and suppression of apoptosis and inflammation after spinal cord injury. Exp Ther Med 2017; 13:952-960. [PMID: 28450925 PMCID: PMC5403360 DOI: 10.3892/etm.2017.4090] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 11/10/2016] [Indexed: 11/06/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition affecting hundreds of thousands of people worldwide annually. SCI results in activation of the inflammatory response and apoptosis, and generates oxidative stress, which has deleterious effects on the recovery of motor function. Apocynin, an inhibitor of NADPH oxidase, has been demonstrated to improve neuronal functional recovery in rat models of SCI. However, the efficacy of apocynin treatment post-SCI has not been investigated. The aim of this study was to observe the effects of apocynin on the repair of acute spinal cord damage in rats and to examine the potential beneficial effects. A rat model of SCI was established, and apocynin (50 mg/kg) was administered intraperitoneally at 30 min after SCI and then every 12 h for 3 days. In order to examine oxidative tissue injury, the levels of malondialdehyde and glutathione and activities of myeloperoxidase and superoxide dismutase in the spinal cord tissues were measured. Histological evaluations were also conducted. NeuN labeling, TUNEL staining and caspase 3 immunohistochemical staining were performed to analyze neuronal damage and apoptosis around the lesion. Immunohistochemical analysis was also carried out to observe the expression of CD11b and glial fibrillary acidic protein. The expression levels of bax, bcl-2, tumor necrosis-α, interleukin (IL)-1β and IL-6 in the spinal cord tissue were assayed by western blotting. Finally, locomotor function was evaluated using the inclined plane test and Basso, Beattie and Bresnahan scores. The results showed that treatment with apocynin decreased oxidative damage, alleviated neuronal apoptosis, inhibited the inflammatory response and resulted in the promotion of locomotor function. Therefore, this study confirmed the therapeutic efficacy of apocynin in the repair of SCI, which was probably mediated via the inhibition of apoptosis and the inflammatory response, thus promoting the restoration of nerve function.
Collapse
Affiliation(s)
- Yijun Sun
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Futai Gong
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Jichao Yin
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Xiaoyan Wang
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Xiangyang Wang
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Qing Sun
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Zhiqiang Zhu
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Xiaoqiang Su
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Jie Zheng
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Li Liu
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Yang Li
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Xinglv Hu
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Jia Li
- Department of TCM Orthopedics and Traumatology, Xi'an City Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|
37
|
Kim SR. Naringin as a beneficial natural product against degeneration of the nigrostriatal dopaminergic projection in the adult brain. Neural Regen Res 2017; 12:1375-1376. [PMID: 28966655 PMCID: PMC5607835 DOI: 10.4103/1673-5374.213694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Sang Ryong Kim
- School of Life Sciences; BK21 plus KNU Creative BioResearch Group; Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| |
Collapse
|
38
|
Rong W, Pan YW, Cai X, Song F, Zhao Z, Xiao SH, Zhang C. The mechanism of Naringin-enhanced remyelination after spinal cord injury. Neural Regen Res 2017; 12:470-477. [PMID: 28469664 PMCID: PMC5399727 DOI: 10.4103/1673-5374.202923] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Our previous study revealed that intragastric administration of naringin improved remyelination in rats with spinal cord injury and promoted the recovery of neurological function of the injured spinal cord. This study sought to reveal the mechanisms by which naringin improves oligodendrocyte precursor cell differentiation and maturation, and promotes remyelination. Spinal cord injury was induced in rats by the weight-drop method. Naringin was intragastrically administered daily (20, 40 mg/kg) for 4 weeks after spinal cord injury induction. Behavioral assessment, histopathological staining, immunofluorescence spectroscopy, ultrastructural analysis and biochemical assays were employed. Naringin treatment remarkably mitigated demyelination in the white matter, increased the quality of myelinated nerve fibers and myelin sheath thickness, promoted oligodendrocyte precursor cell differentiation by upregulating the expression of NKx2.2 and 2′3′-cyclic nucleotide 3′-phosphodiesterase, and inhibited β-catenin expression and glycogen synthase kinase-3β (GSK-3β) phosphorylation. These findings indicate that naringin treatment regulates oligodendrocyte precursor cell differentiation and promotes remyelination after spinal cord injury through the β-catenin/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Wei Rong
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, Beijing Key Laboratory of Bioelectromagnetism, Beijing, China
| | - Yong-Wei Pan
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, Beijing Key Laboratory of Bioelectromagnetism, Beijing, China
| | - Xu Cai
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, Beijing Key Laboratory of Bioelectromagnetism, Beijing, China
| | - Fei Song
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, Beijing Key Laboratory of Bioelectromagnetism, Beijing, China
| | - Zhe Zhao
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, Beijing Key Laboratory of Bioelectromagnetism, Beijing, China
| | - Song-Hua Xiao
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, Beijing Key Laboratory of Bioelectromagnetism, Beijing, China
| | - Cheng Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Song N, Zhao Z, Ma X, Sun X, Ma J, Li F, Sun L, Lv J. Naringin promotes fracture healing through stimulation of angiogenesis by regulating the VEGF/VEGFR-2 signaling pathway in osteoporotic rats. Chem Biol Interact 2017; 261:11-17. [DOI: 10.1016/j.cbi.2016.10.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/19/2016] [Accepted: 10/25/2016] [Indexed: 12/27/2022]
|
40
|
Neurodegenerative Diseases: Might Citrus Flavonoids Play a Protective Role? Molecules 2016; 21:molecules21101312. [PMID: 27706034 PMCID: PMC6274333 DOI: 10.3390/molecules21101312] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/07/2016] [Accepted: 09/14/2016] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (ND) result from the gradual and progressive degeneration of the structure and function of the central nervous system or the peripheral nervous system or both. They are characterized by deterioration of neurons and/or myelin sheath, disruption of sensory information transmission and loss of movement control. There is no effective treatment for ND, and the drugs currently marketed are symptom-oriented, albeit with several side effects. Within the past decades, several natural remedies have gained attention as potential neuroprotective drugs. Moreover, an increasing number of studies have suggested that dietary intake of vegetables and fruits can prevent or delay the onset of ND. These properties are mainly due to the presence of polyphenols, an important group of phytochemicals that are abundantly present in fruits, vegetables, cereals and beverages. The main class of polyphenols is flavonoids, abundant in Citrus fruits. Our review is an overview on the scientific literature concerning the neuroprotective effects of the Citrus flavonoids in the prevention or treatment of ND. This review may be used as scientific basis for the development of nutraceuticals, food supplements or complementary and alternative drugs to maintain and improve the neurophysiological status.
Collapse
|
41
|
Yahata K, Kanno H, Ozawa H, Yamaya S, Tateda S, Ito K, Shimokawa H, Itoi E. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury. J Neurosurg Spine 2016; 25:745-755. [PMID: 27367940 DOI: 10.3171/2016.4.spine15923] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Extracorporeal shock wave therapy (ESWT) is widely used to treat various human diseases. Low-energy ESWT increases expression of vascular endothelial growth factor (VEGF) in cultured endothelial cells. The VEGF stimulates not only endothelial cells to promote angiogenesis but also neural cells to induce neuroprotective effects. A previous study by these authors demonstrated that low-energy ESWT promoted expression of VEGF in damaged neural tissue and improved locomotor function after spinal cord injury (SCI). However, the neuroprotective mechanisms in the injured spinal cord produced by low-energy ESWT are still unknown. In the present study, the authors investigated the cell specificity of VEGF expression in injured spinal cords and angiogenesis induced by low-energy ESWT. They also examined the neuroprotective effects of low-energy ESWT on cell death, axonal damage, and white matter sparing as well as the therapeutic effect for improvement of sensory function following SCI. METHODS Adult female Sprague-Dawley rats were divided into the SCI group (SCI only) and SCI-SW group (low-energy ESWT applied after SCI). Thoracic SCI was produced using a New York University Impactor. Low-energy ESWT was applied to the injured spinal cord 3 times a week for 3 weeks after SCI. Locomotor function was evaluated using the Basso, Beattie, and Bresnahan open-field locomotor score for 42 days after SCI. Mechanical and thermal allodynia in the hindpaw were evaluated for 42 days. Double staining for VEGF and various cell-type markers (NeuN, GFAP, and Olig2) was performed at Day 7; TUNEL staining was also performed at Day 7. Immunohistochemical staining for CD31, α-SMA, and 5-HT was performed on spinal cord sections taken 42 days after SCI. Luxol fast blue staining was performed at Day 42. RESULTS Low-energy ESWT significantly improved not only locomotion but also mechanical and thermal allodynia following SCI. In the double staining, expression of VEGF was observed in NeuN-, GFAP-, and Olig2-labeled cells. Low-energy ESWT significantly promoted CD31 and α-SMA expressions in the injured spinal cords. In addition, low-energy ESWT significantly reduced the TUNEL-positive cells in the injured spinal cords. Furthermore, the immunodensity of 5-HT-positive axons was significantly higher in the animals treated by low-energy ESWT. The areas of spared white matter were obviously larger in the SCI-SW group than in the SCI group, as indicated by Luxol fast blue staining. CONCLUSIONS The results of this study suggested that low-energy ESWT promotes VEGF expression in various neural cells and enhances angiogenesis in damaged neural tissue after SCI. Furthermore, the neuroprotective effect of VEGF induced by low-energy ESWT can suppress cell death and axonal damage and consequently improve locomotor and sensory functions after SCI. Thus, low-energy ESWT can be a novel therapeutic strategy for treatment of SCI.
Collapse
Affiliation(s)
| | | | | | | | | | - Kenta Ito
- Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eiji Itoi
- Departments of 1 Orthopaedic Surgery and
| |
Collapse
|
42
|
Abstract
AbstractThree areas in the brain continuously generate new neurons throughout life: the subventricular zone lining the lateral ventricles, the dentate gyrus in the hippocampus and the median eminence in the hypothalamus. These areas harbour neural stem cells, which contribute to neural repair by generating daughter cells that then become functional neurons or glia. Impaired neurogenesis leads to detrimental consequences, such as depression, decline of cognitive abilities and obesity. Adult neurogenesis is a versatile process that can be modulated either positively or negatively by many effectors, external or endogenous. Diet can modify neurogenesis both ways, either directly by ways of food-borne molecules, or possibly by the modifications induced on gut microbiota composition. It is therefore critical to define dietary strategies optimal for the maintenance of the stem cell pools.
Collapse
|
43
|
Qi Z, Xu Y, Liang Z, Li S, Wang J, Wei Y, Dong B. Naringin ameliorates cognitive deficits via oxidative stress, proinflammatory factors and the PPARγ signaling pathway in a type 2 diabetic rat model. Mol Med Rep 2015; 12:7093-101. [PMID: 26300349 DOI: 10.3892/mmr.2015.4232] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 07/17/2015] [Indexed: 11/06/2022] Open
Abstract
Naringenin is a flavonoid polyphenolic compound, which facilitates the removal of free radicals, oxidative stress and inflammation. The present study aimed to obtain a better understanding of the effects of curcumin on the regulation of diabetes‑associated cognitive decline, and its underlying mechanisms. An experimental diabetes mellitus (DM) rat model was induced by streptozoticin (50 mg/kg). Following treatment with naringin (100 and 200 mg/kg) for 16 weeks, the body weight and blood glucose levels of the DM rats were measured. A morris water maze test was used to analyze the effects of naringin on the cognitive deficit of the DM rats. The levels of oxidative stress, proinflammatory factors, caspase‑3 and caspase‑9, and the protein expression of peroxisome proliferator‑activated receptor γ (PPARγ) were quantified in the DM rats using a commercially‑available kit and western blot assay, respectively. In addition, a GW9662 PPARγ inhibitor (0.3 mg/kg) was administered to the DM rats to determine whether PPARγ affected the effects of naringin on the cognitive deficit of the DM rats. The results demonstrated that naringin increased the body weight, blood glucose levels, and cognitive deficits of the DM rats. The levels of oxidative stress and proinflammatory factors in the naringin‑treated rats were significantly lower, compared with those of the DM rats. In addition, naringin activated the protein expression of PPARγ, and administration of the PPARγ inhibitor decreased the protein expression of PPARγ, and attenuated the effects of naringin on cognitive deficit. The results also demonstrated that naringin decreased the expression levels of caspase‑3 and caspase‑9 in the DM rats. These results suggested that naringin ameliorated cognitive deficits via oxidative stress, proinflammatory factors and the PPARγ signaling pathway in the type 2 diabetic rat model. Furthermore, oxidative stress, proinflammatory factors and PPARγ signaling may be involved in mediating these effects.
Collapse
Affiliation(s)
- Zhonghua Qi
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yinghui Xu
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhanhua Liang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Sheng Li
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jie Wang
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yi Wei
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Bin Dong
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
44
|
Oscillating field stimulation promotes recovery after spinal cord injury in rats: Assessment using behavioral, electrophysiological and histological evaluations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:4594-7. [PMID: 26737317 DOI: 10.1109/embc.2015.7319417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES We explored whether oscillating field stimulation (OFS) could efficiently promote motor function recovery in rat model of spinal cord injury. METHODS SD rats with spinal cord injury induced by Allen method was divided into two groups, experimental group rats received active stimulator units and control group rats received sham (inoperative) stimulator units. The electric field intensity was 600μV/mm, and the polarity alternated every 15 min. RESULTS The results showed that the experimental group rats had significantly better locomotor function recovery (inclined-plane testing and modified Tarlov motor grading scale) 5 weeks after the injury (P<;0.05). OFS treatment significantly decreased motor evoked potential (MEP) latency differences and amplitude differences 4 w and 8 w post injury (P<;0.05, P<;0.01). Furthermore, the number of axons was quantified by immunofluorescence staining of nerve fiber (NF), increased axon numbers were observed at 4 w and 8 w in experimental group (P<;0.05). CONCLUSIONS These findings suggest OFS can promote motor function recovery in SCI rats, and this effect may be related to the improving axon regeneration in spinal cord.
Collapse
|
45
|
Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats. Neuroscience 2015; 291:260-71. [DOI: 10.1016/j.neuroscience.2015.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/31/2023]
|
46
|
|
47
|
Wang J, Wang X, Wei J, Wang M. Hyaluronan tetrasaccharide exerts neuroprotective effect and promotes functional recovery after acute spinal cord injury in rats. Neurochem Res 2014; 40:98-108. [PMID: 25373446 DOI: 10.1007/s11064-014-1470-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/11/2014] [Accepted: 10/30/2014] [Indexed: 12/11/2022]
Abstract
The objective of this study was to explore the therapeutic efficiency of hyaluronan tetrasaccharide (HA4) treatment after spinal cord injury (SCI) in rats and to investigate the underlying mechanism. Locomotor functional and electrophysiological evaluations revealed that the behavioral function of rats in the HA4-treated group was significantly improved compared with the vehicle-treated group. The expression of brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), cluster determinant (CD44) and Toll-like receptor-4 (TLR-4) was obviously upregulated in the HA4-treated group than that in the sham and vehicle-treated group. Furthermore, HA4 could induce BDNF and VEGF expression in the astrocytes in vitro. In addition, the high expression of BDNF and VEGF could be inhibited by blocking CD44 and TLR-4. These findings indicate that HA4 could be useful as a promising therapeutic agent for SCI and might exert the effect by interaction with the CD44 and TLR-4.
Collapse
Affiliation(s)
- Jun Wang
- Traumatology Department,Beijing Jishuitan Hospital, No. 31 East Street of Xin Jie Kou Beijing, Beijing, 100035, People's Republic of China
| | | | | | | |
Collapse
|
48
|
Jung UJ, Kim SR. Effects of naringin, a flavanone glycoside in grapefruits and citrus fruits, on the nigrostriatal dopaminergic projection in the adult brain. Neural Regen Res 2014; 9:1514-7. [PMID: 25317167 PMCID: PMC4192967 DOI: 10.4103/1673-5374.139476] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2014] [Indexed: 11/30/2022] Open
Abstract
Recently, we have demonstrated the ability of naringin, a well-known flavanone glycoside of grapefruits and citrus fruits, to prevent neurodegeneration in a neurotoxin model of Parkinson's disease. Intraperitoneal injection of naringin protected the nigrostriatal dopaminergic projection by increasing glial cell line-derived neurotrophic factor expression and decreasing the level of tumor necrosis factor-alpha in dopaminergic neurons and microglia, respectively. These results suggest that naringin can impart to the adult dopaminergic neurons the ability to produce glial cell line-derived neurotrophic factor against Parkinson's disease with anti-inflammatory effects. Based on these results, we would like to describe an important perspective on its possibility as a therapeutic agent for Parkinson's disease.
Collapse
Affiliation(s)
- Un Ju Jung
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Korea
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu, Korea ; BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea ; Institute of Life Science & Biotechnology, Kyungpook National University, Daegu, Korea ; Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| |
Collapse
|
49
|
Naringin protects the nigrostriatal dopaminergic projection through induction of GDNF in a neurotoxin model of Parkinson's disease. J Nutr Biochem 2014; 25:801-6. [DOI: 10.1016/j.jnutbio.2014.03.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/18/2014] [Accepted: 03/12/2014] [Indexed: 01/05/2023]
|
50
|
Jung UJ, Leem E, Kim SR. Naringin: a protector of the nigrostriatal dopaminergic projection. Exp Neurobiol 2014; 23:124-9. [PMID: 24963276 PMCID: PMC4065825 DOI: 10.5607/en.2014.23.2.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 01/15/2023] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disorder characterized by the progressive degeneration of dopaminergic neurons and a biochemical reduction of striatal dopamine levels. Despite the lack of fully understanding of the etiology of Parkinson's disease, accumulating evidences suggest that Parkinson's disease may be caused by the insufficient support of neurotrophic factors, and by microglial activation, resident immune cells in the brain. Naringin, a major flavonone glycoside in grapefruits and citrus fruits, is considered as a protective agent against neurodegenerative diseases because it can induce not only anti-oxidant effects but also neuroprotective effects by the activation of anti-apoptotic pathways and the induction of neurotrophic factors such as brain-derived neurotrophic factor and vascular endothelial growth factor. We have recently reported that naringin has neuroprotective effects in a neurotoxin model of Parkinson's disease. Our observations show that intraperitoneal injection of naringin induces increases in glial cell line-derived neurotrophic factor expression and mammalian target of rapamycin complex 1 activity in dopaminergic neurons of rat brains with anti-inflammatory effects. Moreover, the production of glial cell line-derived neurotrophic factor by naringin treatment contributes to the protection of the nigrostriatal dopaminergic projection in a neurotoxin model of Parkinson's disease. Although the effects of naringin on the nigrostriatal dopaminergic system in human brains are largely unknown, these results suggest that naringin may be a beneficial natural product for the prevention of dopaminergic degeneration in the adult brain.
Collapse
Affiliation(s)
- Un Ju Jung
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea
| | - Eunju Leem
- School of Life Sciences, Kyungpook National University, Daegu 702-701, Korea. ; BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Korea
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu 702-701, Korea. ; BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Korea. ; Institute of Life Science & Biotechnology, Kyungpook National University, Daegu 702-701, Korea. ; Brain Science and Engineering Institute, Kyungpook National University, Daegu 700-842, Korea
| |
Collapse
|