1
|
Kuşi M, Becer E, Vatansever HS. Basic approach on the protective effects of hesperidin and naringin in Alzheimer's disease. Nutr Neurosci 2025; 28:550-562. [PMID: 39225173 DOI: 10.1080/1028415x.2024.2397136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. This situation imposes a great burden on individuals, both economically and socially. Today, an effective method for treating the disease and protective approach to tau accumulation has not been developed yet. Studies have been conducted on the effects of hesperidin and naringin flavonoids found in citrus fruits on many diseases. METHODS In this review, the pathophysiology of AD is defined, and the effects of hesperidin and naringin on these factors are summarized. RESULTS Studies have shown that both components may potentially affect AD due to their antioxidative and anti-inflammatory properties. Based on these effects of the components, it has been shown that they may have ameliorative effects on Aβ, α-synuclein aggregation, tau pathology, and cognitive functions in the pathophysiology of AD. DISCUSSION There are studies suggesting that hesperidin and naringin may be effective in the prevention/treatment of AD. When these studies are examined, it is seen that more studies should be conducted on the subject.
Collapse
Affiliation(s)
- Müjgan Kuşi
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
- Research Center for Science, Technology and Engineering (BILTEM), Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
| | - Eda Becer
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| | - Hafize Seda Vatansever
- DESAM Institute, Near East University, Nicosia, North Cyprus via Mersin 10, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
2
|
Han X, Zhang Y, Zhang L, Zhuang Y, Wang Y. Efficacy and molecular mechanisms of hesperidin in mitigating Alzheimer's disease: A systematic review. Eur J Med Chem 2025; 283:117144. [PMID: 39647419 DOI: 10.1016/j.ejmech.2024.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Hesperidin, a flavonoid glycoside, is a natural phenolic compound that has broad biological effects. Increasing evidence suggests that hesperidin inhibits the occurrence and development of neurodegenerative diseases, including Alzheimer's disease (AD). This article reviews the neuropharmacological mechanisms of hesperidin in the prevention and treatment of AD through in vitro and in vivo studies. A systematic review of preclinical studies was conducted using PubMed, Web of Science, Scopus, and Google Scholar (up to July 1, 2024). The neuroprotective potential of hesperidin was mediated through mechanisms such as inhibition of β-amyloid (Aβ) aggregation, enhancement of endogenous antioxidant defense functions, reduction of neuroinflammation and apoptosis, improvement of mitochondrial dysfunction, regulation of autophagy, and promotion of neurogenesis. Despite various preclinical studies on the role of hesperidin in AD, its exact effects on humans remain unclear. Few clinical trials have indicated that dietary supplements rich in hesperidin can improve cerebral blood flow, cognition, and memory performance. The neuroprotective effect of hesperidin may be exerted via regulating different molecular pathways, including the RAGE/NF-κB, Akt/Nrf2, and AMPK/BDNF/CREB pathways. However, further clinical trials are needed to confirm the neuroprotective effects of this natural flavonoid compound and to assess its safety.
Collapse
Affiliation(s)
- Xu Han
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning, PR China.
| | - Yuting Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning, PR China.
| | - Lijuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, PR China.
| | - Yanyan Zhuang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, PR China.
| | - Yu Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning, PR China.
| |
Collapse
|
3
|
Yang Y, Jia X, Yang X, Wang J, Fang Y, Ying X, Zhang M, Wei J, Pan Y. Targeting VDAC: A potential therapeutic approach for mitochondrial dysfunction in Alzheimer's disease. Brain Res 2024; 1835:148920. [PMID: 38599511 DOI: 10.1016/j.brainres.2024.148920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of Alzheimer's disease, a neurodegenerative disorder characterized by progressive cognitive decline. Voltage-dependent anion channel (VDAC), a protein located in the outer mitochondrial membrane, plays a critical role in regulating mitochondrial function and cellular energy metabolism. Recent studies have identified VDAC as a potential therapeutic target for Alzheimer's disease. This article aims to provide an overview of the role of VDAC in mitochondrial dysfunction, its association with Alzheimer's disease, and the potential of targeting VDAC for developing novel therapeutic interventions. Understanding the involvement of VDAC in Alzheimer's disease may pave the way for the development of effective treatments that can restore mitochondrial function and halt disease progression.
Collapse
Affiliation(s)
- Yaqian Yang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaotao Jia
- Department of Neurology, The Affifiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710003, China
| | - Xinmao Yang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jie Wang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yan Fang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaoping Ying
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Meiqian Zhang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jing Wei
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yanfang Pan
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| |
Collapse
|
4
|
Salimi A, Khezri S, Vahabzadeh Z, Rajabi P, Samimi R, Adhami V. Hesperidin, vanillic acid, and sinapic acid attenuate atorvastatin-induced mitochondrial dysfunction via inhibition of mitochondrial swelling and maintenance of mitochondrial function in pancreas isolated mitochondria. Drug Dev Res 2024; 85:e22199. [PMID: 38812443 DOI: 10.1002/ddr.22199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/31/2024]
Abstract
It has been reported that lipophilic statins such as atorvastatin can more readily penetrate into β-cells and reach the mitochondria, resulting in mitochondrial dysfunction, oxidative stress, decrease in insulin release. Many studies have shown that natural products can protect mitochondrial dysfunction induced by drug in different tissue. We aimed to explore mitochondrial protection potency of hesperidin, vanillic acid, and sinapic acid as natural compounds against mitochondrial dysfunction induced by atorvastatin in pancreas isolated mitochondria. Mitochondria were isolated form rat pancreas and directly treated with toxic concentration of atorvastatin (500 µM) in presence of various concentrations hesperidin, vanillic acid, and sinapic acid (1, 10, and 100 µM) separately. Mitochondrial toxicity parameters such as the reactive oxygen species (ROS) formation, succinate dehydrogenases (SDH) activity, mitochondrial swelling, depletion of glutathione (GSH), mitochondrial membrane potential (MMP) collapse, and malondialdehyde (MDA) production were measured. Our findings demonstrated that atorvastatin directly induced mitochondrial toxicity at concentration of 500 μM and higher in pancreatic mitochondria. Except MDA, atorvastatin caused significantly reduction in SDH activity, mitochondrial swelling, ROS formation, depletion of GSH, and collapse of MMP. While, our data showed that all three protective compounds at low concentrations ameliorated atorvastatin-induced mitochondrial dysfunction with the increase of SDH activity, improvement of mitochondrial swelling, MMP collapse and mitochondrial GSH, and reduction of ROS formation. We can conclude that hesperidin, vanillic acid, and sinapic acid can directly reverse the toxic of atorvastatin in rat pancreas isolated mitochondria, which may be beneficial for protection against diabetogenic-induced mitochondrial dysfunction in pancreatic β-cells.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zoleikhah Vahabzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Paria Rajabi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rojin Samimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahed Adhami
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
5
|
Maruthiyodan S, Mumbrekar KD, Guruprasad KP. Involvement of mitochondria in Alzheimer's disease pathogenesis and their potential as targets for phytotherapeutics. Mitochondrion 2024; 76:101868. [PMID: 38462158 DOI: 10.1016/j.mito.2024.101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia around the globe. The disease's genesis is multifaceted, and its pathophysiology is complicated. Malfunction of mitochondria has been regarded as one of the intracellular events that are substantially damaged in the onset of AD and are likely a common trait of other neurodegenerative illnesses. Several mitochondrial characteristics begin to diminish with age, eventually reaching a state of significant functional failure concurrent with the beginning of neurodegenerative diseases, however, the exact timing of these processes is unknown. Mitochondrial malfunction has a multitude of negative repercussions, including reduced calcium buffering and secondary excitotoxicity contributing to synaptic dysfunction, also free radical production, and activation of the mitochondrial permeability transition. Hence mitochondria are considered a therapeutic target in neurodegenerative disorders such as Alzheimer's. Traditional medicinal systems practiced in different countries employing various medicinal plants postulated to have potential role in the therapy and management of memory impairment including amnesia, dementia as well as AD. Although, the preclinical and clinical studies using these medicinal plants or plant products have demonstrated the therapeutic efficacy for AD, the precise mechanism of action is still obscure. Therefore, this review discusses the contribution of mitochondria towards AD pathogenesis and considering phytotherapeutics as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Swathi Maruthiyodan
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kanive Parashiva Guruprasad
- Centre for Ayurvedic Biology, Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
6
|
Kumar S, Chhabra V, Shenoy S, Daksh R, Ravichandiran V, Swamy RS, Kumar N. Role of Flavonoids in Modulation of Mitochondria Dynamics during Oxidative Stress. Mini Rev Med Chem 2024; 24:908-919. [PMID: 37861054 DOI: 10.2174/0113895575259219230920093214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Flavonoids are a widespread category of naturally occurring polyphenols distinguished by the flavan nucleus in plant-based foods and beverages, known for their various health benefits. Studies have suggested that consuming 150-500 mg of flavonoids daily is beneficial for health. Recent studies suggest that flavonoids are involved in maintaining mitochondrial activity and preventing impairment of mitochondrial dynamics by oxidative stress. OBJECTIVE This review emphasized the significance of studying the impact of flavonoids on mitochondrial dynamics, oxidative stress, and inflammatory response. METHODS This review analysed and summarised the findings related to the impact of flavonoids on mitochondria from publicly available search engines namely Pubmed, Scopus, and Web of Science. DESCRIPTION Any disruption in mitochondrial dynamics can contribute to cellular dysfunction and diseases, including cancer, cardiac conditions, and neurodegeneration. Flavonoids have been shown to modulate mitochondrial dynamics by regulating protein expression involved in fission and fusion events. Furthermore, flavonoids exhibit potent antioxidant properties by lowering the production of ROS and boosting the performance of antioxidant enzymes. Persistent inflammation is a characteristic of many different disorders. This is because flavonoids also alter the inflammatory response by controlling the expression of numerous cytokines and chemokines involved in the inflammatory process. Flavonoids exhibit an impressive array of significant health effects, making them an effective therapeutic agent for managing various disorders. Further this review summarised available mechanisms underlying flavonoids' actions on mitochondrial dynamics and oxidative stress to recognize the optimal dose and duration of flavonoid intake for therapeutic purposes. CONCLUSION This review may provide a solid foundation for developing targeted therapeutic interventions utilizing flavonoids, ultimately benefiting individuals afflicted with various disorders.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Rajni Daksh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Ravindra Shantakumar Swamy
- Division of Anatomy, Department of Basic Medical Sciences (DBMS), Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| |
Collapse
|
7
|
Baracaldo-Santamaría D, Avendaño-Lopez SS, Ariza-Salamanca DF, Rodriguez-Giraldo M, Calderon-Ospina CA, González-Reyes RE, Nava-Mesa MO. Role of Calcium Modulation in the Pathophysiology and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24109067. [PMID: 37240413 DOI: 10.3390/ijms24109067] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease and the most frequent cause of progressive dementia in senior adults. It is characterized by memory loss and cognitive impairment secondary to cholinergic dysfunction and N-methyl-D-aspartate (NMDA)-mediated neurotoxicity. Intracellular neurofibrillary tangles, extracellular plaques composed of amyloid-β (Aβ), and selective neurodegeneration are the anatomopathological hallmarks of this disease. The dysregulation of calcium may be present in all the stages of AD, and it is associated with other pathophysiological mechanisms, such as mitochondrial failure, oxidative stress, and chronic neuroinflammation. Although the cytosolic calcium alterations in AD are not completely elucidated, some calcium-permeable channels, transporters, pumps, and receptors have been shown to be involved at the neuronal and glial levels. In particular, the relationship between glutamatergic NMDA receptor (NMDAR) activity and amyloidosis has been widely documented. Other pathophysiological mechanisms involved in calcium dyshomeostasis include the activation of L-type voltage-dependent calcium channels, transient receptor potential channels, and ryanodine receptors, among many others. This review aims to update the calcium-dysregulation mechanisms in AD and discuss targets and molecules with therapeutic potential based on their modulation.
Collapse
Affiliation(s)
- Daniela Baracaldo-Santamaría
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Sara Sofia Avendaño-Lopez
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Daniel Felipe Ariza-Salamanca
- Medical and Health Sciences Education Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mateo Rodriguez-Giraldo
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| | - Carlos A Calderon-Ospina
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- Grupo de Investigación en Ciencias Biomédicas Aplicadas (UR Biomed), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mauricio O Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| |
Collapse
|
8
|
Cao H, Yang D, Nie K, Lin R, Peng L, Zhou X, Zhang M, Zeng Y, Liu L, Huang W. Hesperidin may improve depressive symptoms by binding NLRP3 and influencing the pyroptosis pathway in a rat model. Eur J Pharmacol 2023:175670. [PMID: 37169143 DOI: 10.1016/j.ejphar.2023.175670] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVE Major depressive disorder (MDD) is a debilitating psychiatric disorder which is common and endangers human physical and mental health. Studies have shown that hesperidin could improve the symptoms of depression with unclear mechanisms. METHOD In this study, hesperidin was administered to chronic unpredictable mild stress (CUMS) depressed mice before behavioral test, network pharmacology analysis, RNA expression microarray analysis, pathway validation and molecular docking experiments. RESULTS we found that hesperidin intervention could significantly improve the depressive symptoms and downregulate the expression level of pyroptosis pathway including caspase 1 (Casp1), interleukin 18 (IL18), interleukin-1β (IL-1β) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3). In addition, we found that hesperidin could possibly bind to NLRP3. CONCLUSIONS Our study demonstrated that hesperidin had huge potential as anti-depressive neuroprotectant, and may play a role in treating MDD by regulating NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Hui Cao
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
| | - Dong Yang
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
| | - Kechao Nie
- Department of Integrated Traditional Chinese & Western Internal Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ruoheng Lin
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Luqi Peng
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xuhui Zhou
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
| | - Mei Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zeng
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lini Liu
- Department of Psychiatry, Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
Kuşi M, Becer E, Vatansever HS, Yücecan S. Neuroprotective Effects of Hesperidin and Naringin in SK-N-AS Cell as an In Vitro Model for Alzheimer's Disease. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:418-426. [PMID: 35776430 DOI: 10.1080/07315724.2022.2062488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hesperidin and naringin are flavonoids that are found in citrus fruits. Our aim was to create an in vitro model of Alzheimer's disease (AD) and to evaluate the neuroprotective effects of hesperidin and naringin in SK-N-AS and AD model cells. Aβ25-35 was used to create an AD model in SK-N-AS cells. The cytotoxicity of hesperidin and naringin was evaluated using MTT. β-amyloid, tau and α-synuclein distributions were analyzed using indirect immunoperoxidase staining to investigate the neuroprotective effects of hesperidin and naringin. The AD model was created by 1 µM of Aβ25-35 for 48 hours after ThT staining. The intensity of β-amyloid was reduced through both hesperidin and naringin treatment in AD model cells. Both flavonoids significantly decreased the intensity of α-synuclein in SK-N-AS and AD model cells. Hesperidin and naringin can be potentially used as neuroprotective agents. Naringin may be more effective than hesperidin in the accumulation of β-amyloid and tau proteins.
Collapse
Affiliation(s)
- Müjgan Kuşi
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Near East University, Nicosia, Mersin 10 Turkey
| | - Eda Becer
- Faculty of Pharmacy, Department of Biochemistry, Near East University, Nicosia, Mersin 10 Turkey
- DESAM Institute, Near East University, Nicosia, Mersin 10 Turkey
| | - Hafize Seda Vatansever
- DESAM Institute, Near East University, Nicosia, Mersin 10 Turkey
- Faculty of Medicine, Department of Histology and Embryology, Manisa Celal Bayar University, Manisa, Turkey
| | - Sevinç Yücecan
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
10
|
Zhang X, Wang L, Li B, Shi J, Xu J, Yuan M. Targeting Mitochondrial Dysfunction in Neurodegenerative Diseases: Expanding the Therapeutic Approaches by Plant-Derived Natural Products. Pharmaceuticals (Basel) 2023; 16:277. [PMID: 37259422 PMCID: PMC9961467 DOI: 10.3390/ph16020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 09/16/2023] Open
Abstract
Mitochondria are the primary source of energy production in neurons, supporting the high energy consumption of the nervous system. Inefficient and dysfunctional mitochondria in the central nervous system have been implicated in neurodegenerative diseases. Therefore, targeting mitochondria offers a new therapeutic opportunity for neurodegenerative diseases. Many recent studies have proposed that plant-derived natural products, as pleiotropic, safe, and readily obtainable sources of new drugs, potentially treat neurodegenerative diseases by targeting mitochondria. In this review, we summarize recent advances in targeting mitochondria in neurotherapeutics by employing plant-derived natural products. We discuss the mechanism of plant-derived natural products according to their mechanism of action on mitochondria in terms of regulating biogenesis, fusion, fission, bioenergetics, oxidative stress, calcium homeostasis, membrane potential, and mitochondrial DNA stability, as well as repairing damaged mitochondria. In addition, we discuss the potential perspectives and challenges in developing plant-derived natural products to target mitochondria, highlighting the clinical value of phytochemicals as feasible candidates for future neurotherapeutics.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Longqin Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiayan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jia Xu
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Minlan Yuan
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Lu Q, Gouda NA, Quan G, Nada H, Elkamhawy A, Lee D, Lee CH, Cho J, Lee K. Novel cudraisoflavone J derivatives as potent neuroprotective agents for the treatment of Parkinson's disease via the activation of Nrf2/HO-1 signaling. Eur J Med Chem 2022; 242:114692. [PMID: 36029560 DOI: 10.1016/j.ejmech.2022.114692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that causes uncontrollable movements. Although many breakthroughs in PD therapy have been accomplished, there is currently no cure for PD, and only trials to relieve symptoms have been evaluated. Recently, we reported the total synthesis of cudraisoflavone J and its chiral isomers [Lu et al., J. Nat. Prod. 2021, 84, 1359]. In this study, we designed and synthesized a series of novel cudraisoflavone J derivatives and evaluated their neuroprotective activities in neurotoxin-treated PC12 cells. Among these compounds, difluoro-substituted derivative (13m) and prenylated derivative (24) provided significant protection to PC12 cells against toxicity induced by 6-hydroxydopamine (6-OHDA) or rotenone. Both derivatives inhibited 6-OHDA- or rotenone-induced production of reactive oxygen species and partially attenuated lipid peroxidation in rat brain homogenates, indicating their antioxidant properties. They also increased the expression of the antioxidant enzyme, heme oxygenase (HO)-1, and enhanced the nuclear translocation of Nrf2, the transcription factor that regulates the expression of antioxidant proteins. The neuroprotective effects of 13m and 24 were eliminated by Zn(II)-protoporphyrin IX, an HO-1 inhibitor, demonstrating the critical role of HO-1 in their actions. Moreover, upregulation of HO-1 was abolished by nuclear factor erythroid 2-related factor (Nrf2) knockdown, verifying that Nrf2 is an upstream regulator of HO-1. Compounds 13m and 24 triggered phosphorylation of ERK1/2, JNK, and Akt. Most importantly, 13m- and 24-induced enhancement of Nrf2 translocation and HO-1 expression was reversed by U0126 (an ERK inhibitor), SP600125 (a JNK inhibitor), and LY294002 (an Akt inhibitor). Collectively, our results show that compounds 13m and 24 exert neuroprotective and antioxidant effects through the Nrf2/HO-1 pathway mediated by phosphorylation of ERK1/2, JNK, or Akt in PC12 cells. Based on our findings, both derivatives could serve as potential therapeutic candidates for the neuroprotective treatment of PD.
Collapse
Affiliation(s)
- Qili Lu
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi, 10326, Republic of Korea
| | - Noha A Gouda
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi, 10326, Republic of Korea
| | - Guofeng Quan
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi, 10326, Republic of Korea
| | - Hossam Nada
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi, 10326, Republic of Korea; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Cairo, 11829, Egypt
| | - Ahmed Elkamhawy
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi, 10326, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi, 10326, Republic of Korea
| | - Jungsook Cho
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi, 10326, Republic of Korea.
| | - Kyeong Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi, 10326, Republic of Korea.
| |
Collapse
|
12
|
Guan PP, Cao LL, Yang Y, Wang P. Calcium Ions Aggravate Alzheimer's Disease Through the Aberrant Activation of Neuronal Networks, Leading to Synaptic and Cognitive Deficits. Front Mol Neurosci 2021; 14:757515. [PMID: 34924952 PMCID: PMC8674839 DOI: 10.3389/fnmol.2021.757515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized by the production and deposition of β-amyloid protein (Aβ) and hyperphosphorylated tau, leading to the formation of β-amyloid plaques (APs) and neurofibrillary tangles (NFTs). Although calcium ions (Ca2+) promote the formation of APs and NFTs, no systematic review of the mechanisms by which Ca2+ affects the development and progression of AD has been published. Therefore, the current review aimed to fill the gaps between elevated Ca2+ levels and the pathogenesis of AD. Specifically, we mainly focus on the molecular mechanisms by which Ca2+ affects the neuronal networks of neuroinflammation, neuronal injury, neurogenesis, neurotoxicity, neuroprotection, and autophagy. Furthermore, the roles of Ca2+ transporters located in the cell membrane, endoplasmic reticulum (ER), mitochondria and lysosome in mediating the effects of Ca2+ on activating neuronal networks that ultimately contribute to the development and progression of AD are discussed. Finally, the drug candidates derived from herbs used as food or seasoning in Chinese daily life are summarized to provide a theoretical basis for improving the clinical treatment of AD.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Long-Long Cao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yi Yang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
13
|
Wang Q, Dong X, Zhang R, Zhao C. Flavonoids with Potential Anti-Amyloidogenic Effects as Therapeutic Drugs for Treating Alzheimer's Disease. J Alzheimers Dis 2021; 84:505-533. [PMID: 34569961 DOI: 10.3233/jad-210735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a central neurodegenerative disease generally among the elderly; it accounts for approximately 50-75%of total cases of dementia patients and poses a serious threat to physical and mental health. Currently available treatments for AD mainly relieves its symptoms, and effective therapy is urgently needed. Deposition of amyloid-β protein in the brain is an early and invariant neuropathological feature of AD. Currently the main efforts in developing anti-AD drugs focus on anti-amyloidogenic therapeutics that prevent amyloid-β production or aggregation and decrease the occurrence of neurotoxic events. The results of an increasing number of studies suggest that natural extracts and phytochemicals have a positive impact on brain aging. Flavonoids belong to the broad group of polyphenols and recent data indicate a favorable effect of flavonoids on brain aging. In this review, we collect relevant discoveries from 1999 to 2021, discuss 75 flavonoids that effectively influence AD pathogenesis, and summarize their functional mechanisms in detail. The data we have reviewed show that, these flavonoids belong to various subclasses, including flavone, flavanone, biflavone, etc. Our results provide a reference for further study of the effects of flavonoids on AD and the progress of anti-AD therapy.
Collapse
Affiliation(s)
- Qixin Wang
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, China
| | - Xiaofang Dong
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, China
| | - Ran Zhang
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, China
| | - Changqi Zhao
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Science, Beijing Normal University, Beijing, China
| |
Collapse
|
14
|
Walczak-Nowicka ŁJ, Herbet M. Acetylcholinesterase Inhibitors in the Treatment of Neurodegenerative Diseases and the Role of Acetylcholinesterase in their Pathogenesis. Int J Mol Sci 2021; 22:9290. [PMID: 34502198 PMCID: PMC8430571 DOI: 10.3390/ijms22179290] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Acetylcholinesterase (AChE) plays an important role in the pathogenesis of neurodegenerative diseases by influencing the inflammatory response, apoptosis, oxidative stress and aggregation of pathological proteins. There is a search for new compounds that can prevent the occurrence of neurodegenerative diseases and slow down their course. The aim of this review is to present the role of AChE in the pathomechanism of neurodegenerative diseases. In addition, this review aims to reveal the benefits of using AChE inhibitors to treat these diseases. The selected new AChE inhibitors were also assessed in terms of their potential use in the described disease entities. Designing and searching for new drugs targeting AChE may in the future allow the discovery of therapies that will be effective in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8bStreet, 20-090 Lublin, Poland;
| |
Collapse
|
15
|
The Role of Voltage-Dependent Anion Channel in Mitochondrial Dysfunction and Human Disease. Cells 2021; 10:cells10071737. [PMID: 34359907 PMCID: PMC8305817 DOI: 10.3390/cells10071737] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
The voltage-dependent anion channel (VDAC) is a β-barrel membrane protein located in the outer mitochondrial membrane (OMM). VDAC has two conductance states: an open anion selective state, and a closed and slightly cation-selective state. VDAC conductance states play major roles in regulating permeability of ATP/ADP, regulation of calcium homeostasis, calcium flux within ER-mitochondria contact sites, and apoptotic signaling events. Three reported structures of VDAC provide information on the VDAC open state via X-ray crystallography and nuclear magnetic resonance (NMR). Together, these structures provide insight on how VDAC aids metabolite transport. The interaction partners of VDAC, together with the permeability of the pore, affect the molecular pathology of diseases including Parkinson’s disease (PD), Friedreich’s ataxia (FA), lupus, and cancer. To fully address the molecular role of VDAC in disease pathology, major questions must be answered on the structural conformers of VDAC. For example, further information is needed on the structure of the closed state, how binding partners or membrane potential could lead to the open/closed states, the function and mobility of the N-terminal α-helical domain of VDAC, and the physiological role of VDAC oligomers. This review covers our current understanding of the various states of VDAC, VDAC interaction partners, and the roles they play in mitochondrial regulation pertaining to human diseases.
Collapse
|
16
|
Wang L, Jing R, Wang X, Wang B, Guo K, Zhao J, Gao S, Xu N, Xuan X. A method for the expression of fibroblast growth factor 14 and assessment of its neuroprotective effect in an Alzheimer's disease model. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:994. [PMID: 34277794 PMCID: PMC8267273 DOI: 10.21037/atm-21-2492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/11/2021] [Indexed: 11/29/2022]
Abstract
Background Fibroblast growth factor (FGF) 14 is a member of the FGF family that is mainly expressed in the central nervous system. FGF14 has a close association with the occurrence of neurodegenerative conditions; however, its significance in Alzheimer’s disease (AD) has yet to be evaluated. Therefore, we sought to obtain a large amount of exogenous FGF14 protein and explore its effect in a cellular model of AD. Methods FGF14 protein was expressed in an Escherichia coli system using gene recombination technology. Purified protein was obtained through washing and renaturation of inclusion bodies combined with nickel column affinity chromatography. The AD model was established via Aβ25-35-induced injury in PC12 cells. Changes in the levels of lactate dehydrogenase and malondialdehyde were detected, and the neuroprotective effect of recombinant human FGF14 (rhFGF14) was evaluated through double-fluorescence staining and flow cytometry apoptosis detection. For further exploration of rhFGF14-mediated regulation of mitogen-activated protein kinase (MAPK) signaling, western blot was employed. Results We successfully induced large amounts of insoluble rhFGF14. Following solubilization and refolding of the rhFGF14 from inclusion bodies, high purity rhFGF14 was purified by Nickel affinity column chromatography. The results showed that rhFGF14 alleviated Aβ25-3-induced PC12 cell injury by inhibiting the phosphorylation of p38, extracellular signal-regulated kinase 1/2, and c-Jun N-terminal kinase, thus suppressing the MAPK signaling pathway. Conclusions FGF14 performed a neuroprotective role in our in vitro AD model via its inhibition of MAPK signaling, highlighting its potential as a therapeutic drug for neurodegenerative conditions.
Collapse
Affiliation(s)
- Lusheng Wang
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Rongrong Jing
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xing Wang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Baohui Wang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Keke Guo
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jungang Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Shuang Gao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xuan Xuan
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Jin X, Guo JL, Wang L, Zhong X, Yao WF, Gao H, Liu MY. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatments of Alzheimer's disease: A comprehensive review. Eur J Med Chem 2021; 218:113401. [PMID: 33831779 DOI: 10.1016/j.ejmech.2021.113401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder characterized by neuronal loss and cognitive impairment that harshly affect the elderly individuals. Currently, the available anti-AD pharmacological approaches are purely symptomatic to alleviate AD symptoms, and the curative effects of novel anti-AD drugs focused on Aβ target are disappointing. Hence, there is a tremendous need to adjust AD therapeutic targets and discover novel anti-AD agents. In AD, mitochondrial dysfunction gradually triggers neuronal death from different aspects and worsens the occurrence and progress of AD. Consequently, it has been proposed that the intervention of impaired mitochondria represents an attractive breakthrough point for AD treatments. Due to chemical diversity, poly-pharmacological activities, few adverse effects and multiple targeting, natural products (NPs) have been identified as a valuable treasure for drug discovery and development. Multiple lines of studies have scientifically proven that NPs display ameliorative benefits in AD treatment in relation to mitochondrial dysfunction. This review surveys the complicated implications for mitochondrial dysregulation and AD, and then summarizes the potentials of NPs and their underlying molecular mechanisms against AD via reducing or improving mitochondrial dysfunction. It is expected that this work may open the window to speed up the development of innovative anti-AD drugs originated from NPs and improve upcoming AD therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Jia-Ling Guo
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lin Wang
- Department of Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xin Zhong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Wei-Fan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Gao
- Division of Pharmacology Laboratory, National Institutes for Food and Drug Control, Beijing, China
| | - Ming-Yan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
18
|
Xin X, Li Y, Liu H. Hesperidin ameliorates hypobaric hypoxia-induced retinal impairment through activation of Nrf2/HO-1 pathway and inhibition of apoptosis. Sci Rep 2020; 10:19426. [PMID: 33173100 PMCID: PMC7655840 DOI: 10.1038/s41598-020-76156-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/19/2020] [Indexed: 11/09/2022] Open
Abstract
High-altitude retinopathy is initiated by hypobaric hypoxia and characterized by retinal functional changes, but the precise cellular and molecular mechanisms that mediate this dysfunction remain unclear. The aim of our investigation is to determine the protective efficacy of hesperidin (HSD) on the hypobaric hypoxia-induced damage to the retina. Experiment rats were randomly grouped as the control, hypobaric hypoxia group and HSD intervention group. The hypobaric hypoxia and the HSD intervention groups were maintained in a low-pressure oxygen cabin. We found that hypobaric hypoxia dramatically reduced nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1(HO-1) levels, induced an elevation in immunostaining of TUNEL-positive cells. Hypobaric hypoxia exposure resulted in the increase of Bcl-2, decrease of caspase3 and caspase9 expression as well as Bax level. HSD protected the retina from hypobaric hypoxia-caused impairment by enhancing Nrf2 and HO-1 activation, attenuating apoptotic caspases levels, and reducing Bax and preserving Bcl-2 expression. Additionally, oxidative stress increased poly (ADP-ribose) polymerase 1 (PARP1) and suppressed ciliary neurotrophic factor (CNTF) level, HSD treatment reverted this effect by down-regulation of PARP1 and up-regulation of CNTF expression. Taken together, our findings implicate that HSD exerts a protective role in response to hypobaric hypoxia stress by activating Nrf2/HO-1 pathway and inhibiting apoptosis.
Collapse
Affiliation(s)
- Xiaorong Xin
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, China.
| | - Yanrong Li
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, China
| | - Haiping Liu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, China
| |
Collapse
|
19
|
Chen B, Zhao J, Zhang R, Zhang L, Zhang Q, Yang H, An J. Neuroprotective effects of natural compounds on neurotoxin-induced oxidative stress and cell apoptosis. Nutr Neurosci 2020; 25:1078-1099. [PMID: 33164705 DOI: 10.1080/1028415x.2020.1840035] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Overproduction of reactive species, notably reactive oxygen (ROS) and nitrogen (RNS) species, along with the failure of balancing effects of endogenous antioxidant defenses result in destruction of cellular structures, lipids, proteins, and genetic material, which lead to oxidative stress. Oxidative stress-induced neuronal apoptosis plays a pivotal role in pathogenesis of neurodegeneration. Antioxidants represent one of the medical choice strategies for protecting against this unbalanced oxidation-antioxidation status. Recently, natural compounds with neuroprotective potential that can scavenge free radicals and protect cells from oxidative damage have received extensive attention. METHODS In this review, we summarized the detailed research progress on the medicinal plants-derived natural compounds with potential anti-oxidation effects and their molecular mechanisms on modulating the neurotoxin (6-OHDA, H2O2, glutamate, Aβ)-induced oxidative stress and cell apoptosis. RESULTS The natural compounds that efficacious in modulating reactive species production and mitochondrial function include flavonoids, glucosides, alkaloids, polyphenols, lignans, coumarins, terpenoids, quinones and others. They decreased the neurotoxin-induced oxidative damage and apoptosis by (1) decreasing ROS/RNS generation, lipid peroxidation, caspase-3 and caspase-9 activities, LDH release, the ratio of Bax/Bcl-2, Ca2+ influx and cytochrome c release, (2) elevating MMP, and (3) restoring endogenous antioxidant enzymatic activities (CAT, GSH-Px, GSR, SOD). And they exerted neuroprotective effects against cell damages and apoptosis by modulating the oxidative cascades of different signaling pathways (Nrf2/HO-1, NF-κB, MAPKs, PI3K/Akt, GSK-3β) and preventing mitochondria-dependent apoptosis pathways. DISCUSSION The present work reviews the role of oxidative stress in neurodegeneration, highlighting the potential anti-oxidation effects of natural compounds as a promising approach to develop innovative neuroprotective strategy.
Collapse
Affiliation(s)
- Bo Chen
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Jingjing Zhao
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Rui Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Lingling Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Qian Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Hao Yang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Jing An
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| |
Collapse
|
20
|
Xu C, Xiao Z, Wu H, Zhou G, He D, Chang Y, Li Y, Wang G, Xie M. BDMC protects AD in vitro via AMPK and SIRT1. Transl Neurosci 2020; 11:319-327. [PMID: 33335771 PMCID: PMC7712110 DOI: 10.1515/tnsci-2020-0140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023] Open
Abstract
Background Alzheimer’s disease (AD) is a common neurodegenerative disorder without any satisfactory therapeutic approaches. AD is mainly characterized by the deposition of β-amyloid protein (Aβ) and extensive neuronal cell death. Curcumin, with anti-oxidative stress (OS) and cell apoptosis properties, plays essential roles in AD. However, whether bisdemethoxycurcumin (BDMC), a derivative of curcumin, can exert a neuroprotective effect in AD remains to be elucidated. Methods In this study, SK-N-SH cells were used to establish an in vitro model to investigate the effects of BDMC on the Aβ1–42-induced neurotoxicity. SK-N-SH cells were pretreated with BDMC and with or without compound C and EX527 for 30 min after co-incubation with rotenone for 24 h. Subsequently, western blotting, cell viability assay and SOD and GSH activity measurement were performed. Results BDMC increased the cell survival, anti-OS ability, AMPK phosphorylation levels and SIRT1 in SK-N-SH cells treated with Aβ1–42. However, after treatment with compound C, an AMPK inhibitor, and EX527, an SIRT1inhibitor, the neuroprotective roles of BDMC on SK-N-SH cells treated with Aβ1–42 were inhibited. Conclusion These results suggest that BDMC exerts a neuroprotective role on SK-N-SH cells in vitro via AMPK/SIRT1 signaling, laying the foundation for the application of BDMC in the treatment of neurodegenerative diseases related to AMPK/SIRT1 signaling.
Collapse
Affiliation(s)
- Chenlin Xu
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China.,Xiangxi Autonomous Prefecture People's Hospital, Jishou, Hunan 416000, People's Republic of China
| | - Zijian Xiao
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Heng Wu
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Guijuan Zhou
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Duanqun He
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yunqian Chang
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yihui Li
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Gang Wang
- Department of Rehabilitation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| | - Ming Xie
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
21
|
Khodadadeh A, Hassanpour S, Akbari G. Prenatal exposure to hesperidin improves reflexive motor behaviors in mice offspring. Int J Dev Neurosci 2020; 80:648-656. [PMID: 32844480 DOI: 10.1002/jdn.10060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/15/2020] [Indexed: 11/07/2022] Open
Abstract
Prenatal exposure during the embryonic period has positive or adverse effect on newborn brain development. Neuroprotective activity of the hesperidin is well documented but there is no evidence for maternal exposure to hesperidin on offspring reflexive motor behaviors. So, the aim of the current study was to determine the prenatal exposure to hesperidin on reflexive motor behaviors in mice offspring. Forty pregnant female NMRI mice (8-10 weeks old) were allocated into four groups. Group 1 kept as control and groups 2-4 intraperitoneal (i.p) injected with hesperidin (0.1, 0.5, and 1 mg/kg) on days of 5, 8, 11, 14, and 17 of pregnancy. The control group injected with saline at the same days. Following delivery, 20 pups from each litter were selected and reflexive motor behaviors determined using ambulation, hind-limb foot angle, surface righting, hind-limb strength, grip strength, front-limb suspension, and negative geotaxis tests. At the end of the study serum Malondialdehyde (MDA), Superoxide dismutase (SOD), Glutathione peroxidase (GPx), and total antioxidant status (TAS) levels were determined. According to the results, maternal exposure to hesperidin (0.1, 0.5, and 1 mg/kg) increased ambulation score, front-limb suspension time, and hind-limb suspension score in mice offspring compared to the control group (p < .05). Hesperidin (0.1, 0.5, and 1 mg/kg) decreased hind-limb foot angle in mice offspring compared to the control group (p < .05). Prenatal exposure to hesperidin (0.5 and 1 mg/kg) significantly increased the surface righting and grip strength in comparison to the control group (p < .05). Hesperidin (0.1, 0.5, and 1 mg/kg) decreased MDA and increased SOD and GPx levels in mice offspring (p < .05). These results suggested hesperidin exposure during pregnancy has positive effect on reflexive motor behaviors in mice offspring may be due to its antioxidant activity.
Collapse
Affiliation(s)
- Ava Khodadadeh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ghasem Akbari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
22
|
Chen S, Jiang Q, Huang P, Hu C, Shen H, Schachner M, Zhao W. The L1 cell adhesion molecule affects protein kinase D1 activity in the cerebral cortex in a mouse model of Alzheimer's disease. Brain Res Bull 2020; 162:141-150. [PMID: 32540419 DOI: 10.1016/j.brainresbull.2020.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is characterized by deposition of β-amyloid protein (Aβ), neurofibrillary tangles and cognitive deficits resulting from neuronal cell death. In search for the molecular underpinnings of the disease, we were interested in the relationship between Aβ, L1 cell adhesion molecule and protein kinase D1 (PKD1), which are not only implicated in neural development and functional maintenance in the adult, but are also neuroprotective under pathological conditions. Based on our observations that L1 and phosphorylated, i.e. activated, protein kinase PKD1 (pPKD1) co-localize in cultured neurons, we investigated the functional relationship between L1 and pPKD1 in the frontal lobe of an AD human cortical tissue microarray, and found increased and positively correlating levels of both molecules when compared to a non-affected human brain. Also in the APPSWE mouse model of AD, L1 and pPKD1 levels were increased in the frontal lobe. To investigate whether L1 influences PKD1-based functions in AD, cultured cortical neurons were stressed with either H2O2 or oligomeric Aβ1-42, in the presence or absence of recombinant L1 extracellular domain, and PKD1 phosphorylation was measured. As indicated by the cell viability assay, L1 maintained neuronal survival under oxidative stress and under application of oligomeric Aβ1-42, when PKD1 activity was inhibited, suggesting that L1 ameliorates some aspects of Aβ1-42 pathology in parallel with reducing PKD1 function.
Collapse
Affiliation(s)
- Shuangxi Chen
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China; The First Affiliated Hospital of University of South China, University of South China, No. 69, Chuanshan Road, Hengyang, Hunan, 421001, People's Republic of China
| | - Qiong Jiang
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Peizhi Huang
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Chengliang Hu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Huifan Shen
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China; Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
| | - Weijiang Zhao
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, People's Republic of China.
| |
Collapse
|
23
|
Flavonoids and Mitochondria: Activation of Cytoprotective Pathways? Molecules 2020; 25:molecules25133060. [PMID: 32635481 PMCID: PMC7412508 DOI: 10.3390/molecules25133060] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
A large number of diverse mechanisms that lead to cytoprotection have been described to date. Perhaps, not surprisingly, the role of mitochondria in these phenomena is notable. In addition to being metabolic centers, due to their role in cell catabolism, ATP synthesis, and biosynthesis these organelles are triggers and/or end-effectors of a large number of signaling pathways. Their role in the regulation of the intrinsic apoptotic pathway, calcium homeostasis, and reactive oxygen species signaling is well documented. In this review, we aim to characterize the prospects of influencing cytoprotective mitochondrial signaling routes by natural substances of plant origin, namely, flavonoids (e.g., flavanones, flavones, flavonols, flavan-3-ols, anthocyanidins, and isoflavones). Flavonoids are a family of widely distributed plant secondary metabolites known for their beneficial effects on human health and are widely applied in traditional medicine. Their pharmacological characteristics include antioxidative, anticarcinogenic, anti-inflammatory, antibacterial, and antidiabetic properties. Here, we focus on presenting mitochondria-mediated cytoprotection against various insults. Thus, the role of flavonoids as antioxidants and modulators of antioxidant cellular response, apoptosis, mitochondrial biogenesis, autophagy, and fission and fusion is reported. Finally, an emerging field of flavonoid-mediated changes in the activity of mitochondrial ion channels and their role in cytoprotection is outlined.
Collapse
|
24
|
Howes MR, Perry NS, Vásquez‐Londoño C, Perry EK. Role of phytochemicals as nutraceuticals for cognitive functions affected in ageing. Br J Pharmacol 2020; 177:1294-1315. [PMID: 31650528 PMCID: PMC7056459 DOI: 10.1111/bph.14898] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Cognitive decline can occur with normal ageing and in age-related brain disorders, such as mild cognitive impairment and dementia, including Alzheimer's disease, with limited pharmacological therapies available. Other approaches to reduce cognitive decline are urgently needed, and so, the role of dietary interventions or nutraceuticals has received much attention in this respect. In this review, we examine the evidence for dietary plants and their chemical constituents as nutraceuticals, relevant to both cognitive decline in normal ageing and in dementia. Pharmacological (in vitro and in vivo), clinical and epidemiological evidence is assessed for both frequently consumed plants and their dietary forms, including tea, coffee, cocoa (chocolate), red wine, grapes, citrus and other fruits; in addition to plants used less frequently in certain diets and those that cross the blurred boundaries between foods, nutraceuticals and medicinal plants. For the latter, turmeric, saffron, sage, rosemary and lemon balm are examples of those discussed. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Melanie‐Jayne R. Howes
- Natural Capital and Plant Health DepartmentRoyal Botanic Gardens, KewSurreyUK
- Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | | | | | - Elaine K. Perry
- Dilston Physic GardenCorbridgeUK
- Institute for Ageing and HealthNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
25
|
Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure. Int J Mol Sci 2019; 20:ijms20102451. [PMID: 31108962 PMCID: PMC6566187 DOI: 10.3390/ijms20102451] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
In aging and neurodegenerative diseases, loss of distinct type of neurons characterizes disease-specific pathological and clinical features, and mitochondria play a pivotal role in neuronal survival and death. Mitochondria are now considered as the organelle to modulate cellular signal pathways and functions, not only to produce energy and reactive oxygen species. Oxidative stress, deficit of neurotrophic factors, and multiple other factors impair mitochondrial function and induce cell death. Multi-functional plant polyphenols, major groups of phytochemicals, are proposed as one of most promising mitochondria-targeting medicine to preserve the activity and structure of mitochondria and neurons. Polyphenols can scavenge reactive oxygen and nitrogen species and activate redox-responsible transcription factors to regulate expression of genes, coding antioxidants, anti-apoptotic Bcl-2 protein family, and pro-survival neurotrophic factors. In mitochondria, polyphenols can directly regulate the mitochondrial apoptosis system either in preventing or promoting way. Polyphenols also modulate mitochondrial biogenesis, dynamics (fission and fusion), and autophagic degradation to keep the quality and number. This review presents the role of polyphenols in regulation of mitochondrial redox state, death signal system, and homeostasis. The dualistic redox properties of polyphenols are associated with controversial regulation of mitochondrial apoptosis system involved in the neuroprotective and anti-carcinogenic functions. Mitochondria-targeted phytochemical derivatives were synthesized based on the phenolic structure to develop a novel series of neuroprotective and anticancer compounds, which promote the bioavailability and effectiveness. Phytochemicals have shown the multiple beneficial effects in mitochondria, but further investigation is required for the clinical application.
Collapse
|
26
|
Effects and Underlying Mechanisms of Bioactive Compounds on Type 2 Diabetes Mellitus and Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8165707. [PMID: 30800211 PMCID: PMC6360036 DOI: 10.1155/2019/8165707] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 01/11/2023]
Abstract
Type 2 diabetes mellitus is a complicated metabolic disorder characterized by hyperglycemia and glucose intolerance. Alzheimer's disease is a progressive brain disorder characterized by a chronic loss of cognitive and behavioral function. Considering the shared characteristics of both diseases, common therapeutic and preventive agents may be effective. Bioactive compounds such as polyphenols, vitamins, and carotenoids found in vegetables and fruits can have antioxidant and anti-inflammatory effects. These effects make them suitable candidates for the prevention or treatment of diabetes and Alzheimer's disease. Increasing evidence from cell or animal models suggest that bioactive compounds may have direct effects on decreasing hyperglycemia, enhancing insulin secretion, and preventing formation of amyloid plaques. The possible underlying molecular mechanisms are described in this review. More studies are needed to establish the clinical effects of bioactive compounds.
Collapse
|
27
|
Tian M, Xie Y, Meng Y, Ma W, Tong Z, Yang X, Lai S, Zhou Y, He M, Liao Z. Resveratrol protects cardiomyocytes against anoxia/reoxygenation via dephosphorylation of VDAC1 by Akt-GSK3 β pathway. Eur J Pharmacol 2018; 843:80-87. [PMID: 30445019 DOI: 10.1016/j.ejphar.2018.11.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Abstract
Our previous studies showed that the effect of resveratrol preventing mitochondrial permeability transition pore (mPTP) opening in myocardial ischemia/reperfusion injury was achieved by regulating voltage-dependent anion channel 1 (VDAC1). However, the underlying mechanism remains unclear. Previous studies demonstrated that the activity and function of VDAC1 are highly regulated by post-translational modification. In present study, we investigated whether resveratrol modulates VDAC1 phosphorylation to achieve cardioprotection and explored the signaling pathways involved. Our findings demonstrated that anoxia/reoxygenation (A/R) treatment, an ischemia/reperfusion model in vitro, enhanced VDAC1 phosphorylation in cardiomyocytes. Moreover, we found phosphorylated VDAC1 showed increased affinity to Bax, whereas interaction with hexokinase 2 (HK2) was reduced. Accordingly, the generation of reactive oxygen species increased, the mitochondrial membrane potential collapsed, mPTP opening increased and cytochrome c released into cytoplasm, thereby leading to increased apoptosis. Moreover, our data showed that pretreatment with resveratrol prior to A/R injury inhibited VDAC1 phosphorylation. Dephosphorylated VDAC1 using pretreated resveratrol promoted dissociation with Bax and binding to HK2, which subsequently protected cardiomyocytes against A/R injury. In addition, Akt and its downstream glycogen synthase kinase 3 β (GSK3β) were phosphorylated by the action of resveratrol. Akt inhibitor IV abrogated Akt-GSK3β phosphorylation and thereby abolished the dephosphorylation activity of resveratrol on VDAC1. Moreover, all resveratrol-mediated protective effects on A/R injured cardiomyocytes were abolished by Akt inhibitor IV. Taken together, our data indicated that A/R injury enhanced VDAC1 phosphorylation in cardiomyocytes, whereas pretreatment with resveratrol dephosphorylated VDAC1 through the Akt-GSK3β pathway, thereby protecting cardiomyocytes against A/R injury.
Collapse
Affiliation(s)
- Mengyuan Tian
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China; Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, P.R. China
| | - Yongyan Xie
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, PR China
| | - Yan Meng
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Wen Ma
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Zhihong Tong
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Xiaomei Yang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Songqing Lai
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Yue Zhou
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Ming He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China
| | - Zhangping Liao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
28
|
Wang W, Nakashima KI, Hirai T, Inoue M. Neuroprotective effect of naturally occurring RXR agonists isolated from Sophora tonkinensis Gagnep. on amyloid-β-induced cytotoxicity in PC12 cells. J Nat Med 2018; 73:154-162. [DOI: 10.1007/s11418-018-1257-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/13/2018] [Indexed: 01/08/2023]
|
29
|
Wang YY, Wang CG, Qi SN, Liu ZX, Su GF, Zheng YJ. 3,5-Dimethoxy-4-hydroxy myricanol ameliorates photoreceptor cell degeneration in Pde6b rd10 mouse model. Cutan Ocul Toxicol 2018; 38:36-43. [PMID: 30079774 DOI: 10.1080/15569527.2018.1508153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Retinitis pigmentosa (RP) caused by the photoreceptor cell degeneration is currently incurable and leads to partial or complete blindness eventually. 3,5-dimethoxy-4-hydroxy myricanol (DM) is a novel compound isolated from the leaves of Micromelum integerrimum, with proliferative activities on NIH3T3 cells. This study was to investigate whether DM could mitigate retinal degeneration of rd10 mice, a well-characterized mouse model of RP. MATERIALS AND METHOD Rd10 mice were treated with DM daily by intraperitoneal injection from postnatal day 12 (P12) to P26. Electroretinography (ERG) reflects the mass response of photoreceptor cells and was used to test the outer retinal function after DM treatment. Haematoxylin and Eosin staining was used to show the retinal morphology and evaluate the rod photoreceptor cell loss. TUNEL assay was used to detect the apoptosis-positive cells. Inflammatory factors were measured by ELISA to show the inflammatory response. Real-time PCR and western blot were applied to measure the gene and protein change to explore the underlying mechanisms. RESULTS Results showed that DM significantly improved the retinal function by increasing the ERG amplitude, preserving the retinal morphology, reducing photoreceptor cell apoptosis, decreasing inflammatory response, and inhibiting endoplasmic reticulum stress in rd10 mice. CONCLUSION This is the first time when the protective effects of DM against photoreceptor cell degeneration of rd10 mice have been demonstrated, providing scientific rationale to develop DM as a potential agent to treat RP.
Collapse
Affiliation(s)
- Yan-Yan Wang
- a Department of Ophthalmology , Second Hospital of Jilin University, Jilin University , Changchun , People's Republic of China.,b Department of Ophthalmology , Qianwei Hospital of Jilin Province , Changchun , People's Republic of China
| | - Chen-Guang Wang
- a Department of Ophthalmology , Second Hospital of Jilin University, Jilin University , Changchun , People's Republic of China
| | - Shou-Nan Qi
- a Department of Ophthalmology , Second Hospital of Jilin University, Jilin University , Changchun , People's Republic of China
| | - Zao-Xia Liu
- a Department of Ophthalmology , Second Hospital of Jilin University, Jilin University , Changchun , People's Republic of China
| | - Guan-Fang Su
- a Department of Ophthalmology , Second Hospital of Jilin University, Jilin University , Changchun , People's Republic of China
| | - Ya-Juan Zheng
- a Department of Ophthalmology , Second Hospital of Jilin University, Jilin University , Changchun , People's Republic of China
| |
Collapse
|
30
|
Bachmann M, Costa R, Peruzzo R, Prosdocimi E, Checchetto V, Leanza L. Targeting Mitochondrial Ion Channels to Fight Cancer. Int J Mol Sci 2018; 19:ijms19072060. [PMID: 30011966 PMCID: PMC6073807 DOI: 10.3390/ijms19072060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, several experimental evidences have underlined a new role of ion channels in cancer development and progression. In particular, mitochondrial ion channels are arising as new oncological targets, since it has been proved that most of them show an altered expression during tumor development and the pharmacological targeting of some of them have been demonstrated to be able to modulate cancer growth and progression, both in vitro as well as in vivo in pre-clinical mouse models. In this scenario, pharmacology of mitochondrial ion channels would be in the near future a new frontier for the treatment of tumors. In this review, we discuss the new advances in the field, by focusing our attention on the improvements in new drug developments to target mitochondrial ion channels.
Collapse
Affiliation(s)
| | - Roberto Costa
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Roberta Peruzzo
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Elena Prosdocimi
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | | | - Luigi Leanza
- Department of Biology, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
31
|
Zhou MM, Ding L, Wen M, Che HX, Huang JQ, Zhang TT, Xue CH, Mao XZ, Wang YM. Mechanisms of DHA-enriched phospholipids in improving cognitive deficits in aged SAMP8 mice with high-fat diet. J Nutr Biochem 2018; 59:64-75. [PMID: 29986309 DOI: 10.1016/j.jnutbio.2018.05.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 04/15/2018] [Accepted: 05/16/2018] [Indexed: 01/29/2023]
Abstract
Recent studies have shown that a high-fat diet (HFD) is involved in both metabolic dysfunction and cognitive deficiency and that docosahexaenoic-acid-enriched phospholipids (DHA-PLs) have beneficial effects on obesity and cognitive impairment. However, there are only a few studies comparing differences between DHA-PC and DHA-PS in HFD-induced Alzheimer's disease (AD) models. After 8 weeks feeding with HFD, 10-month-old SAMP8 mice were fed with 1% (w/w) DHA-PC or 1% DHA-PS (biosynthesized from DHA-PC) for 8 weeks; we then tested the behavioral performances in the Barnes maze test and Morris maze test. The changes of the generation and accumulation of Aβ, oxidative stress, apoptosis, neuroinflammation and neurotrophic factors were also measured. The results indicated that both DHA-PC and DHA-PS significantly improved the metabolic disorders and cognitive deficits. Both DHA-PC and DHA-PS could ameliorate oxidative stress, and DHA-PS presented more notable benefits than DHA-PC on Aβ pathology, mitochondrial damage, neuroinflammation and neurotrophic factors; DHA-PS was for the first time found to increase the production of insoluble Aβ (less pathogenic) in this AD model. These data suggest that DHA-PLs can significantly improve cognitive deficiency, and the molecular mechanisms for this closely relate to the phospholipid polar groups.
Collapse
Affiliation(s)
- Miao-Miao Zhou
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Lin Ding
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Min Wen
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Hong-Xia Che
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Jia-Qi Huang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological products, Qingdao 266237, PR China
| | - Xiang-Zhao Mao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological products, Qingdao 266237, PR China.
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological products, Qingdao 266237, PR China.
| |
Collapse
|
32
|
Magrì A, Reina S, De Pinto V. VDAC1 as Pharmacological Target in Cancer and Neurodegeneration: Focus on Its Role in Apoptosis. Front Chem 2018; 6:108. [PMID: 29682501 PMCID: PMC5897536 DOI: 10.3389/fchem.2018.00108] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 01/15/2023] Open
Abstract
Cancer and neurodegeneration are different classes of diseases that share the involvement of mitochondria in their pathogenesis. Whereas the high glycolytic rate (the so-called Warburg metabolism) and the suppression of apoptosis are key elements for the establishment and maintenance of cancer cells, mitochondrial dysfunction and increased cell death mark neurodegeneration. As a main actor in the regulation of cell metabolism and apoptosis, VDAC may represent the common point between these two broad families of pathologies. Located in the outer mitochondrial membrane, VDAC forms channels that control the flux of ions and metabolites across the mitochondrion thus mediating the organelle's cross-talk with the rest of the cell. Furthermore, the interaction with both pro-apoptotic and anti-apoptotic factors makes VDAC a gatekeeper for mitochondria-mediated cell death and survival signaling pathways. Unfortunately, the lack of an evident druggability of this protein, since it has no defined binding or active sites, makes the quest for VDAC interacting molecules a difficult tale. Pharmacologically active molecules of different classes have been proposed to hit cancer and neurodegeneration. In this work, we provide an exhaustive and detailed survey of all the molecules, peptides, and microRNAs that exploit VDAC in the treatment of the two examined classes of pathologies. The mechanism of action and the potential or effectiveness of each compound are discussed.
Collapse
Affiliation(s)
- Andrea Magrì
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy.,Section of Biology and Genetics, Department of Biomedicine and Biotechnology, National Institute for Biomembranes and Biosystems, Section of Catania, Catania, Italy
| | - Simona Reina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy.,Section of Biology and Genetics, Department of Biomedicine and Biotechnology, National Institute for Biomembranes and Biosystems, Section of Catania, Catania, Italy
| | - Vito De Pinto
- Section of Biology and Genetics, Department of Biomedicine and Biotechnology, National Institute for Biomembranes and Biosystems, Section of Catania, Catania, Italy
| |
Collapse
|
33
|
Hu SL, Zheng CP. (3R)-5,6,7-trihydroxy-3-isopropyl-3-methylisochroman-1-one ameliorates retinal degeneration in Pde6b rd10 mice. Cutan Ocul Toxicol 2018; 37:245-251. [PMID: 29480079 DOI: 10.1080/15569527.2018.1441863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As a severe photoreceptor-degenerative disease, retinitis pigmentosa (RP) is currently incurable and eventually leads to partial or complete blindness. (3R)-5,6,7-trihydroxy-3-isopropyl-3-methylisochroman-1-one (TIM) is a novel antioxidant isolated from the plant of Alpinia katsumadai Hayata, with protective effects on photoreceptor cells against lipoteichoic acid-induced damage through inhibiting oxidative stress. The present study was to further demonstrate whether TIM could ameliorate retinal degeneration of Pde6brd10 (rd10) mice, a mouse model of RP. rd10 mice were treated with TIM by intraperitoneal injection daily from postnatal Day 10 (P10) to P26. Retinal function was tested by electroretinography. Histology was evaluated by toluidine blue staining and TUNEL assay. Oxidative stress markers were measured by ELISA. Immunohistochemistry, real-time PCR, and western blotting were applied to explore the protective mechanism. Results showed TIM significantly improved the retinal function and decreased photoreceptor cell apoptosis in rd10 mice through reducing oxidative stress. For the first time, this study demonstrated the protective effects of TIM against retinal degeneration in rd10 mice, providing scientific rationale to use TIM treating the RP.
Collapse
Affiliation(s)
- Shou-Long Hu
- a Department of Ophthalmology , Beijing Children's Hospital, Capital Medical University , Beijing , P.R China
| | - Chao-Pan Zheng
- b Department of Otorhinolaryngology , Shenzhen People's Hospital , Shenzhen , P. R China
| |
Collapse
|
34
|
Wang D, Liu X, Liu Y, Li S, Wang C. The Effects of Cardiotrophin-1 on Early Synaptic Mitochondrial Dysfunction and Synaptic Pathology in APPswe/PS1dE9 Mice. J Alzheimers Dis 2017; 59:1255-1267. [DOI: 10.3233/jad-170100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dongmei Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Xiaozhuan Liu
- Department of Immunology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Sanqiang Li
- Department of Biochemistry and Molecular Biology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Chenying Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| |
Collapse
|
35
|
Maekawa S, Sato K, Fujita K, Daigaku R, Tawarayama H, Murayama N, Moritoh S, Yabana T, Shiga Y, Omodaka K, Maruyama K, Nishiguchi KM, Nakazawa T. The neuroprotective effect of hesperidin in NMDA-induced retinal injury acts by suppressing oxidative stress and excessive calpain activation. Sci Rep 2017; 7:6885. [PMID: 28761134 PMCID: PMC5537259 DOI: 10.1038/s41598-017-06969-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
We found that hesperidin, a plant-derived bioflavonoid, may be a candidate agent for neuroprotective treatment in the retina, after screening 41 materials for anti-oxidative properties in a primary retinal cell culture under oxidative stress. We found that the intravitreal injection of hesperidin in mice prevented reductions in markers of the retinal ganglion cells (RGCs) and RGC death after N-methyl-D-aspartate (NMDA)-induced excitotoxicity. Hesperidin treatment also reduced calpain activation, reactive oxygen species generation and TNF-α gene expression. Finally, hesperidin treatment improved electrophysiological function, measured with visual evoked potential, and visual function, measured with optomotry. Thus, we found that hesperidin suppressed a number of cytotoxic factors associated with NMDA-induced cell death signaling, such as oxidative stress, over-activation of calpain, and inflammation, thereby protecting the RGCs in mice. Therefore, hesperidin may have potential as a therapeutic supplement for protecting the retina against the damage associated with excitotoxic injury, such as occurs in glaucoma and diabetic retinopathy.
Collapse
Affiliation(s)
- Shigeto Maekawa
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kota Sato
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kosuke Fujita
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Reiko Daigaku
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hiroshi Tawarayama
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Namie Murayama
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Satoru Moritoh
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Takeshi Yabana
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kazuichi Maruyama
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Toru Nakazawa
- Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| |
Collapse
|
36
|
Shoshan-Barmatz V, Krelin Y, Shteinfer-Kuzmine A. VDAC1 functions in Ca 2+ homeostasis and cell life and death in health and disease. Cell Calcium 2017; 69:81-100. [PMID: 28712506 DOI: 10.1016/j.ceca.2017.06.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 01/15/2023]
Abstract
In the outer mitochondrial membrane (OMM), the voltage-dependent anion channel 1 (VDAC1) serves as a mitochondrial gatekeeper, controlling the metabolic and energy cross-talk between mitochondria and the rest of the cell. VDAC1 also functions in cellular Ca2+ homeostasis by transporting Ca2+ in and out of mitochondria. VDAC1 has also been recognized as a key protein in mitochondria-mediated apoptosis, contributing to the release of apoptotic proteins located in the inter-membranal space (IMS) and regulating apoptosis via association with pro- and anti-apoptotic members of the Bcl-2 family of proteins and hexokinase. VDAC1 is highly Ca2+-permeable, transporting Ca2+ to the IMS and thus modulating Ca2+ access to Ca2+ transporters in the inner mitochondrial membrane. Intra-mitochondrial Ca2+ controls energy metabolism via modulating critical enzymes in the tricarboxylic acid cycle and in fatty acid oxidation. Ca2+ also determines cell sensitivity to apoptotic stimuli and promotes the release of pro-apoptotic proteins. However, the precise mechanism by which intracellular Ca2+ mediates apoptosis is not known. Here, the roles of VDAC1 in mitochondrial Ca2+ homeostasis are presented while emphasizing a new proposed mechanism for the mode of action of pro-apoptotic drugs. This view, proposing that Ca2+-dependent enhancement of VDAC1 expression levels is a major mechanism by which apoptotic stimuli induce apoptosis, position VDAC1 oligomerization at a molecular focal point in apoptosis regulation. The interactions of VDAC1 with many proteins involved in Ca2+ homeostasis or regulated by Ca2+, as well as VDAC-mediated control of cell life and death and the association of VDAC with disease, are also presented.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
37
|
Shoshan-Barmatz V, De S, Meir A. The Mitochondrial Voltage-Dependent Anion Channel 1, Ca 2+ Transport, Apoptosis, and Their Regulation. Front Oncol 2017; 7:60. [PMID: 28443244 PMCID: PMC5385329 DOI: 10.3389/fonc.2017.00060] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/17/2017] [Indexed: 01/08/2023] Open
Abstract
In the outer mitochondrial membrane, the voltage-dependent anion channel 1 (VDAC1) functions in cellular Ca2+ homeostasis by mediating the transport of Ca2+ in and out of mitochondria. VDAC1 is highly Ca2+-permeable and modulates Ca2+ access to the mitochondrial intermembrane space. Intramitochondrial Ca2+ controls energy metabolism by enhancing the rate of NADH production via modulating critical enzymes in the tricarboxylic acid cycle and fatty acid oxidation. Mitochondrial [Ca2+] is regarded as an important determinant of cell sensitivity to apoptotic stimuli and was proposed to act as a "priming signal," sensitizing the organelle and promoting the release of pro-apoptotic proteins. However, the precise mechanism by which intracellular Ca2+ ([Ca2+]i) mediates apoptosis is not known. Here, we review the roles of VDAC1 in mitochondrial Ca2+ homeostasis and in apoptosis. Accumulated evidence shows that apoptosis-inducing agents act by increasing [Ca2+]i and that this, in turn, augments VDAC1 expression levels. Thus, a new concept of how increased [Ca2+]i activates apoptosis is postulated. Specifically, increased [Ca2+]i enhances VDAC1 expression levels, followed by VDAC1 oligomerization, cytochrome c release, and subsequently apoptosis. Evidence supporting this new model suggesting that upregulation of VDAC1 expression constitutes a major mechanism by which apoptotic stimuli induce apoptosis with VDAC1 oligomerization being a molecular focal point in apoptosis regulation is presented. A new proposed mechanism of pro-apoptotic drug action, namely Ca2+-dependent enhancement of VDAC1 expression, provides a platform for developing a new class of anticancer drugs modulating VDAC1 levels via the promoter and for overcoming the resistance of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Soumasree De
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Meir
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
38
|
Abstract
Hesperidin, a member of the flavanone group of flavonoids, can be isolated in large amounts from the rinds of some citrus species. Considering the wide range of pharmacological activities and widespread application of hesperidin, this paper reviews preclinical and clinical trials of hesperidin and its related compounds, including their occurrence, pharmacokinetics, and some marketed products available. Preclinical studies and clinical trials demonstrated therapeutical effects of hesperidin and its aglycone hesperetin in various diseases, such as neurological disorders, psychiatric disorders, and cardiovascular diseases and others, due to its anti-inflammatory, antioxidant, lipid-lowering, and insulin-sensitizing properties.
Collapse
Affiliation(s)
- Chaoyun Li
- a Division of Immunopathology of the Nervous System , Department of Neuropathology , Institute of Pathology and Neuropathology, University of Tuebingen , Tuebingen , Germany
| | - Hermann Schluesener
- a Division of Immunopathology of the Nervous System , Department of Neuropathology , Institute of Pathology and Neuropathology, University of Tuebingen , Tuebingen , Germany
| |
Collapse
|
39
|
Li Y, Li T, Li JZ, Wu QS. (2R, 3S)-Pinobanksin-3-cinnamate ameliorates photoreceptor degeneration in Pde6 rd10 mice. Cutan Ocul Toxicol 2016; 36:273-277. [PMID: 27892714 DOI: 10.1080/15569527.2016.1265551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As an inherited disorder caused by initial death of rod photoreceptors, retinitis pigmentosa is currently untreatable and usually leads to partial or complete blindness. (2R, 3S)-Pinobanksin-3-cinnamate (PC) is a new flavonone isolated from the seed of Alpinia galanga Willd, and has been reported to exert neuroprotective effects by upregulating endogenous antioxidant enzymes. In this study, the anti-oxidative and neuroprotective activity of PC against photoreceptor apoptosis in rd10 mouse model of retinitis pigmentosa was explored. PC showed to produce significant improvement in histology and function in rd10 mice through reducing oxidative stress. For the first time, the protective effects of PC were demonstrated against retina degeneration in rd10 mice and our study provides scientific rationale on using PC as the supplementary treatment to the outer retina diseases, including retinitis pigmentosa, in which oxidative stress is thought to contribute to disease progression.
Collapse
Affiliation(s)
- Yin Li
- a Department of Ophthalmology , Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University , Enshi , People's Republic of China
| | - Tuo Li
- a Department of Ophthalmology , Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University , Enshi , People's Republic of China
| | - Jia-Zhang Li
- a Department of Ophthalmology , Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University , Enshi , People's Republic of China
| | - Qing-Song Wu
- a Department of Ophthalmology , Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University , Enshi , People's Republic of China
| |
Collapse
|
40
|
Multi-target screening mines hesperidin as a multi-potent inhibitor: Implication in Alzheimer's disease therapeutics. Eur J Med Chem 2016; 121:810-822. [DOI: 10.1016/j.ejmech.2016.03.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 03/09/2016] [Accepted: 03/20/2016] [Indexed: 01/09/2023]
|
41
|
Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep 2016; 14:2614-24. [PMID: 27486021 PMCID: PMC4991731 DOI: 10.3892/mmr.2016.5542] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/14/2016] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD), one of the neurodegenerative disorders that may develop in the elderly, is characterized by the deposition of β‑amyloid protein (Aβ) and extensive neuronal cell death in the brain. Neuregulin‑1 (Nrg1)‑mediated intercellular and intracellular communication via binding to ErbB receptors regulates a diverse set of biological processes involved in the development of the nervous system. In the present study, a linear correlation was identified between Nrg1 and phosphorylated ErbB (pNeu and pErbB4) receptors in a human cortical tissue microarray. In addition, increased expression levels of Nrg1, but reduced pErbB receptor levels, were detected in the frontal lobe of a patient with AD. Western blotting and immunofluorescence staining were subsequently performed to uncover the potential preventive role of Nrg1 in cortical neurons affected by the neurodegenerative processes of AD. It was observed that the expression of Nrg1 increased as the culture time of the cortical neurons progressed. In addition, H2O2 and Aβ1‑42, two inducers of oxidative stress and neuronal damage, led to a dose‑dependent decrease in Nrg1 expression. Recombinant Nrg1β, however, was revealed to exert a pivotal role in preventing oxidative stress and neuronal damage from occurring in the mouse cortical neurons. Taken together, these results suggest that changes in Nrg1 signaling may influence the pathological development of AD, and exogenous Nrg1 may serve as a potential candidate for the prevention and treatment of AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Weijiang Zhao
- Correspondence to: Professor Weijiang Zhao, Center for Neuroscience, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
42
|
Bioactive Compounds and Their Neuroprotective Effects in Diabetic Complications. Nutrients 2016; 8:nu8080472. [PMID: 27483315 PMCID: PMC4997385 DOI: 10.3390/nu8080472] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 12/14/2022] Open
Abstract
Hyperglycemia, hyperlipidemia and impaired insulin signaling during the development of diabetes can cause diabetic complications, such as diabetic neuropathy, resulting in significant morbidity and mortality. Although various therapeutics are available for the treatment of diabetic neuropathy, no absolute cure exists, and additional research is necessary to comprehensively understand the underlying pathophysiological pathways. A number of studies have demonstrated the potential health benefits of bioactive compounds, i.e., flavonoids and vitamins, which may be effective as supplementary treatments for diabetes and its complications. In this review, we highlight the most recent reports about the mechanisms of action of bioactive compounds (flavonoids and vitamins) possessing potential neuroprotective properties in diabetic conditions. Additional clinical studies are required to determine the appropriate dose and duration of bioactive compound supplementation for neuroprotection in diabetic patients.
Collapse
|
43
|
Wen M, Xu J, Ding L, Zhang L, Du L, Wang J, Wang Y, Xue C. Eicosapentaenoic acid-enriched phospholipids improve Aβ1–40-induced cognitive deficiency in a rat model of Alzheimer's disease. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
44
|
(2R,3S)-Pinobanksin-3-cinnamate improves cognition and reduces oxidative stress in rats with vascular dementia. J Nat Med 2015; 69:358-65. [PMID: 25808015 DOI: 10.1007/s11418-015-0901-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/10/2015] [Indexed: 01/01/2023]
Abstract
This study investigated the neuroprotective effects of (2R,3S)-pinobanksin-3-cinnamate (PNC) in rats with occlusion-damaged bilateral common carotid arteries. Administration with PNC (5 and 10 mg/kg/day) for 5 weeks significantly improved the behavioral performance of rats with vascular dementia, as showed in the Morris water maze test by shortening the escape latency and latency of crossing, completing more platform crossings, as well as spending more time in the target zone. Further evaluations found that PNC could markedly decrease malondialdehyde levels, enhance superoxide dismutase activity and glutathione levels, and decrease the release of cytochrome c as well as the activities of caspases. Moreover, PNC increased Nrf2 and anti-apoptotic bcl-2 protein expression, while Nox1 and pro-apopotic bax protein expression was decreased. PNC may exert its neuroprotective effects through counteracting oxidative stress and has the potential to treat vascular dementia.
Collapse
|
45
|
CIC-3 chloride channel blockade protects mouse photoreceptor-derived 661W cells against ischemia-reperfusion-induced injury in vitro. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Li C, Zug C, Qu H, Schluesener H, Zhang Z. Hesperidin ameliorates behavioral impairments and neuropathology of transgenic APP/PS1 mice. Behav Brain Res 2015; 281:32-42. [DOI: 10.1016/j.bbr.2014.12.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/01/2014] [Accepted: 12/06/2014] [Indexed: 12/29/2022]
|
47
|
Yin Y, Huang SW, Zheng YJ, Dong YR. Angiotensin II type 1 receptor blockade suppresses H2O2-induced retinal degeneration in photoreceptor cells. Cutan Ocul Toxicol 2014; 34:307-12. [DOI: 10.3109/15569527.2014.979427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Wang D, Liu L, Zhu X, Wu W, Wang Y. Hesperidin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress in a mouse model of Alzheimer's disease. Cell Mol Neurobiol 2014; 34:1209-21. [PMID: 25135708 PMCID: PMC11488938 DOI: 10.1007/s10571-014-0098-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/06/2014] [Indexed: 01/02/2023]
Abstract
The role of mitochondrial dysfunction and oxidative stress has been well-documented in Alzheimer's disease (AD). Bioflavonoids are being utilised as neuroprotectants in the treatment of various neurological disorders, including AD. Therefore, we conducted this current study in order to explore the effects of hesperidin (a flavanone glycoside) against amyloid-β (Aβ)-induced cognitive dysfunction, oxidative damage and mitochondrial dysfunction in mice. Three-month-old APPswe/PS1dE9 transgenic mice were randomly assigned to a vehicle group, two hesperidin (either 50 or 100 mg/kg per day) groups, or an Aricept (2.5 mg/kg per day) group. After 16 weeks of treatment, although there was no obvious change in Aβ deposition in the hesperidin-treated (100 mg/kg per day) group, however, we found that the administration of hesperidin (100 mg/kg per day) resulted in the reduction of learning and memory deficits, improved locomotor activity, and the increase of anti-oxidative defense and mitochondrial complex I-IV enzymes activities. Furthermore, Glycogen synthase kinase-3β (GSK-3β) phosphorylation significantly increased in the hesperidin-treated (100 mg/kg per day) group. Taken together, these findings suggest that a reduction in mitochondrial dysfunction through the inhibition of GSK-3β activity, coupled with an increase in anti-oxidative defense, may be one of the mechanisms by which hesperidin improves cognitive function in the APPswe/PS1dE9 transgenic mouse model of AD.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, Building 6, Anhui, Jianxi District, Luoyang, 471003, People's Republic of China,
| | | | | | | | | |
Collapse
|
49
|
Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin — A mini-review. Life Sci 2014; 113:1-6. [DOI: 10.1016/j.lfs.2014.07.029] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/16/2014] [Accepted: 07/21/2014] [Indexed: 12/24/2022]
|
50
|
(2R, 3S)-pinobanksin-3-cinnamate, a new flavonone from seeds of Alpinia galanga willd., presents in vitro neuroprotective effects. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0018-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|