1
|
Salarvandian S, Digaleh H, Khodagholi F, Javadpour P, Asadi S, Zaman AAO, Dargahi L. Harmonic activity of glutamate dehydrogenase and neuroplasticity: The impact on aging, cognitive dysfunction, and neurodegeneration. Behav Brain Res 2025; 480:115399. [PMID: 39675635 DOI: 10.1016/j.bbr.2024.115399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
In recent years, glutamate has attracted significant attention for its roles in various brain processes. However, one of its key regulators, glutamate dehydrogenase (GDH), remains understudied despite its pivotal role in several biochemical pathways. Dysfunction or dysregulation of GDH has been implicated in aging and various neurological disorders, such as Alzheimer's disease and Parkinson's disease. In this review, the impact of GDH on aging, cognitive impairment, and neurodegenerative conditions, as exemplars of the phenomena that may affected by neuroplasticity, has been reviewed. Despite extensive research on synaptic plasticity, the precise influence of GDH on brain structure and function remains undiscovered. This review of existing literature on GDH and neuroplasticity reveals diverse and occasionally conflicting effects. Future research endeavors should aim to describe the precise mechanisms by which GDH influences neuroplasticity (eg. synaptic plasticity and neurogenesis), particularly in the context of human aging and disease progression. Studies on GDH activity have been limited by factors such as insufficient sample sizes and varying experimental conditions. Researchers should focus on investigating the molecular mechanisms by which GDH modulates neuroplasticity, utilizing various animal strains and species, ages, sexes, GDH isoforms, brain regions, and cell types. Understanding GDH's role in neuroplasticity may offer innovative therapeutic strategies for neurodegenerative and psychiatric diseases, potentially slowing the aging process and promoting brain regeneration.
Collapse
Affiliation(s)
- Shakiba Salarvandian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Digaleh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sareh Asadi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Orang Zaman
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Namba T, Huttner WB. What Makes Us Human: Insights from the Evolution and Development of the Human Neocortex. Annu Rev Cell Dev Biol 2024; 40:427-452. [PMID: 39356810 DOI: 10.1146/annurev-cellbio-112122-032521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
"What makes us human?" is a central question of many research fields, notably anthropology. In this review, we focus on the development of the human neocortex, the part of the brain with a key role in cognition, to gain neurobiological insight toward answering this question. We first discuss cortical stem and progenitor cells and human-specific genes that affect their behavior. We thus aim to understand the molecular foundation of the expansion of the neocortex that occurred in the course of human evolution, as this expansion is generally thought to provide a basis for our unique cognitive abilities. We then review the emerging evidence pointing to differences in the development of the neocortex between present-day humans and Neanderthals, our closest relatives. Finally, we discuss human-specific genes that have been implicated in neuronal circuitry and offer a perspective for future studies addressing the question of what makes us human.
Collapse
Affiliation(s)
- Takashi Namba
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany;
| |
Collapse
|
3
|
Ha CP, Hua TNM, Vo VTA, Om J, Han S, Cha SK, Park KS, Jeong Y. Humanin activates integrin αV-TGFβ axis and leads to glioblastoma progression. Cell Death Dis 2024; 15:464. [PMID: 38942749 PMCID: PMC11213926 DOI: 10.1038/s41419-024-06790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/30/2024]
Abstract
The role of mitochondria peptides in the spreading of glioblastoma remains poorly understood. In this study, we investigated the mechanism underlying intracranial glioblastoma progression. Our findings demonstrate that the mitochondria-derived peptide, humanin, plays a significant role in enhancing glioblastoma progression through the intratumoral activation of the integrin alpha V (ITGAV)-TGF beta (TGFβ) signaling axis. In glioblastoma tissues, humanin showed a significant upregulation in the tumor area compared to the corresponding normal region. Utilizing multiple in vitro pharmacological and genetic approaches, we observed that humanin activates the ITGAV pathway, leading to cellular attachment and filopodia formation. This process aids the subsequent migration and invasion of attached glioblastoma cells through intracellular TGFβR signaling activation. In addition, our in vivo orthotopic glioblastoma model provides further support for the pro-tumoral function of humanin. We observed a correlation between poor survival and aggressive invasiveness in the humanin-treated group, with noticeable tumor protrusions and induced angiogenesis compared to the control. Intriguingly, the in vivo effect of humanin on glioblastoma was significantly reduced by the treatment of TGFBR1 inhibitor. To strengthen these findings, public database analysis revealed a significant association between genes in the ITGAV-TGFβR axis and poor prognosis in glioblastoma patients. These results collectively highlight humanin as a pro-tumoral factor, making it a promising biological target for treating glioblastoma.
Collapse
Affiliation(s)
- Cuong P Ha
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Tuyen N M Hua
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Pharmacology - Clinical Pharmacy, Faculty of Pharmacy, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Vu T A Vo
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Jiyeon Om
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Sangwon Han
- Department of Ophthalmology, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Seung-Kuy Cha
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Institutes of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
- Mitochondrial Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Kyu-Sang Park
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Institutes of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitochondrial Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
| | - Yangsik Jeong
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Institutes of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
- Mitochondrial Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
| |
Collapse
|
4
|
Rae CD, Baur JA, Borges K, Dienel G, Díaz-García CM, Douglass SR, Drew K, Duarte JMN, Duran J, Kann O, Kristian T, Lee-Liu D, Lindquist BE, McNay EC, Robinson MB, Rothman DL, Rowlands BD, Ryan TA, Scafidi J, Scafidi S, Shuttleworth CW, Swanson RA, Uruk G, Vardjan N, Zorec R, McKenna MC. Brain energy metabolism: A roadmap for future research. J Neurochem 2024; 168:910-954. [PMID: 38183680 PMCID: PMC11102343 DOI: 10.1111/jnc.16032] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.
Collapse
Affiliation(s)
- Caroline D. Rae
- School of Psychology, The University of New South Wales, NSW 2052 & Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, & Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, Baltimore, Maryland, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dasfne Lee-Liu
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Región Metropolitana, Chile
| | - Britta E. Lindquist
- Department of Neurology, Division of Neurocritical Care, Gladstone Institute of Neurological Disease, University of California at San Francisco, San Francisco, California, USA
| | - Ewan C. McNay
- Behavioral Neuroscience, University at Albany, Albany, New York, USA
| | - Michael B. Robinson
- Departments of Pediatrics and System Pharmacology & Translational Therapeutics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas L. Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Benjamin D. Rowlands
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | - Joseph Scafidi
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susanna Scafidi
- Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque, Albuquerque, New Mexico, USA
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gökhan Uruk
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mary C. McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Xing L, Gkini V, Nieminen AI, Zhou HC, Aquilino M, Naumann R, Reppe K, Tanaka K, Carmeliet P, Heikinheimo O, Pääbo S, Huttner WB, Namba T. Functional synergy of a human-specific and an ape-specific metabolic regulator in human neocortex development. Nat Commun 2024; 15:3468. [PMID: 38658571 PMCID: PMC11043075 DOI: 10.1038/s41467-024-47437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Metabolism has recently emerged as a major target of genes implicated in the evolutionary expansion of human neocortex. One such gene is the human-specific gene ARHGAP11B. During human neocortex development, ARHGAP11B increases the abundance of basal radial glia, key progenitors for neocortex expansion, by stimulating glutaminolysis (glutamine-to-glutamate-to-alpha-ketoglutarate) in mitochondria. Here we show that the ape-specific protein GLUD2 (glutamate dehydrogenase 2), which also operates in mitochondria and converts glutamate-to-αKG, enhances ARHGAP11B's ability to increase basal radial glia abundance. ARHGAP11B + GLUD2 double-transgenic bRG show increased production of aspartate, a metabolite essential for cell proliferation, from glutamate via alpha-ketoglutarate and the TCA cycle. Hence, during human evolution, a human-specific gene exploited the existence of another gene that emerged during ape evolution, to increase, via concerted changes in metabolism, progenitor abundance and neocortex size.
Collapse
Affiliation(s)
- Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Vasiliki Gkini
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Anni I Nieminen
- FIMM Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Hui-Chao Zhou
- Center for Cancer Biology (CCB), VIB-KU Leuven, B-3000, Leuven, Belgium
| | - Matilde Aquilino
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Katrin Reppe
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, B-3000, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, B-3000, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Oskari Heikinheimo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Human Evolutionary Genomics Unit, Okinawa Institute of Science and Technology, Okinawa, Onna-son, Japan
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Takashi Namba
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Vedelek V, Jankovics F, Zádori J, Sinka R. Mitochondrial Differentiation during Spermatogenesis: Lessons from Drosophila melanogaster. Int J Mol Sci 2024; 25:3980. [PMID: 38612789 PMCID: PMC11012351 DOI: 10.3390/ijms25073980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Numerous diseases can arise as a consequence of mitochondrial malfunction. Hence, there is a significant focus on studying the role of mitochondria in cancer, ageing, neurodegenerative diseases, and the field of developmental biology. Mitochondria could exist as discrete organelles in the cell; however, they have the ability to fuse, resulting in the formation of interconnected reticular structures. The dynamic changes between these forms correlate with mitochondrial function and mitochondrial health, and consequently, there is a significant scientific interest in uncovering the specific molecular constituents that govern these transitions. Moreover, the specialized mitochondria display a wide array of variable morphologies in their cristae formations. These inner mitochondrial structures are closely associated with the specific functions performed by the mitochondria. In multiple cases, the presence of mitochondrial dysfunction has been linked to male sterility, as it has been observed to cause a range of abnormal spermatogenesis and sperm phenotypes in different species. This review aims to elucidate the dynamic alterations and functions of mitochondria in germ cell development during the spermatogenesis of Drosophila melanogaster.
Collapse
Affiliation(s)
- Viktor Vedelek
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Ferenc Jankovics
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary;
- Department of Medical Biology, Albert Szent-Györgyi Medical Centre, University of Szeged, 6720 Szeged, Hungary
| | - János Zádori
- Institute of Reproductive Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged, 6723 Szeged, Hungary;
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
7
|
Foltyn-Dumitru M, Alzaid H, Rastogi A, Neuberger U, Sahm F, Kessler T, Wick W, Bendszus M, Vollmuth P, Schell M. Unraveling glioblastoma diversity: Insights into methylation subtypes and spatial relationships. Neurooncol Adv 2024; 6:vdae112. [PMID: 39022646 PMCID: PMC11253205 DOI: 10.1093/noajnl/vdae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Background The purpose of this study was to elucidate the relationship between distinct brain regions and molecular subtypes in glioblastoma (GB), focusing on integrating modern statistical tools and molecular profiling to better understand the heterogeneity of Isocitrate Dehydrogenase wild-type (IDH-wt) gliomas. Methods This retrospective study comprised 441 patients diagnosed with new IDH-wt glioma between 2009 and 2020 at Heidelberg University Hospital. The diagnostic process included preoperative magnetic resonance imaging and molecular characterization, encompassing IDH-status determination and subclassification, through DNA-methylation profiling. To discern and map distinct brain regions associated with specific methylation subtypes, a support-vector regression-based lesion-symptom mapping (SVR-LSM) was employed. Lesion maps were adjusted to 2 mm³ resolution. Significance was assessed with beta maps, using a threshold of P < .005, with 10 000 permutations and a cluster size minimum of 100 voxels. Results Of 441 initially screened glioma patients, 423 (95.9%) met the inclusion criteria. Following DNA-methylation profiling, patients were classified into RTK II (40.7%), MES (33.8%), RTK I (18%), and other methylation subclasses (7.6%). Between molecular subtypes, there was no difference in tumor volume. Using SVR-LSM, distinct brain regions correlated with each subclass were identified: MES subtypes were associated with left-hemispheric regions involving the superior temporal gyrus and insula cortex, RTK I with right frontal regions, and RTK II with 3 clusters in the left hemisphere. Conclusions This study linked molecular diversity and spatial features in glioblastomas using SVR-LSM. Future studies should validate these findings in larger, independent cohorts to confirm the observed patterns.
Collapse
Affiliation(s)
- Martha Foltyn-Dumitru
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Haidar Alzaid
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Aditya Rastogi
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ulf Neuberger
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Kessler
- Department of Neurology and Neurooncology Program, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology and Neurooncology Program, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marianne Schell
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
8
|
Vedelek V, Vedelek B, Lőrincz P, Juhász G, Sinka R. A comparative analysis of fruit fly and human glutamate dehydrogenases in Drosophila melanogaster sperm development. Front Cell Dev Biol 2023; 11:1281487. [PMID: 38020911 PMCID: PMC10652781 DOI: 10.3389/fcell.2023.1281487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Glutamate dehydrogenases are enzymes that take part in both amino acid and energy metabolism. Their role is clear in many biological processes, from neuronal function to cancer development. The putative testis-specific Drosophila glutamate dehydrogenase, Bb8, is required for male fertility and the development of mitochondrial derivatives in spermatids. Testis-specific genes are less conserved and could gain new functions, thus raising a question whether Bb8 has retained its original enzymatic activity. We show that while Bb8 displays glutamate dehydrogenase activity, there are significant functional differences between the housekeeping Gdh and the testis-specific Bb8. Both human GLUD1 and GLUD2 can rescue the bb8 ms mutant phenotype, with superior performance by GLUD2. We also tested the role of three conserved amino acids observed in both Bb8 and GLUD2 in Gdh mutants, which showed their importance in the glutamate dehydrogenase function. The findings of our study indicate that Drosophila Bb8 and human GLUD2 could be novel examples of convergent molecular evolution. Furthermore, we investigated the importance of glutamate levels in mitochondrial homeostasis during spermatogenesis by ectopic expression of the mitochondrial glutamate transporter Aralar1, which caused mitochondrial abnormalities in fly spermatids. The data presented in our study offer evidence supporting the significant involvement of glutamate metabolism in sperm development.
Collapse
Affiliation(s)
- Viktor Vedelek
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Balázs Vedelek
- Department of Genetics, University of Szeged, Szeged, Hungary
- Hungarian Research Network, Biological Research Centre, Developmental Genetics Unit, Szeged, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
- Hungarian Research Network, Biological Research Centre, Institute of Genetics, Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, Szeged, Hungary
| |
Collapse
|
9
|
Brambilla M, Chiari G, Commisso M, Nerva L, Musetti R, Petraglia A, Degola F. Glutamate dehydrogenase in "Liverworld"-A study in selected species to explore a key enzyme of plant primary metabolism in Marchantiophyta. PHYSIOLOGIA PLANTARUM 2023; 175:e14071. [PMID: 38148220 DOI: 10.1111/ppl.14071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/28/2023]
Abstract
In plants, glutamate dehydrogenase (GDH) is an ubiquitous enzyme that catalyzes the reversible amination of 2-oxoglutarate in glutamate. It contributes to both the amino acid homeostasis and the management of intracellular ammonium, and it is regarded as a key player at the junction of carbon and nitrogen assimilation pathways. To date, information about the GDH of terrestrial plants refers to a very few species only. We focused on selected species belonging to the division Marchantiophyta, providing the first panoramic overview of biochemical and functional features of GDH in liverworts. Native electrophoretic analyses showed an isoenzymatic profile less complex than what was reported for Arabidposis thaliana and other angiosperms: the presence of a single isoform corresponding to an α-homohexamer, differently prone to thermal inactivation on a species- and organ-basis, was found. Sequence analysis conducted on amino acid sequences confirmed a high similarity of GDH in modern liverworts with the GDH2 protein of A. thaliana, strengthening the hypothesis that the duplication event that gave origin to GDH1-homolog gene from GDH2 occurred after the evolutionary bifurcation that separated bryophytes and tracheophytes. Experiments conducted on Marchantia polymorpha and Calypogeia fissa grown in vitro and compared to A. thaliana demonstrated through in gel activity detection and monodimensional Western Blot that the aminating activity of GDH resulted in strongly enhanced responses to ammonium excess in liverworts as well, even if at a different extent compared to Arabidopsis and other vascular species. The comparative analysis by bi-dimensional Western Blot suggested that the regulation of the enzyme could be, at least partially, untied from the protein post-translational pattern. Finally, immuno-electron microscopy revealed that the GDH enzyme localizes at the subcellular level in both mitochondria and chloroplasts of parenchyma and is specifically associated to the endomembrane system in liverworts.
Collapse
Affiliation(s)
- Martina Brambilla
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giorgio Chiari
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Luca Nerva
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Conegliano, Italy
| | - Rita Musetti
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Padova, Italy
| | - Alessandro Petraglia
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Degola
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
10
|
Sirtuin 4 Inhibits Prostate Cancer Progression and Metastasis by Modulating p21 Nuclear Translocation and Glutamate Dehydrogenase 1 ADP-Ribosylation. JOURNAL OF ONCOLOGY 2022; 2022:5498743. [PMID: 35847357 PMCID: PMC9283077 DOI: 10.1155/2022/5498743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/14/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Abstract
Protein posttranslational modification regulates several biological mechanisms, including tumor progression. In this study, we show that the mitochondrial Sirtuin 4 (SIRT4), which has ADP-ribosylation activity, plays a role in prostate cancer (PCa) progression. Firstly, SIRT4 expression was verified in PCa tissues and cell lines by quantitative real-time PCR (qRT-PCR) and western blotting. Subsequently, we established stable PC-3 and 22rv1 cells that overexpressed SIRT4 and knocked down SIRT4, respectively. The functions of SIRT4 in PCa were explored through various phenotype experiments. The mechanism underlying the functions of SIRT4 was investigated through western blotting, immunoprecipitation, immunofluorescence, and nuclear and cytoplasmic extraction assays. We revealed that SIRT4 inhibited cell progression both in vivo and in vitro. Mechanistically, on the one hand, SIRT4 promoted the ADP-ribosylation of glutamate dehydrogenase 1 to inhibit the glutamine metabolism pathways. On the other hand, SIRT4 inhibited the phosphorylation of AKT, thereby affecting p21 phosphorylation and its cellular localization for cell cycle arrest. In conclusion, our study indicates that SIRT4 is directly associated with PCa progression and could be a novel target for PCa therapy.
Collapse
|
11
|
Kayabolen A, Yilmaz E, Bagci-Onder T. IDH Mutations in Glioma: Double-Edged Sword in Clinical Applications? Biomedicines 2021; 9:799. [PMID: 34356864 PMCID: PMC8301439 DOI: 10.3390/biomedicines9070799] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
Discovery of point mutations in the genes encoding isocitrate dehydrogenases (IDH) in gliomas about a decade ago has challenged our view of the role of metabolism in tumor progression and provided a new stratification strategy for malignant gliomas. IDH enzymes catalyze the conversion of isocitrate to alpha-ketoglutarate (α-KG), an intermediate in the citric acid cycle. Specific mutations in the genes encoding IDHs cause neomorphic enzymatic activity that produces D-2-hydroxyglutarate (2-HG) and result in the inhibition of α-KG-dependent enzymes such as histone and DNA demethylases. Thus, chromatin structure and gene expression profiles in IDH-mutant gliomas appear to be different from those in IDH-wildtype gliomas. IDH mutations are highly common in lower grade gliomas (LGG) and secondary glioblastomas, and they are among the earliest genetic events driving tumorigenesis. Therefore, inhibition of mutant IDH enzymes in LGGs is widely accepted as an attractive therapeutic strategy. On the other hand, the metabolic consequences derived from IDH mutations lead to selective vulnerabilities within tumor cells, making them more sensitive to several therapeutic interventions. Therefore, instead of shutting down mutant IDH enzymes, exploiting the selective vulnerabilities caused by them might be another attractive and promising strategy. Here, we review therapeutic options and summarize current preclinical and clinical studies on IDH-mutant gliomas.
Collapse
Affiliation(s)
- Alisan Kayabolen
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| | - Ebru Yilmaz
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| |
Collapse
|
12
|
Iranmanesh Y, Jiang B, Favour OC, Dou Z, Wu J, Li J, Sun C. Mitochondria's Role in the Maintenance of Cancer Stem Cells in Glioblastoma. Front Oncol 2021; 11:582694. [PMID: 33692947 PMCID: PMC7937970 DOI: 10.3389/fonc.2021.582694] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM), one of the deadliest primary brain malignancies, is characterized by a high recurrence rate due to its limited response to existing therapeutic strategies such as chemotherapy, radiation therapy, and surgery. Several mechanisms and pathways have been identified to be responsible for GBM therapeutic resistance. Glioblastoma stem cells (GSCs) are known culprits of GBM resistance to therapy. GSCs are characterized by their unique self-renewal, differentiating capacity, and proliferative potential. They form a heterogeneous population of cancer stem cells within the tumor and are further divided into different subpopulations. Their distinct molecular, genetic, dynamic, and metabolic features distinguish them from neural stem cells (NSCs) and differentiated GBM cells. Novel therapeutic strategies targeting GSCs could effectively reduce the tumor-initiating potential, hence, a thorough understanding of mechanisms involved in maintaining GSCs' stemness cannot be overemphasized. The mitochondrion, a regulator of cellular physiological processes such as autophagy, cellular respiration, reactive oxygen species (ROS) generation, apoptosis, DNA repair, and cell cycle control, has been implicated in various malignancies (for instance, breast, lung, and prostate cancer). Besides, the role of mitochondria in GBM has been extensively studied. For example, when stressors, such as irradiation and hypoxia are present, GSCs utilize specific cytoprotective mechanisms like the activation of mitochondrial stress pathways to survive the harsh environment. Proliferating GBM cells exhibit increased cytoplasmic glycolysis in comparison to terminally differentiated GBM cells and quiescent GSCs that rely more on oxidative phosphorylation (OXPHOS). Furthermore, the Warburg effect, which is characterized by increased tumor cell glycolysis and decreased mitochondrial metabolism in the presence of oxygen, has been observed in GBM. Herein, we highlight the importance of mitochondria in the maintenance of GSCs.
Collapse
Affiliation(s)
| | - Biao Jiang
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| | - Okoye C Favour
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangqi Dou
- Department of Neurosurgery, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| | - Jiawei Wu
- Department of Neurosurgery, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| | - Jinfan Li
- Department of Pathology, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| | - Chongran Sun
- Department of Neurosurgery, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| |
Collapse
|
13
|
Dimovasili C, Fadouloglou VE, Kefala A, Providaki M, Kotsifaki D, Kanavouras K, Sarrou I, Plaitakis A, Zaganas I, Kokkinidis M. Crystal structure of glutamate dehydrogenase 2, a positively selected novel human enzyme involved in brain biology and cancer pathophysiology. J Neurochem 2021; 157:802-815. [PMID: 33421122 DOI: 10.1111/jnc.15296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/04/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Mammalian glutamate dehydrogenase (hGDH1 in human cells) interconverts glutamate to α-ketoglutarate and ammonia while reducing NAD(P) to NAD(P)H. During primate evolution, humans and great apes have acquired hGDH2, an isoenzyme that underwent rapid evolutionary adaptation concomitantly with brain expansion, thereby acquiring unique catalytic and regulatory properties that permitted its function under conditions inhibitory to its ancestor hGDH1. Although the 3D-structures of GDHs, including hGDH1, have been determined, attempts to determine the hGDH2 structure were until recently unsuccessful. Comparison of the hGDH1/hGDH2 structures would enable a detailed understanding of their evolutionary differences. This work aimed at the determination of the hGDH2 crystal structure and the analysis of its functional implications. Recombinant hGDH2 was produced in the Spodoptera frugiperda ovarian cell line Sf21, using the Baculovirus expression system. Purification was achieved via a two-step chromatography procedure. hGDH2 was crystallized, X-ray diffraction data were collected using synchrotron radiation and the structure was determined by molecular replacement. The hGDH2 structure is reported at a resolution of 2.9 Å. The enzyme adopts a novel semi-closed conformation, which is an intermediate between known open and closed GDH1 conformations, differing from both. The structure enabled us to dissect previously reported biochemical findings and to structurally interpret the effects of evolutionary amino acid substitutions, including Arg470His, on ADP affinity. In conclusion, our data provide insights into the structural basis of hGDH2 properties, the functional evolution of hGDH isoenzymes, and open new prospects for drug design, especially for cancer therapeutics.
Collapse
Affiliation(s)
- Christina Dimovasili
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece.,Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vasiliki E Fadouloglou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.,Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Aikaterini Kefala
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.,Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Mary Providaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Dina Kotsifaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Konstantinos Kanavouras
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece.,Department of Neurology, "G. Gennimatas" General Hospital, Athens, Greece
| | - Iosifina Sarrou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.,Center for Free-Electron Laser Science/DESY, Hamburg, Germany
| | - Andreas Plaitakis
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Ioannis Zaganas
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Michael Kokkinidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.,Department of Biology, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
14
|
Vadlakonda L, Indracanti M, Kalangi SK, Gayatri BM, Naidu NG, Reddy ABM. The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. J Diabetes Metab Disord 2020; 19:1731-1775. [PMID: 33520860 DOI: 10.1007/s40200-020-00566-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Purpose Re-examine the current metabolic models. Methods Review of literature and gene networks. Results Insulin activates Pi uptake, glutamine metabolism to stabilise lipid membranes. Tissue turnover maintains the metabolic health. Current model of intermediary metabolism (IM) suggests glucose is the source of energy, and anaplerotic entry of fatty acids and amino acids into mitochondria increases the oxidative capacity of the TCA cycle to produce the energy (ATP). The reduced cofactors, NADH and FADH2, have different roles in regulating the oxidation of nutrients, membrane potentials and biosynthesis. Trans-hydrogenation of NADH to NADPH activates the biosynthesis. FADH2 sustains the membrane potential during the cell transformations. Glycolytic enzymes assume the non-canonical moonlighting functions, enter the nucleus to remodel the genetic programmes to affect the tissue turnover for efficient use of nutrients. Glycosylation of the CD98 (4F2HC) stabilises the nutrient transporters and regulates the entry of cysteine, glutamine and BCAA into the cells. A reciprocal relationship between the leucine and glutamine entry into cells regulates the cholesterol and fatty acid synthesis and homeostasis in cells. Insulin promotes the Pi transport from the blood to tissues, activates the mitochondrial respiratory activity, and glutamine metabolism, which activates the synthesis of cholesterol and the de novo fatty acids for reorganising and stabilising the lipid membranes for nutrient transport and signal transduction in response to fluctuations in the microenvironmental cues. Fatty acids provide the lipid metabolites, activate the second messengers and protein kinases. Insulin resistance suppresses the lipid raft formation and the mitotic slippage activates the fibrosis and slow death pathways.
Collapse
Affiliation(s)
| | - Meera Indracanti
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Suresh K Kalangi
- Amity Stem Cell Institute, Amity University Haryana, Amity Education Valley Pachgaon, Manesar, Gurugram, HR 122413 India
| | - B Meher Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Navya G Naidu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Aramati B M Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| |
Collapse
|
15
|
Novel genetic features of human and mouse Purkinje cell differentiation defined by comparative transcriptomics. Proc Natl Acad Sci U S A 2020; 117:15085-15095. [PMID: 32546527 PMCID: PMC7334519 DOI: 10.1073/pnas.2000102117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Comparative transcriptomics between differentiating human pluripotent stem cells (hPSCs) and developing mouse neurons offers a powerful approach to compare genetic and epigenetic pathways in human and mouse neurons. To analyze human Purkinje cell (PC) differentiation, we optimized a protocol to generate human pluripotent stem cell-derived Purkinje cells (hPSC-PCs) that formed synapses when cultured with mouse cerebellar glia and granule cells and fired large calcium currents, measured with the genetically encoded calcium indicator jRGECO1a. To directly compare global gene expression of hPSC-PCs with developing mouse PCs, we used translating ribosomal affinity purification (TRAP). As a first step, we used Tg(Pcp2-L10a-Egfp) TRAP mice to profile actively transcribed genes in developing postnatal mouse PCs and used metagene projection to identify the most salient patterns of PC gene expression over time. We then created a transgenic Pcp2-L10a-Egfp TRAP hPSC line to profile gene expression in differentiating hPSC-PCs, finding that the key gene expression pathways of differentiated hPSC-PCs most closely matched those of late juvenile mouse PCs (P21). Comparative bioinformatics identified classical PC gene signatures as well as novel mitochondrial and autophagy gene pathways during the differentiation of both mouse and human PCs. In addition, we identified genes expressed in hPSC-PCs but not mouse PCs and confirmed protein expression of a novel human PC gene, CD40LG, expressed in both hPSC-PCs and native human cerebellar tissue. This study therefore provides a direct comparison of hPSC-PC and mouse PC gene expression and a robust method for generating differentiated hPSC-PCs with human-specific gene expression for modeling developmental and degenerative cerebellar disorders.
Collapse
|
16
|
Intrauterine RAS programming alteration-mediated susceptibility and heritability of temporal lobe epilepsy in male offspring rats induced by prenatal dexamethasone exposure. Arch Toxicol 2020; 94:3201-3215. [PMID: 32494933 DOI: 10.1007/s00204-020-02796-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
Abstract
Partial temporal lobe epilepsy (TLE) has an intrauterine developmental origin. This study was aimed at elucidating the heritable effects and programming mechanism of TLE in offspring rats induced by prenatal dexamethasone exposure (PDE). Pregnant Wistar rats were injected subcutaneously with dexamethasone (0.2 mg/kg day) from gestational day 9 to 20. The F1 and F2 generations of male offspring were administered lithium pilocarpine (LiPC) for electroencephalography and video monitoring in epilepsy or behavioral tests. Results showed that the PDE + LiPC group exhibited TLE susceptibility, which continued throughout F2 generation. Expression of hippocampal glucocorticoid receptor (GR), CCAAT enhancer-binding protein α (C/EBPα), intrauterine renin-angiotensin system (RAS) classical pathway related genes, the H3K27ac level in angiotensin-converting enzyme (ACE) promoter, as well as high mobility group box 1 (HMGB1) and toll-like receptor 4 (TLR4) were increased, but glutamate dehydrogenase (GLUD) 1/2 expression were decreased, accompanied by increased glutamate levels in PDE fetal and adult rats, as well as in F1 and F2 offspring of the PDE + LiPC group. These consistent changes were also observed by treating the H19-7 fetal hippocampal cell line with dexamethasone and were reversed by GR inhibitor (RU486) and ACE inhibitor (enalaprilat). Our results confirmed that PDE-induced H3K27ac enrichment in the ACE promoter and enhanced the RAS classic pathway via activating GR-C/EBPα-p300 in utero, which caused changes of the HMGB1 pathway and glutamate excitatory damage. Intrauterine programming mediated by abnormal histone modification of hippocampal ACE could continue to adulthood and even F2 generation, which induced the heritability of TLE in male offspring rats.
Collapse
|
17
|
Park CK, Horton NC. Structures, functions, and mechanisms of filament forming enzymes: a renaissance of enzyme filamentation. Biophys Rev 2019; 11:927-994. [PMID: 31734826 PMCID: PMC6874960 DOI: 10.1007/s12551-019-00602-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Filament formation by non-cytoskeletal enzymes has been known for decades, yet only relatively recently has its wide-spread role in enzyme regulation and biology come to be appreciated. This comprehensive review summarizes what is known for each enzyme confirmed to form filamentous structures in vitro, and for the many that are known only to form large self-assemblies within cells. For some enzymes, studies describing both the in vitro filamentous structures and cellular self-assembly formation are also known and described. Special attention is paid to the detailed structures of each type of enzyme filament, as well as the roles the structures play in enzyme regulation and in biology. Where it is known or hypothesized, the advantages conferred by enzyme filamentation are reviewed. Finally, the similarities, differences, and comparison to the SgrAI endonuclease system are also highlighted.
Collapse
Affiliation(s)
- Chad K. Park
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| | - Nancy C. Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
18
|
Huang LE. Friend or foe-IDH1 mutations in glioma 10 years on. Carcinogenesis 2019; 40:1299-1307. [PMID: 31504231 PMCID: PMC6875900 DOI: 10.1093/carcin/bgz134] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/02/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022] Open
Abstract
The identification of recurrent point mutations in the isocitrate dehydrogenase 1 (IDH1) gene, albeit in only a small percentage of glioblastomas a decade ago, has transformed our understanding of glioma biology, genomics and metabolism. More than 1000 scientific papers have been published since, propelling bench-to-bedside investigations that have led to drug development and clinical trials. The rapid biomedical advancement has been driven primarily by the realization of a neomorphic activity of IDH1 mutation that produces high levels of (d)-2-hydroxyglutarate, a metabolite believed to promote glioma initiation and progression through epigenetic and metabolic reprogramming. Thus, novel inhibitors of mutant IDH1 have been developed for therapeutic targeting. However, numerous clinical and experimental findings are at odds with this simple concept. By taking into consideration a large body of findings in the literature, this article analyzes how different approaches have led to opposing conclusions and proffers a counterintuitive hypothesis that IDH1 mutation is intrinsically tumor suppressive in glioma but functionally undermined by the glutamate-rich cerebral environment, inactivation of tumor-suppressor genes and IDH1 copy-number alterations. This theory also provides an explanation for some of the most perplexing observations, including the scarcity of proper model systems and the prevalence of IDH1 mutation in glioma.
Collapse
Affiliation(s)
- L Eric Huang
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
19
|
Yuan TL, Amzallag A, Bagni R, Yi M, Afghani S, Burgan W, Fer N, Strathern LA, Powell K, Smith B, Waters AM, Drubin D, Thomson T, Liao R, Greninger P, Stein GT, Murchie E, Cortez E, Egan RK, Procter L, Bess M, Cheng KT, Lee CS, Lee LC, Fellmann C, Stephens R, Luo J, Lowe SW, Benes CH, McCormick F. Differential Effector Engagement by Oncogenic KRAS. Cell Rep 2019; 22:1889-1902. [PMID: 29444439 DOI: 10.1016/j.celrep.2018.01.051] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 10/02/2017] [Accepted: 01/17/2018] [Indexed: 12/25/2022] Open
Abstract
KRAS can bind numerous effector proteins, which activate different downstream signaling events. The best known are RAF, phosphatidylinositide (PI)-3' kinase, and RalGDS families, but many additional direct and indirect effectors have been reported. We have assessed how these effectors contribute to several major phenotypes in a quantitative way, using an arrayed combinatorial siRNA screen in which we knocked down 41 KRAS effectors nodes in 92 cell lines. We show that every cell line has a unique combination of effector dependencies, but in spite of this heterogeneity, we were able to identify two major subtypes of KRAS mutant cancers of the lung, pancreas, and large intestine, which reflect different KRAS effector engagement and opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Tina L Yuan
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA 94158, USA
| | - Arnaud Amzallag
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Rachel Bagni
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Ming Yi
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Shervin Afghani
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA 94158, USA
| | - William Burgan
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Nicole Fer
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Leslie A Strathern
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Katie Powell
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Brian Smith
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Andrew M Waters
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - David Drubin
- Selventa, One Alewife Center, Suite 330, Cambridge, MA 02140, USA
| | - Ty Thomson
- Selventa, One Alewife Center, Suite 330, Cambridge, MA 02140, USA
| | - Rosy Liao
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Patricia Greninger
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Giovanna T Stein
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ellen Murchie
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Eliane Cortez
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Regina K Egan
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lauren Procter
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Matthew Bess
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Kwong Tai Cheng
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Chih-Shia Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Liam Changwoo Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christof Fellmann
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert Stephens
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Scott W Lowe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Cyril H Benes
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA 94158, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, MD 21702, USA.
| |
Collapse
|
20
|
Quintana DS, Rokicki J, van der Meer D, Alnæs D, Kaufmann T, Córdova-Palomera A, Dieset I, Andreassen OA, Westlye LT. Oxytocin pathway gene networks in the human brain. Nat Commun 2019; 10:668. [PMID: 30737392 PMCID: PMC6368605 DOI: 10.1038/s41467-019-08503-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 01/09/2019] [Indexed: 11/09/2022] Open
Abstract
Oxytocin is a neuropeptide involved in animal and human reproductive and social behavior. Three oxytocin signaling genes have been frequently implicated in human social behavior: OXT (structural gene for oxytocin), OXTR (oxytocin receptor), and CD38 (oxytocin secretion). Here, we characterized the distribution of OXT, OXTR, and CD38 mRNA across the human brain by creating voxel-by-voxel volumetric expression maps, and identified putative gene pathway interactions by comparing gene expression patterns across 20,737 genes. Expression of the three selected oxytocin pathway genes was enriched in subcortical and olfactory regions and there was high co-expression with several dopaminergic and muscarinic acetylcholine genes, reflecting an anatomical basis for critical gene pathway interactions. fMRI meta-analysis revealed that the oxytocin pathway gene maps correspond with the processing of anticipatory, appetitive, and aversive cognitive states. The oxytocin signaling system may interact with dopaminergic and muscarinic acetylcholine signaling to modulate cognitive state processes involved in complex human behaviors.
Collapse
Affiliation(s)
- Daniel S Quintana
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, PO Box 4956, Oslo, Norway.
| | - Jaroslav Rokicki
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, PO Box 4956, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, 0373, Norway
| | - Dennis van der Meer
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, PO Box 4956, Oslo, Norway
| | - Dag Alnæs
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, PO Box 4956, Oslo, Norway
| | - Tobias Kaufmann
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, PO Box 4956, Oslo, Norway
| | - Aldo Córdova-Palomera
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, PO Box 4956, Oslo, Norway
| | - Ingrid Dieset
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, PO Box 4956, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, PO Box 4956, Oslo, Norway
| | - Lars T Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, PO Box 4956, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, 0373, Norway
| |
Collapse
|
21
|
Mitochondrial enzyme GLUD2 plays a critical role in glioblastoma progression. EBioMedicine 2018; 37:56-67. [PMID: 30314897 PMCID: PMC6284416 DOI: 10.1016/j.ebiom.2018.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 01/06/2023] Open
Abstract
Background Glioblastoma (GBM) is the most frequent and malignant primary brain tumor in adults and despite the progress in surgical procedures and therapy options, the overall survival remains very poor. Glutamate and α-KG are fundamental elements necessary to support the growth and proliferation of GBM cells. Glutamate oxidative deamination, catalyzed by GLUD2, is the predominant pathway for the production of α-KG. Methods GLUD2 emerged from the RNA-seq analysis of 13 GBM patients, performed in our laboratory and a microarray analysis of 77 high-grade gliomas available on the Geo database. Thereafter, we investigated GLUD2 relevance in cancer cell behavior by GLUD2 overexpression and silencing in two different human GBM cell lines. Finally, we overexpressed GLUD2 in-vivo by using zebrafish embryos and monitored the developing central nervous system. Findings GLUD2 expression was found associated to the histopathological classification, prognosis and survival of GBM patients. Moreover, through in-vitro functional studies, we showed that differences in GLUD2 expression level affected cell proliferation, migration, invasion, colony formation abilities, cell cycle phases, mitochondrial function and ROS production. In support of these findings, we also demonstrated, with in-vivo studies, that GLUD2 overexpression affects glial cell proliferation without affecting neuronal development in zebrafish embryos. Interpretation We concluded that GLUD2 overexpression inhibited GBM cell growth suggesting a novel potential drug target for control of GBM progression. The possibility to enhance GLUD2 activity in GBM could result in a blocked/reduced proliferation of GBM cells without affecting the survival of the surrounding neurons.
Collapse
|
22
|
Mathioudakis L, Bourbouli M, Daklada E, Kargatzi S, Michaelidou K, Zaganas I. Localization of Human Glutamate Dehydrogenases Provides Insights into Their Metabolic Role and Their Involvement in Disease Processes. Neurochem Res 2018; 44:170-187. [PMID: 29943084 DOI: 10.1007/s11064-018-2575-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Abstract
Glutamate dehydrogenase (GDH) catalyzes the reversible deamination of L-glutamate to α-ketoglutarate and ammonia. In mammals, GDH contributes to important processes such as amino acid and carbohydrate metabolism, energy production, ammonia management, neurotransmitter recycling and insulin secretion. In humans, two isoforms of GDH are found, namely hGDH1 and hGDH2, with the former being ubiquitously expressed and the latter found mainly in brain, testis and kidney. These two iso-enzymes display highly divergent allosteric properties, especially concerning their basal activity, ADP activation and GTP inhibition. On the other hand, both enzymes are thought to predominantly localize in the mitochondrial matrix, even though alternative localizations have been proposed. To further study the subcellular localization of the two human iso-enzymes, we created HEK293 cell lines stably over-expressing hGDH1 and hGDH2. In these cell lines, immunofluorescence and enzymatic analyses verified the overexpression of both hGDH1 and hGDH2 iso-enzymes, whereas subcellular fractionation followed by immunoblotting showed their predominantly mitochondrial localization. Given that previous studies have only indirectly compared the subcellular localization of the two iso-enzymes, we co-expressed them tagged with different fluorescent dyes (green and red fluorescent protein for hGDH1 and hGDH2, respectively) and found them to co-localize. Despite the wealth of information related to the functional properties of hGDH1 and hGDH2 and the availability of the hGDH1 structure, there is still an ongoing debate concerning their metabolic role and their involvement in disease processes. Data on the localization of hGDHs, as the ones presented here, could contribute to better understanding of the function of these important human enzymes.
Collapse
Affiliation(s)
- Lambros Mathioudakis
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Mara Bourbouli
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Elisavet Daklada
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Sofia Kargatzi
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Kleita Michaelidou
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Ioannis Zaganas
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece. .,Department of Neurology, University Hospital of Heraklion, Heraklion, Crete, Greece.
| |
Collapse
|
23
|
Jin Y, Li D, Lu S, Zhao H, Chen Z, Hou W, Ruan BH. Ebselen Reversibly Inhibits Human Glutamate Dehydrogenase at the Catalytic Site. Assay Drug Dev Technol 2018; 16:115-122. [PMID: 29470101 DOI: 10.1089/adt.2017.822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human glutamate dehydrogenase (GDH) plays an important role in neurological diseases, tumor metabolism, and hyperinsulinism-hyperammonemia syndrome (HHS). However, there are very few inhibitors known for human GDH. Recently, Ebselen was reported to crosslink with Escherichia coli GDH at the active site cysteine residue (Cys321), but the sequence alignment showed that the corresponding residue is Ala329 in human GDH. To investigate whether Ebselen could be an inhibitor for human GDH, we cloned and expressed an N-terminal His-tagged human GDH in E. coli. The recombinant human GDH enzyme showed expected properties such as adenosine diphosphate activation and nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate dual recognition. Further, we developed a 2-(3-(2-methoxy-4-nitrophenyl)-2-(4-nitrophenyl)-2H-tetrazol-3-ium-5-yl) benzenesulfonate sodium salt (EZMTT)-based assay for human GDH, which was highly sensitive and is suitable for high-throughput screening for potent GDH inhibitors. In addition, ForteBio binding assays demonstrated that Ebselen is a reversible active site inhibitor for human GDH. Since Ebselen is a multifunctional organoselenium compound in Phase III clinical trials for inflammation, an Ebselen-based GDH inhibitor might be valuable for future drug discovery for HHS patients.
Collapse
Affiliation(s)
- Yanhong Jin
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology , Hangzhou, China
| | - Di Li
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology , Hangzhou, China
| | - Shiying Lu
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology , Hangzhou, China
| | - Han Zhao
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology , Hangzhou, China
| | - Zhao Chen
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology , Hangzhou, China
| | - Wei Hou
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology , Hangzhou, China
| | - Benfang Helen Ruan
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology , Hangzhou, China
| |
Collapse
|
24
|
Kim AY, Baik EJ. Glutamate Dehydrogenase as a Neuroprotective Target Against Neurodegeneration. Neurochem Res 2018; 44:147-153. [PMID: 29357018 DOI: 10.1007/s11064-018-2467-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 10/18/2022]
Abstract
Regulation of glutamate metabolism via glutamate dehydrogenase (GDH) might be the promising therapeutic approach for treating neurodegenerative disorders. In the central nervous system, glutamate functions both as a major excitatory neurotransmitter and as a key intermediate metabolite for neurons. GDH converts glutamate to α-ketoglutarate, which serves as a TCA cycle intermediate. Dysregulated GDH activity in the central nervous system is highly correlated with neurological disorders. Indeed, studies conducted with mutant mice and allosteric drugs have shown that deficient or overexpressed GDH activity in the brain can regulate whole body energy metabolism and affect early onset of Parkinson's disease, Alzheimer's disease, temporal lobe epilepsy, and spinocerebellar atrophy. Moreover, in strokes with excitotoxicity as the main pathophysiology, mice that overexpressed GDH exhibited smaller ischemic lesion than mice with normal GDH expression. In additions, GDH activators improve lesions in vivo by increasing α-ketoglutarate levels. In neurons exposed to an insult in vitro, enhanced GDH activity increases ATP levels. Thus, in an energy crisis, neuronal mitochondrial activity is improved and excitotoxic risk is reduced. Consequently, modulating GDH activity in energy-depleted conditions could be a sound strategy for maintaining the mitochondrial factory in neurons, and thus, protect against metabolic failure.
Collapse
Affiliation(s)
- A Young Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, South Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Eun Joo Baik
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, South Korea. .,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, 16499, South Korea.
| |
Collapse
|
25
|
Glutamate production from ammonia via glutamate dehydrogenase 2 activity supports cancer cell proliferation under glutamine depletion. Biochem Biophys Res Commun 2017; 495:761-767. [PMID: 29146184 DOI: 10.1016/j.bbrc.2017.11.088] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 11/24/2022]
Abstract
Cancer cells rapidly consume glutamine as a carbon and nitrogen source to support proliferation, but the cell number continues to increase exponentially after glutamine is nearly depleted from the medium. In contrast, cell proliferation rates are strongly depressed when cells are cultured in glutamine-free medium. How cancer cells survive in response to nutrient limitation and cellular stress remains poorly understood. In addition, rapid glutamine catabolism yields ammonia, which is a potentially toxic metabolite that is secreted into the extracellular space. Here, we show that ammonia can be utilized for glutamate production, leading to cell proliferation under glutamine-depleted conditions. This proliferation requires glutamate dehydrogenase 2, which synthesizes glutamate from ammonia and α-ketoglutarate and is expressed in MCF7 and T47D cells. Our findings provide insight into how cancer cells survive under glutamine deprivation conditions and thus contribute to elucidating the mechanisms of tumor growth.
Collapse
|
26
|
Kim AY, Jeong KH, Lee JH, Kang Y, Lee SH, Baik EJ. Glutamate dehydrogenase as a neuroprotective target against brain ischemia and reperfusion. Neuroscience 2016; 340:487-500. [PMID: 27845178 DOI: 10.1016/j.neuroscience.2016.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/02/2016] [Accepted: 11/06/2016] [Indexed: 01/13/2023]
Abstract
Deregulation of glutamate homeostasis is associated with degenerative neurological disorders. Glutamate dehydrogenase (GDH) is important for glutamate metabolism and plays a central role in expanding the pool of tricarboxylic acid (TCA) cycle intermediate alpha-ketoglutarate (α-KG), which improves overall bioenergetics. Under high energy demand, maintenance of ATP production results in functionally active mitochondria. Here, we tested whether the modulation of GDH activity can rescue ischemia/reperfusion-induced neuronal death in an in vivo mouse model of middle artery occlusion and an in vitro oxygen/glucose depletion model. Iodoacetate, an inhibitor of glycolysis, was also used in a model of energy failure, remarkably depleting ATP and α-KG. To stimulate GDH activity, the GDH activator 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid and potential activator beta-lapachone were used. The GDH activators restored α-KG and ATP levels in the injury models and provided potent neuroprotection. We also found that beta-lapachone increased glutamate utilization, accompanied by a reduction in extracellular glutamate. Thus, our hypothesis that mitochondrial GDH activators increase α-KG production as an alternative energy source for use in the TCA cycle under energy-depleted conditions was confirmed. Our results suggest that increasing GDH-mediated glutamate oxidation represents a new therapeutic intervention for neurodegenerative disorders, including stoke.
Collapse
Affiliation(s)
- A Young Kim
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Kyeong-Hoon Jeong
- Gachon University of Medicine and Science, Incheon 406-840, Republic of Korea
| | - Jae Ho Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yup Kang
- Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Soo Hwan Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Eun Joo Baik
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea.
| |
Collapse
|
27
|
Govindaraj V, Krishnagiri H, Chauhan MS, Rao AJ. BRCA-1 Gene Expression and Comparative Proteomic Profile of Primordial Follicles from Young and Adult Buffalo (Bubalus bubalis) Ovaries. Anim Biotechnol 2016; 28:94-103. [DOI: 10.1080/10495398.2016.1210613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Manmohan Singh Chauhan
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - A. J. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
28
|
Import of a major mitochondrial enzyme depends on synergy between two distinct helices of its presequence. Biochem J 2016; 473:2813-29. [PMID: 27422783 PMCID: PMC5095901 DOI: 10.1042/bcj20160535] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/15/2016] [Indexed: 12/13/2022]
Abstract
Mammalian glutamate dehydrogenase (GDH), a nuclear-encoded enzyme central to cellular metabolism, is among the most abundant mitochondrial proteins (constituting up to 10% of matrix proteins). To attain such high levels, GDH depends on very efficient mitochondrial targeting that, for human isoenzymes hGDH1 and hGDH2, is mediated by an unusually long cleavable presequence (N53). Here, we studied the mitochondrial transport of these proteins using isolated yeast mitochondria and human cell lines. We found that both hGDHs were very rapidly imported and processed in isolated mitochondria, with their presequences (N53) alone being capable of directing non-mitochondrial proteins into mitochondria. These presequences were predicted to form two α helices (α1: N 1–10; α2: N 16–32) separated by loops. Selective deletion of the α1 helix abolished the mitochondrial import of hGDHs. While the α1 helix alone had a very weak hGDH mitochondrial import capacity, it could direct efficiently non-mitochondrial proteins into mitochondria. In contrast, the α2 helix had no autonomous mitochondrial-targeting capacity. A peptide consisting of α1 and α2 helices without intervening sequences had GDH transport efficiency comparable with that of N53. Mutagenesis of the cleavage site blocked the intra-mitochondrial processing of hGDHs, but did not affect their mitochondrial import. Replacement of all three positively charged N-terminal residues (Arg3, Lys7 and Arg13) by Ala abolished import. We conclude that the synergistic interaction of helices α1 and α2 is crucial for the highly efficient import of hGDHs into mitochondria.
Collapse
|
29
|
Li Q, Guo S, Jiang X, Bryk J, Naumann R, Enard W, Tomita M, Sugimoto M, Khaitovich P, Pääbo S. Mice carrying a human GLUD2 gene recapitulate aspects of human transcriptome and metabolome development. Proc Natl Acad Sci U S A 2016; 113:5358-63. [PMID: 27118840 PMCID: PMC4868425 DOI: 10.1073/pnas.1519261113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Whereas all mammals have one glutamate dehydrogenase gene (GLUD1), humans and apes carry an additional gene (GLUD2), which encodes an enzyme with distinct biochemical properties. We inserted a bacterial artificial chromosome containing the human GLUD2 gene into mice and analyzed the resulting changes in the transcriptome and metabolome during postnatal brain development. Effects were most pronounced early postnatally, and predominantly genes involved in neuronal development were affected. Remarkably, the effects in the transgenic mice partially parallel the transcriptome and metabolome differences seen between humans and macaques analyzed. Notably, the introduction of GLUD2 did not affect glutamate levels in mice, consistent with observations in the primates. Instead, the metabolic effects of GLUD2 center on the tricarboxylic acid cycle, suggesting that GLUD2 affects carbon flux during early brain development, possibly supporting lipid biosynthesis.
Collapse
Affiliation(s)
- Qian Li
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Song Guo
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Xi Jiang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Jaroslaw Bryk
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Wolfgang Enard
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 997-0035 Tsuruoka, Yamagata, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, 997-0035 Tsuruoka, Yamagata, Japan
| | - Philipp Khaitovich
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; Skolkovo Institute for Science and Technology, 143025 Skolkovo, Russia
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany;
| |
Collapse
|
30
|
Abstract
Transient multienzyme and/or multiprotein complexes (metabolons) direct substrates toward specific pathways and can significantly influence the metabolism of glutamate and glutamine in the brain. Glutamate is the primary excitatory neurotransmitter in brain. This neurotransmitter has essential roles in normal brain function including learning and memory. Metabolism of glutamate involves the coordinated activity of astrocytes and neurons and high affinity transporter proteins that are selectively distributed on these cells. This chapter describes known and possible metabolons that affect the metabolism of glutamate and related compounds in the brain, as well as some factors that can modulate the association and dissociation of such complexes, including protein modifications by acylation reactions (e.g., acetylation, palmitoylation, succinylation, SUMOylation, etc.) of specific residues. Development of strategies to modulate transient multienzyme and/or enzyme-protein interactions may represent a novel and promising therapeutic approach for treatment of diseases involving dysregulation of glutamate metabolism.
Collapse
|
31
|
Nissen JD, Pajęcka K, Stridh MH, Skytt DM, Waagepetersen HS. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes. Glia 2015. [DOI: 10.1002/glia.22895] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jakob D. Nissen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Kamilla Pajęcka
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Malin H. Stridh
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Dorte M. Skytt
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Helle S. Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
32
|
Marchi L, Polverini E, Degola F, Baruffini E, Restivo FM. Glutamate dehydrogenase isoenzyme 3 (GDH3) of Arabidopsis thaliana is less thermostable than GDH1 and GDH2 isoenzymes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:225-231. [PMID: 25180813 DOI: 10.1016/j.plaphy.2014.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/05/2014] [Indexed: 06/03/2023]
Abstract
NAD(H)-glutamate dehydrogenase (GDH; EC 1.4.1.2) is an abundant and ubiquitous enzyme that may exist in different isoenzymic forms. Variation in the composition of the GDH isoenzyme pattern is observed during plant development and specific cell, tissue and organ localization of the different isoforms have been reported. However, the mechanisms involved in the regulation of the isoenzymatic pattern are still obscure. Regulation may be exerted at several levels, i.e. at the level of transcription and translation of the relevant genes, but also when the enzyme is assembled to originate the catalytically active form of the protein. In Arabidopsis thaliana, three genes (GDH1, GDH2 and GDH3) encode three different GDH subunits (β, α and γ) that randomly associate to form a complex array of homo- and hetero-hexamers. In order to asses if the different Arabidopsis GDH isoforms may display different structural properties we have investigated their thermal stability. In particular the stability of GDH1 and GDH3 isoenzymes was studied using site-directed mutagenesis in a heterologous yeast expression system. It was established that the carboxyl terminus of the GDH subunit is involved in the stabilization of the oligomeric structure of the enzyme.
Collapse
Affiliation(s)
- Laura Marchi
- Dipartimento di Bioscienze, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Eugenia Polverini
- Dipartimento di Fisica e Scienze della Terra, Università di Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy
| | - Francesca Degola
- Dipartimento di Bioscienze, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Enrico Baruffini
- Dipartimento di Bioscienze, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Francesco Maria Restivo
- Dipartimento di Bioscienze, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|
33
|
Abstract
Somatic mutation of isocitrate dehydrogenase 1 (IDH1) is now recognized as the most common initiating event for secondary glioblastoma, a brain tumor type arising with high frequency in the frontal lobe. A puzzling feature of IDH1 mutation is the selective manifestation of glioma as the only neoplasm frequently associated with early postzygotic occurrence of this genomic alteration. We report here that IDH1(R132H) exhibits a growth-inhibitory effect that is abrogated in the presence of glutamate dehydrogenase 2 (GLUD2), a hominoid-specific enzyme purportedly optimized to facilitate glutamate turnover in human forebrain. Using murine glioma progenitor cells, we demonstrate that IDH1(R132H) exerts a growth-inhibitory effect that is paralleled by deficiency in metabolic flux from glucose and glutamine to lipids. Examining human gliomas, we find that glutamate dehydrogenase 1 (GLUD1) and GLUD2 are overexpressed in IDH1-mutant tumors and that orthotopic growth of an IDH1-mutant glioma line is inhibited by knockdown of GLUD1/2. Strikingly, introduction of GLUD2 into murine glioma progenitor cells reverses deleterious effects of IDH1 mutation on metabolic flux and tumor growth. Further, we report that glutamate, a substrate of GLUD2 and a neurotransmitter abundant in mammalian neocortex, can support growth of glioma progenitor cells irrespective of IDH1 mutation status. These findings suggest that specialization of human neocortex for high glutamate neurotransmitter flux creates a metabolic niche conducive to growth of IDH1 mutant tumors.
Collapse
|
34
|
Vieland VJ, Walters KA, Azaro M, Brzustowicz LM, Lehner T. The value of regenotyping older linkage data sets with denser marker panels. Hum Hered 2014; 78:9-16. [PMID: 24969307 DOI: 10.1159/000360003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/27/2014] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES Linkage analysis can help determine regions of interest in whole-genome sequence studies. However, many linkage studies rely on older microsatellite (MSAT) panels. We set out to determine whether results would change if we regenotyped families using a dense map of SNPs. METHODS We selected 47 Hispanic-American families from the NIMH Repository and Genomics Resource (NRGR) schizophrenia data repository. We regenotyped all individuals with DNA available from the NRGR on the Affymetrix Lat Array. After optimizing SNP selection for inclusion on the linkage map, we compared information content (IC) and linkage results using MSAT, SNP and MSAT+SNP maps. RESULTS As expected, SNP provided a higher average IC (0.78, SD 0.03) than MSAT (0.51, SD 0.10) in a direct 'apples-to-apples' comparison using only individuals genotyped on both platforms; while MSAT+SNP provided only a slightly higher IC (0.82, SD 0.03). However, when utilizing all available individuals, including those who had genotypes available on only one platform, the IC was substantially increased using MSAT+SNP (0.76, SD 0.05) compared to SNP (0.61, SD 0.02). Linkage results changed appreciably between MSAT and MSAT+SNP in terms of magnitude, rank ordering and localization of peaks. CONCLUSIONS Regenotyping older family data can substantially alter the conclusions of linkage analyses.
Collapse
Affiliation(s)
- Veronica J Vieland
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | | | | | | | | |
Collapse
|