1
|
Purvis EM, Fedorczak N, Prah A, Han D, O’Donnell JC. Porcine Astrocytes and Their Relevance for Translational Neurotrauma Research. Biomedicines 2023; 11:2388. [PMID: 37760829 PMCID: PMC10525191 DOI: 10.3390/biomedicines11092388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes are essential to virtually all brain processes, from ion homeostasis to neurovascular coupling to metabolism, and even play an active role in signaling and plasticity. Astrocytic dysfunction can be devastating to neighboring neurons made inherently vulnerable by their polarized, excitable membranes. Therefore, correcting astrocyte dysfunction is an attractive therapeutic target to enhance neuroprotection and recovery following acquired brain injury. However, the translation of such therapeutic strategies is hindered by a knowledge base dependent almost entirely on rodent data. To facilitate additional astrocytic research in the translatable pig model, we present a review of astrocyte findings from pig studies of health and disease. We hope that this review can serve as a road map for intrepid pig researchers interested in studying astrocyte biology.
Collapse
Affiliation(s)
- Erin M. Purvis
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA (D.H.)
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natalia Fedorczak
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA (D.H.)
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Annette Prah
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA (D.H.)
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Han
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA (D.H.)
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John C. O’Donnell
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA (D.H.)
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Griffiths B, Xu L, Sun X, Greer M, Murray I, Stary C. Inhibition of microRNA-200c preserves astrocyte sirtuin-1 and mitofusin-2, and protects against hippocampal neurodegeneration following global cerebral ischemia in mice. Front Mol Neurosci 2022; 15:1014751. [PMID: 36466801 PMCID: PMC9710226 DOI: 10.3389/fnmol.2022.1014751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Memory impairment remains a leading disability in survivors of global cerebral ischemia, occurring secondary to delayed neurodegeneration of hippocampal cornu ammonis-1 (CA1) neurons. MicroRNA-200c (miR-200c) is induced following ischemic stress and we have previously demonstrated that pre-treatment with anti-miR-200c is protective against embolic stroke in mice. In the present study we assessed the role of miR-200c on CA1 neurodegeneration, sirtuin-1 (SIRT1), and mitochondrial dynamic protein expression in a mouse model of transient global cerebral ischemia and in vitro in primary mouse astrocyte cultures after simulated ischemia. Mice were subjected to 10 min bilateral common carotid artery occlusion plus hypotension with 5% isoflurane. After 2 h recovery mice were treated with intravenous injection of either anti-miR-200c or mismatch control. Memory function was assessed by Barnes maze at post-injury days 3 and 7. Mice were sacrificed at post-injury day 7 for assessment of brain cell-type specific expression of miR-200c, SIRT1, and the mitochondrial fusion proteins mitofusin-2 (MFN2) and OPA1 via complexed fluorescent in situ hybridization and fluorescent immunohistochemistry. Global cerebral ischemia induced significant loss of CA1 neurons, impaired memory performance and decreased expression of CA1 SIRT1, MFN2, and OPA1. Post-injury treatment with anti-miR-200c significantly improved survival, prevented CA1 neuronal loss, improved post-injury performance in Barnes maze, and was associated with increased post-injury expression of CA1 SIRT1 and MFN2 in astrocytes. In vitro, primary mouse astrocyte cultures pre-treated with miR-200c inhibitor prior to oxygen/glucose deprivation preserved expression of SIRT1 and MFN2, and decreased reactive oxygen species generation, whereas pre-treatment with miR-200c mimic had opposite effects that could be reversed by co-treatment with SIRT1 activator. These results suggest that miR-200c regulates astrocyte mitochondrial homeostasis via targeting SIRT1, and that CA1 astrocyte mitochondria and SIRT1 represent potential post-injury therapeutic targets to preserve cognitive function in survivors of global cerebral ischemia.
Collapse
Affiliation(s)
- Brian Griffiths
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Lijun Xu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Xiaoyun Sun
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Majesty Greer
- Howard University College of Medicine, Washington, DC, United States
| | - Isabella Murray
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Creed Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States,*Correspondence: Creed Stary,
| |
Collapse
|
3
|
Hu S, Chen Y, Huang S, Liu M, Liu Y, Huang S. Sodium Danshensu protects against oxygen glucose deprivation/reoxygenation-induced astrocytes injury through regulating NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome and tuberous sclerosis complex-2 (TSC2)/mammalian target of rapamycin (mTOR) pathways. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1097. [PMID: 36388798 PMCID: PMC9652549 DOI: 10.21037/atm-22-2143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/31/2022] [Indexed: 09/18/2023]
Abstract
BACKGROUND Cerebral ischemic stroke is a serious condition with high incidence, mortality, and associated disability. Currently, effective therapeutic options are available for ischemic stroke are limited. Accumulating evidence indicates that sodium Danshensu, mono sodium compound derived from Salvia miltiorrhiza, plays protective roles in ischemic stroke. However, the underlying protective mechanism of sodium Danshensu in cerebral ischemic stroke remains unknown. METHODS In the current study, we explored the role and mechanism of sodium Danshensu on astrocytes exposed to oxygen-glucose deprivation/reoxygenation (OGD/R), which mimics the process of ischemia-reperfusion. The impact of sodium Danshensu on cell viability and apoptosis after OGD/R were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-dophenyl tetrazolium bromide (MTT) assay and flow cytometry. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were used to detect the expression of target messenger RNA (mRNA) and proteins associated with apoptosis and autophagy. The release of lactate dehydrogenase (LDH) was determined, and the production of proinflammatory cytokines were detected using enzyme-linked immunosorbent assay (ELISA) kits. RESULTS It was found that sodium Danshensu could significantly increase cell viability and decrease LDH release and apoptosis. Besides, it inhibited the production of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6. Sodium Danshensu also dose-dependently decreased protein and mRNA levels of nucleotide binding oligomerization NOD-like receptor pyrin domain containing 3 (NLRP3) and high mobility group box 1 (HMGB1), which play a crucial role in promoting ischemic stroke-induced cell injury. Moreover, sodium Danshensu dose-dependently upregulated Beclin 1 expression, downregulated P62 protein expression, and further increased LC3B-II/LC3B-I ratio through inducing autophagy in astrocytes. Additionally, we noticed that sodium Danshensu dose-dependently increased tuberous sclerosis complex-2 (TSC2) protein expression, while significantly reduced the levels of mammalian target of rapamycin (mTOR) in the presence of OGD/R insult. CONCLUSIONS These findings suggest that sodium Danshensu protects against OGD/R-induced injury by modulating the NLRP3 inflammasome and TSC2/mTOR pathways.
Collapse
Affiliation(s)
- Shengzhao Hu
- Department of Emergency, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yingli Chen
- Department of Hematology, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Shipeng Huang
- Department of Emergency, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Liu
- Department of Emergency, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Liu
- Department of Emergency, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shaofang Huang
- Department of Emergency, the First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Nie Y, Wen L, Li H, Song J, Wang N, Huang L, Gao L, Qu M. Tanhuo Formula Inhibits Astrocyte Activation and Apoptosis in Acute Ischemic Stroke. Front Pharmacol 2022; 13:859244. [PMID: 35559267 PMCID: PMC9087855 DOI: 10.3389/fphar.2022.859244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Tanhuo formula (THF), a traditional Chinese medicinal formula, has been demonstrated to be effective in the clinical treatment of acute ischemic stroke (AIS). However, its active ingredients, potential targets, and molecular mechanisms remain unknown. Based on the validation of active ingredient concentrations, our study attempted to elucidate the possible mechanisms of THF based on network pharmacological analysis and experimental validation. Components of THF were screened using network pharmacological analysis, and a compound–target network and protein–protein interaction (PPI) network were constructed. In total, 42 bioactive compounds and 159 THF targets related to AIS were identified. The PPI network identified AKT1, TNF, IL6, IL1B, and CASP3 as key targets. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis demonstrated that the inflammation and apoptotic pathways were enriched by multiple targets. The main components of THF were identified via high-performance liquid chromatography. Subsequently, a validation experiment was conducted, and the expressions of GFAP, C3, TNF-α, and IL-6 were detected via immunofluorescence staining, confirming the inflammatory response at 30 min and 3 days post injury. Immunohistochemical staining for caspase-3 and TUNEL was also performed to assess apoptosis at the same time points. These results indicate that THF can effectively decrease neural cell apoptosis through the caspase-3 pathway and restrain excessive abnormal activation of astrocytes and the release of TNF-α and IL-6, which might be accompanied by the recovery of motor function. Thus, THF may serve as a promising therapeutic strategy for AIS through multiple targets, components, and pathways.
Collapse
Affiliation(s)
- Yuting Nie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Capital Medical University, Beijing, China
| | - Lulu Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Capital Medical University, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juexian Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ningqun Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liyuan Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Gao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Miao Qu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Expression of miR-200c corresponds with increased reactive oxygen species and hypoxia markers after transient focal ischemia in mice. Neurochem Int 2021; 149:105146. [PMID: 34343653 DOI: 10.1016/j.neuint.2021.105146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/21/2022]
Abstract
Embolic stroke results in a necrotic core of cells destined to die, but also a peri-ischemic, watershed penumbral region of potentially salvageable brain tissue. Approaches to effectively differentiate between the ischemic and peri-ischemic zones is critical for novel therapeutic discovery to improve outcomes in survivors of stroke. MicroRNAs are a class of small non-coding RNAs regulating gene translation that have region- and cell-specific expression and responses to ischemia. We have previously reported that global inhibition of cerebral microRNA-200c after experimental stroke in mice is protective, however delineating the post-stroke sub-regional and cell-type specific patterns of post-stroke miR-200c expression are necessary to minimize off-target effects and advance translational application. Here, we detail a novel protocol to visualize regional miR-200c expression after experimental stroke, complexed with visualization of regional ischemia and markers of oxidative stress in an experimental stroke model in mice. In the present study we demonstrate that the fluorescent hypoxia indicator pimonidazole hydrochloride, the reactive-oxygen-species marker 8-hydroxy-deoxyguanosine, neuronal marker MAP2 and NeuN, and the reactive astrocyte marker GFAP can be effectively complexed to determine regional differences in ischemic injury as early as 30 min post-reperfusion after experimental stroke, and can be effectively used to distinguish ischemic core from surrounding penumbral and unaffected regions for targeted therapy. This multi-dimensional post-stroke immunofluorescent imaging protocol enables a greater degree of sub-regional mechanistic investigation, with the ultimate goal of developing more effective post-stroke pharmaceutical therapy.
Collapse
|
6
|
Gao R, Ren L, Zhou Y, Wang L, Xie Y, Zhang M, Liu X, Ke S, Wu K, Zheng J, Liu X, Chen Z, Liu L. Recurrent non-severe hypoglycemia aggravates cognitive decline in diabetes and induces mitochondrial dysfunction in cultured astrocytes. Mol Cell Endocrinol 2021; 526:111192. [PMID: 33545179 DOI: 10.1016/j.mce.2021.111192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
The present study aimed to determine the relationship between astrocytes and recurrent non-severe hypoglycemia (RH)2 -associated cognitive decline in diabetes. RH induced cognitive impairment and neuronal cell death in the cerebral cortex of diabetic mice, accompanied by excessive activation of astrocytes. Levels of the neurotrophins BDNF and GDNF, together with BDNF and GDNF- related signaling, were downregulated by RH. In vitro, recurrent low glucose (RLG)3 impaired cell viability and induced apoptosis of high-glucose cultured astrocytes. Accumulating mitochondrial ROS and dysregulated mitochondrial functions, including abnormal morphology, decreased membrane potential, downregulated ATP levels, and disrupted bioenergetic status, were observed in these cells. SS-31 mediated protection of mitochondrial functions reversed RLG-induced cell viability defects and neurotrophin production. These findings demonstrate that RH induced astrocyte overactivation and mitochondrial dysfunction, leading to astrocyte-derived neurotrophin disturbance, which might contribute to diabetic cognitive decline. Targeting astrocyte mitochondria might represent a neuroprotective therapy for hypoglycemia-associated neurodegeneration in diabetes.
Collapse
Affiliation(s)
- Ruonan Gao
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Lingjia Ren
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yu Zhou
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Lijing Wang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yunzhen Xie
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Mengjun Zhang
- Department of pharmacy, Zhongshan Hopital, Fudan University (Xiamen Branch), Xiamen, 361000, China
| | - Xiaoying Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Sujie Ke
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Kejun Wu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jiaping Zheng
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiaohong Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zhou Chen
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Libin Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
7
|
An Overview of Non-coding RNAs and Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:3-45. [PMID: 32285403 DOI: 10.1007/978-981-15-1671-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease management and timely diagnosis remain a major dilemma. Delineating molecular mechanisms of cardiovascular diseases is opening horizon in the field of molecular medicines and in the development of early diagnostic markers. Non-coding RNAs are the highly functional and vibrant nucleic acids and are known to be involved in the regulation of endothelial cells, vascular and smooth muscles cells, cardiac metabolism, ischemia, inflammation and many processes in cardiovascular system. This chapter is comprehensively focusing on the overview of the non-coding RNAs including their discovery, generation, classification and functional regulation. In addition, overview regarding different non-coding RNAs as long non-coding, siRNAs and miRNAs involvement in the cardiovascular diseases is also addressed. Detailed functional analysis of this vast group of highly regulatory molecules will be promising for shaping future drug discoveries.
Collapse
|
8
|
Song X, Gong Z, Liu K, Kou J, Liu B, Liu K. Baicalin combats glutamate excitotoxicity via protecting glutamine synthetase from ROS-induced 20S proteasomal degradation. Redox Biol 2020; 34:101559. [PMID: 32473460 PMCID: PMC7260594 DOI: 10.1016/j.redox.2020.101559] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
Background Many neuroprotective approaches targeting neurons in animal models fail to provide benefits for the treatment of ischemic stroke in clinic and glial cells have become the targets in some basic studies. Baicalin has neuroprotective effects but the mechanisms related to glial cells are not revealed. This study investigated whether and how baicalin can combat excitotoxicity via protecting the functions of astrocytes in early stage of ischemia/reperfusion (I/R) insult by focusing on glutamine synthetase (GS). Experimental approach The role of baicalin was explored in primary astrocytes exposed to oxygen-glucose deprivation/reperfusion (OGD/R) and rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). Key results Mitochondrial succinate dehydrogenase (SDH) activation led to an excessive production of reactive oxygen species (ROS) via reverse electron transport (RET) under conditions of OGD/R or I/R, which increased the carbonylation and proteasomal degradation of GS in astrocytes. Treatment of baicalin decreased the oxidative stress mediated by SDH and reduced the subsequent loss of GS. This effect increased the glutamate disposal by astrocytes and protected neurons from excitotoxicity in response to I/R insults. Conclusions and implications Baicalin inactivated SDH to suppress ROS production and protected GS protein stability against oxidative stress, contributing to the improvement of the glutamate disposal and decrease in excitotoxicity. These results suggest that protection of GS stability in astrocytes might be an effective strategy to prevent neuronal injury in acute ischemic stroke. SDH activation induced the excessive ROS production during early reperfusion. Activated SDH-induced GS degradation by 20S proteasome impaired glutamate disposal. Baicalin inactivated SDH, decreased GS loss and suppressed excitotoxicity.
Collapse
Affiliation(s)
- Xianrui Song
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Zixuan Gong
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Kaili Liu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Junping Kou
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Baolin Liu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Kang Liu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China.
| |
Collapse
|
9
|
Zhang Y, Cao M, Wu Y, Wang J, Zheng J, Liu N, Yang N, Liu Y. Improvement in mitochondrial function underlies the effects of ANNAO tablets on attenuating cerebral ischemia-reperfusion injuries. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112212. [PMID: 31494200 DOI: 10.1016/j.jep.2019.112212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/10/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE ANNAO tablets derive from Chinese classical prescriptions of Angong Niuhuang Pills with modified compositions, which have been singly or combined used for stoke associated neurological disorders. However the underlying mechanism is not yet well-defined, the present study investigated its anti-ischemic effects in rat middle cerebral artery occlusion (MCAO) model and focused on mitochondrial quality control. MATERIALS AND METHODS Rats were subjected to 2 h of brain ischemia followed by 1 day or up to 7 days of reperfusion. Vehicle, ANNAO tablets or Edaravone were given at 1h after the start of reperfusion for 1 day or successive 7 days in MCAO rats. For the behavior assessment, Longa test and modified Neurological Severity Scores (m NSS) test were performed. Following the behavioral assessment, we assessed the protein expressions related to mitochondrial function. Moreover, we also assessed the neuroprotective effects of ANNAO tablets by immunohistochemical analysis. RESULTS Compared with sham rats, ANNAO tablets improved the behavioral performance and decreased the infarction volume in the MCAO rats. Western blotting results showed that ANNAO tablets altered the expression level of multiple proteins related to mitochondrial function, elevated the ratio of Bcl-2/Bax and inhibited the apoptosis. Additionally, ANNAO tablets increased the number of NeuN positive neurons. CONCLUSIONS The obtained data demonstrated that ANNAO tablets exhibited an obvious anti-cerebral ischemia-reperfusion effect, which could be attributed to the improvement of mitochondrial quality control.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Mingyue Cao
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Youming Wu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jun Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Ji Zheng
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Nasi Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| | - Yanyong Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
10
|
Sun X, Jung JH, Arvola O, Santoso MR, Giffard RG, Yang PC, Stary CM. Stem Cell-Derived Exosomes Protect Astrocyte Cultures From in vitro Ischemia and Decrease Injury as Post-stroke Intravenous Therapy. Front Cell Neurosci 2019; 13:394. [PMID: 31551712 PMCID: PMC6733914 DOI: 10.3389/fncel.2019.00394] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/13/2019] [Indexed: 01/13/2023] Open
Abstract
In the present study, we assessed efficacy of exosomes harvested from human and mouse stem cell cultures in protection of mouse primary astrocyte and neuronal cell cultures following in vitro ischemia, and against ischemic stroke in vivo. Cell media was collected from primary mouse neural stem cell (NSC) cultures or from human induced pluripotent stem cell-derived cardiomyocyte (iCM) cultures. Exosomes were extracted and purified by polyethylene glycol complexing and centrifugation, and exosome size and concentration were determined with a NanoSiteTM particle analyzer. Exosomes were applied to primary mouse cortical astrocyte or neuronal cultures prior to, and/or during, combined oxygen-glucose deprivation (OGD) injury. Cell death was assessed via lactate dehydrogenase (LHD) and propidium iodide staining 24 h after injury. NSC-derived exosomes afforded marked protection to astrocytes following OGD. A more modest (but significant) level of protection was observed with human iCM-derived exosomes applied to astrocytes, and with NSC-derived exosomes applied to primary neuronal cultures. In subsequent experiments, NSC-derived exosomes were injected intravenously into adult male mice 2 h after transient (1 h) middle cerebral artery occlusion (MCAO). Gross motor function was assessed 1 day after reperfusion and infarct volume was assessed 4 days after reperfusion. Mice treated post-stroke with intravenous NSC-derived exosomes exhibited significantly reduced infarct volumes. Together, these results suggest that exosomes isolated from mouse NSCs provide neuroprotection against experimental stroke possibly via preservation of astrocyte function. Intravenous NSC-derived exosome treatment may therefore provide a novel clinical adjuvant for stroke in the immediate post-injury period.
Collapse
Affiliation(s)
- Xiaoyun Sun
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ji-Hye Jung
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Oiva Arvola
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Michelle R Santoso
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Rona G Giffard
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Phillip C Yang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Creed M Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
11
|
Griffiths BB, Ouyang YB, Xu L, Sun X, Giffard RG, Stary CM. Postinjury Inhibition of miR-181a Promotes Restoration of Hippocampal CA1 Neurons after Transient Forebrain Ischemia in Rats. eNeuro 2019; 6:ENEURO.0002-19.2019. [PMID: 31427401 PMCID: PMC6727148 DOI: 10.1523/eneuro.0002-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/25/2022] Open
Abstract
The cellular and molecular mechanisms regulating postinjury neurogenesis in the adult hippocampus remain undefined. We have previously demonstrated that preinjury treatment with anti-microRNA (miR)-181a preserved neurons and prevented astrocyte dysfunction in the hippocampal cornu ammonis-1 (CA1) following transient forebrain ischemia. In the present study, we assessed postinjury treatment with anti-miR-181a on recovery of CA1 neurons following transient forebrain ischemia in rats. Stereotactic CA1 injection of miR-181a antagomir at either 2 h or 7 d postinjury resulted in improved restoration of CA1 measured at 28 d postinjury. Treatment with antagomir was associated with overexpression of the mir-181a target cell adhesion-associated, oncogene-related protein and enhanced expression of the neuroprogenitor cell marker doublecortin (DCX) in the CA1. Assessment of GFAP+ cell fate by Cre/Lox-mediated deletion demonstrated that some GFAP+ cells in CA1 exhibited de novo DCX expression in response to injury. In vitro experiments using primary neuronal stem cells confirmed that miR-181a inhibition augmented the expression of DCX and directed cellular differentiation toward a neuronal fate. These results suggest that miR-181a inhibition plays a central role in the restoration of CA1 neurons via augmentation of early latent neurogenic gene activation in neural progenitor cells, including some reactive astrocytes. Therapeutic interventions targeting this restorative process may represent a novel postinjury approach to improve clinical outcomes in survivors of forebrain ischemia.
Collapse
Affiliation(s)
- Brian B Griffiths
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117
| | - Yi-Bing Ouyang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117
| | - Lijun Xu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117
| | - Xiaoyun Sun
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117
| | - Rona G Giffard
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117
| | - Creed M Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117
| |
Collapse
|
12
|
Xiang J, Zhang J, Cai X, Yang F, Zhu W, Zhang W, Cai M, Yu Z, Li X, Wu T, Wang G, Cai D. Bilobalide protects astrocytes from oxygen and glucose deprivation-induced oxidative injury by upregulating manganese superoxide dismutase. Phytother Res 2019; 33:2329-2336. [PMID: 31243840 DOI: 10.1002/ptr.6414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/26/2019] [Accepted: 05/25/2019] [Indexed: 12/11/2022]
Abstract
Bilobalide (BB), a constituent of the Ginkgo biloba extract, is a neuroprotective agent with multiple mechanisms of action. To further explore the potential therapeutic effects of BB in stroke, we investigated its effects on primary astrocytes using the oxygen and glucose deprivation-reoxygenation (OGD-R) model. Cell viability was measured by lactate dehydrogenase release assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell death was measured by annexin 5 conjgated with fluorescein isothiocyanate (V-FITC) assay, and reactive oxygen species (ROS) production was measured by 2',7'-Dichlorodihydrofluorescein Diacetate (DCFH-DA) probe. Manganese superoxide dismutase (MnSOD) expression was measured by western blot and immunofluorescence. Mitochondrial membrane potential was monitored using JC-1 staining. Our results show that OGD-R downregulated MnSOD and impaired mitochondrial function, which further enhanced ROS production in primary astrocytes. As a result, cell viability was compromised, and cell death increased. BB treatment protected astrocytes from those injuries mainly by restoring MnSOD level as MnSOD inhibitor abolished the effects of BB. In conclusion, we demonstrated that OGD-R induced astrocytic injury, but BB increased the expression of MnSOD, the ROS scavenger, to reverse the exacerbated astrocytic injury.
Collapse
Affiliation(s)
- Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital Fudan University, Shanghai, China.,Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingsi Zhang
- Department of Integrative Medicine, Zhongshan Hospital Fudan University, Shanghai, China.,Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Xiaofang Cai
- Department of Stomatology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Feng Yang
- Department of Integrative Medicine, Zhongshan Hospital Fudan University, Shanghai, China.,Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Wen Zhu
- Department of Integrative Medicine, Zhongshan Hospital Fudan University, Shanghai, China.,Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Wen Zhang
- Department of Integrative Medicine, Zhongshan Hospital Fudan University, Shanghai, China.,Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Min Cai
- Department of Integrative Medicine, Zhongshan Hospital Fudan University, Shanghai, China.,Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhonghai Yu
- Department of Integrative Medicine, Zhongshan Hospital Fudan University, Shanghai, China.,Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Xiangting Li
- Department of Integrative Medicine, Zhongshan Hospital Fudan University, Shanghai, China.,Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Ting Wu
- Department of Integrative Medicine, Zhongshan Hospital Fudan University, Shanghai, China.,Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Guohua Wang
- Department of Integrative Medicine, Zhongshan Hospital Fudan University, Shanghai, China.,Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Dingfang Cai
- Department of Integrative Medicine, Zhongshan Hospital Fudan University, Shanghai, China.,Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Ge XL, Wang JL, Liu X, Zhang J, Liu C, Guo L. Inhibition of miR-19a protects neurons against ischemic stroke through modulating glucose metabolism and neuronal apoptosis. Cell Mol Biol Lett 2019; 24:37. [PMID: 31168302 PMCID: PMC6545018 DOI: 10.1186/s11658-019-0160-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Background Accumulating evidence has shown that altered microRNA (miR) modulation is implicated in the pathologies of ischemic stroke. However, it is unclear whether and how hsa-miR-19a-3p mediates cerebral ischemic injury. Herein, we investigated the functional role of miR-19a-3p in cerebral ischemic injury and explored its underlying regulatory mechanism. Methods In vivo ischemic/reperfusion (I/R) neuronal injury and in vitro oxygen-glucose deprivation (OGD) were established. Expression of miR-19a-3p was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Glucose uptake, lactate production, and apoptosis were determined. ADIPOR2 was predicted as a target of miR-19a-3p in silico and experimentally validated by qRT-PCR, Western blot analysis and luciferase assay assays. Results MiR-19a expression was significantly downregulated and upregulated in rat neurons and astrocytes, respectively (P < 0.01). A significantly elevated level of miR-19a-3p was found in I/R and OGD models in comparison to sham/control groups (P < 0.01). Expression of the glycolysis enzyme markers LDHA, PKM2, HK2, Glut1 and PDK1, apoptosis-related factors levels, apoptosis, glucose uptake, and lactate production were significantly repressed by both I/R and OGD (P < 0.01 in each case). Moreover, miR-19a-3p mimic aggravated, while miR-19a-3p inhibitor alleviated, the above observations. Adipor2 was predicted and confirmed to be a direct target of miR-19a. Furthermore, restoration of Adipor2 reversed miR-19a-3p-induced effects. Conclusions Collectively, our results indicate that elevated miR-19a-3p mediates cerebral ischemic injury by targeting ADIPOR2. MiR-19a-3p attenuation thus might offer hope of a novel therapeutic target for ischemic stroke injury treatment.
Collapse
Affiliation(s)
- Xiao-Li Ge
- 1Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Jin-Li Wang
- 1Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Xin Liu
- 2Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Jia Zhang
- 3Department of Obstetrics, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Chang Liu
- 4Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Li Guo
- 1Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| |
Collapse
|
14
|
Akinmoladun AC, Saliu IO, Olowookere BD, Ojo OB, Olaleye MT, Farombi EO, Akindahunsi AA. Improvement of 2-Vessel Occlusion Cerebral Ischaemia/Reperfusion-Induced Corticostriatal Electrolyte and Redox Imbalance, Lactic Acidosis and Modified Acetylcholinesterase Activity by Kolaviron Correlates with Reduction in Neurobehavioural Deficits. Ann Neurosci 2017; 25:53-62. [PMID: 29887685 DOI: 10.1159/000484517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/19/2017] [Indexed: 01/30/2023] Open
Abstract
Background Disruption of electrolyte, redox and neurochemical homeostasis alongside cellular energy crisis is a hallmark of cerebral ischaemia and reperfusion injury. Purpose This study investigated the effect of kolaviron (KV) on cortical and striatal cation imbalance, oxidative stress and neurochemical disturbances as well as neurobehavioural deficits in animals subjected to bilateral common carotid artery occlusion (BCCAO)-induced ischaemia/reperfusion injury. Methods KV was administered at a dose of 100 or 200 mg/kg to male Wistar rats 1 h before a 30 min BCCAO/4 h reperfusion (I/R). This was followed by neurobehavioral assessment and biochemical evaluations of cation levels, oxidative stress indicators, lactate dehydrogenase activity and acetylcholinesterase (AChE) activity in the brain of animals. Conclusion KV significantly restored altered cortical and striatal Ca2+, Na+, K+ and Mg2+ levels, ameliorated redox imbalance, lactic acidosis and modified AChE activity caused by I/R injury. The favourable neurobehavioural effects of KV correlated with biochemical outcomes. The pharmacological potential of KV in the treatment and management of ischemic stroke and allied pathological conditions via multiple targets (neurotransmitter metabolism, bioenergetic failure and ionic homeostasis) is highlighted by the study.
Collapse
Affiliation(s)
- Afolabi Clement Akinmoladun
- Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Ibrahim Olabayode Saliu
- Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Boyede Dele Olowookere
- Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Olubukola Benedicta Ojo
- Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Mary Tolulope Olaleye
- Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Ebenezer Olatunde Farombi
- Drug Metabolism and Molecular Toxicology Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Afolabi Akintunde Akindahunsi
- Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
15
|
Overexpression of MicroRNA-145 Ameliorates Astrocyte Injury by Targeting Aquaporin 4 in Cerebral Ischemic Stroke. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9530951. [PMID: 29057271 PMCID: PMC5615955 DOI: 10.1155/2017/9530951] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/03/2017] [Accepted: 06/18/2017] [Indexed: 12/30/2022]
Abstract
Cerebral ischemic stroke, which affects the global population, is a major disease with high incidence, mortality, and disability. Accumulating evidence has indicated that abnormal microRNA (miRNA) expression plays essential roles in the pathologies of ischemic stroke. Yet, the underlying regulatory mechanism of miRNAs in cerebral ischemic stroke remains unclear. We investigated the role of miR-145 in cerebral ischemic stroke and its potential mechanism in a model using primary cultured astrocytes. We detected the expression levels of miR-145 and its target gene AQP4 and assessed the role of miR-145 in cell death and apoptosis caused by oxygen-glucose deprivation (OGD). Bioinformatics analysis was used to explore the targets of miR-145. miR-145 expression levels were significantly decreased in primary astrocytes subjected to OGD. miR-145 overexpression promoted astrocyte health and inhibited OGD-induced apoptosis. AQP4 was a direct target of miR-145, and miR-145 suppressed AQP4 expression. Moreover, AQP4 enhanced astrocyte injury in ischemic stroke, and AQP4 knockdown diminished the miR-145-mediated protective effect on ischemic injury. Taken together, our results show that miR-145 plays an important role in protecting astrocytes from ischemic injury by downregulating AQP4 expression. These findings may highlight a novel therapeutic target in cerebral ischemic stroke.
Collapse
|
16
|
Yuan J, Zhang YM, Wu W, Ma W, Wang F. Effect of glycosides of Cistanche on the expression of mitochondrial precursor protein and keratin type II cytoskeletal 6A in a rat model of vascular dementia. Neural Regen Res 2017; 12:1152-1158. [PMID: 28852399 PMCID: PMC5558496 DOI: 10.4103/1673-5374.211196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Glycosides of Cistanche (GC) is a preparation used extensively for its neuroprotective effect against neurological diseases, but its mechanisms of action remains incompletely understood. Here, we established a bilateral common carotid artery occlusion model of vascular dementia in rats and injected the model rats with a suspension of GC (10 mg/kg/day, intraperitoneally) for 14 consecutive days. Immunohistochemistry showed that GC significantly reduced p-tau and amyloid beta (Aβ) immunoreactivity in the hippocampus of the model rats. Proteomic analysis demonstrated upregulation of mitochondrial precursor protein and downregulation of keratin type II cytoskeletal 6A after GC treatment compared with model rats that had received saline. Western blot assay confirmed these findings. Our results suggest that the neuroprotective effect of GC in vascular dementia occurs via the promotion of neuronal cytoskeleton regeneration.
Collapse
|
17
|
Targeting Glial Mitochondrial Function for Protection from Cerebral Ischemia: Relevance, Mechanisms, and the Role of MicroRNAs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6032306. [PMID: 27777645 PMCID: PMC5061974 DOI: 10.1155/2016/6032306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/21/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
Abstract
Astrocytes and microglia play crucial roles in the response to cerebral ischemia and are effective targets for stroke therapy in animal models. MicroRNAs (miRs) are important posttranscriptional regulators of gene expression that function by inhibiting the translation of select target genes. In astrocytes, miR expression patterns regulate mitochondrial function in response to oxidative stress via targeting of Bcl2 and heat shock protein 70 family members. Mitochondria play an active role in microglial activation, and miRs regulate the microglial neuroinflammatory response. As endogenous miR expression patterns can be altered with exogenous mimics and inhibitors, miR-targeted therapies represent a viable intervention to optimize glial mitochondrial function and improve clinical outcome following cerebral ischemia. In the present article, we review the role that astrocytes and microglia play in neuronal function and fate following ischemic stress, discuss the relevance of mitochondria in the glial response to injury, and present current evidence implicating miRs as critical regulators in the glial mitochondrial response to cerebral ischemia.
Collapse
|
18
|
Majdi A, Mahmoudi J, Sadigh-Eteghad S, Farhoudi M, Shotorbani SS. The interplay of microRNAs and post-ischemic glutamate excitotoxicity: an emergent research field in stroke medicine. Neurol Sci 2016; 37:1765-1771. [PMID: 27350638 DOI: 10.1007/s10072-016-2643-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/20/2016] [Indexed: 12/29/2022]
Abstract
Stroke is the second leading cause of death and the most common cause of adult disabilities among elderlies. It involves a complex series of mechanisms among which, excitotoxicity is of great importance. Also, miRNAs appear to play role in post-stroke excitotoxicity, and changes in their transcriptome occur right after cerebral ischemia. Recent data indicate that specific miRNAs such as miRNA-223, miRNA-181, miRNA-125a, miRNA-125b, miRNA-1000, miRNA-132 and miRNA-124a regulate glutamate neurotransmission and excitotoxicity during stroke. However, limitations such as poor in vivo stability, side effects and inappropriate biodistribution in miRNA-based therapies still exist and should be overcome before clinical application. Thence, investigation of the effect of application of these miRNAs after the onset of ischemia is a pivotal step for manipulating these miRNAs in clinical use. Given this, present review concentrates on miRNAs roles in post-ischemic stroke excitotoxicity.
Collapse
Affiliation(s)
- Alireza Majdi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, P.O. Box: 5166614756, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, P.O. Box: 5166614756, Tabriz, Iran.
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, P.O. Box: 5166614756, Tabriz, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, P.O. Box: 5166614756, Tabriz, Iran
| | | |
Collapse
|
19
|
Glutamate and ATP at the Interface Between Signaling and Metabolism in Astroglia: Examples from Pathology. Neurochem Res 2016; 42:19-34. [PMID: 26915104 DOI: 10.1007/s11064-016-1848-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 12/17/2022]
Abstract
Glutamate is the main excitatory transmitter in the brain, while ATP represents the most important energy currency in any living cell. Yet, these chemicals play an important role in both processes, enabling them with dual-acting functions in metabolic and intercellular signaling pathways. Glutamate can fuel ATP production, while ATP can act as a transmitter in intercellular signaling. We discuss the interface between glutamate and ATP in signaling and metabolism of astrocytes. Not only do glutamate and ATP cross each other's paths in physiology of the brain, but they also do so in its pathology. We present the fabric of this process in (patho)physiology through the discussion of synthesis and metabolism of ATP and glutamate in astrocytes as well as by providing a general description of astroglial receptors for these molecules along with the downstream signaling pathways that may be activated. It is astroglial receptors for these dual-acting molecules that could hold a key for medical intervention in pathological conditions. We focus on two examples disclosing the role of activation of astroglial ATP and glutamate receptors in pathology of two kinds of brain tissue, gray matter and white matter, respectively. Interventions at the interface of metabolism and signaling show promise for translational medicine.
Collapse
|