1
|
Mackiewicz J, Lisek M, Boczek T. Targeting CaN/NFAT in Alzheimer's brain degeneration. Front Immunol 2023; 14:1281882. [PMID: 38077352 PMCID: PMC10701682 DOI: 10.3389/fimmu.2023.1281882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of cognitive functions. While the exact causes of this debilitating disorder remain elusive, numerous investigations have characterized its two core pathologies: the presence of β-amyloid plaques and tau tangles. Additionally, multiple studies of postmortem brain tissue, as well as results from AD preclinical models, have consistently demonstrated the presence of a sustained inflammatory response. As the persistent immune response is associated with neurodegeneration, it became clear that it may also exacerbate other AD pathologies, providing a link between the initial deposition of β-amyloid plaques and the later development of neurofibrillary tangles. Initially discovered in T cells, the nuclear factor of activated T-cells (NFAT) is one of the main transcription factors driving the expression of inflammatory genes and thus regulating immune responses. NFAT-dependent production of inflammatory mediators is controlled by Ca2+-dependent protein phosphatase calcineurin (CaN), which dephosphorylates NFAT and promotes its transcriptional activity. A substantial body of evidence has demonstrated that aberrant CaN/NFAT signaling is linked to several pathologies observed in AD, including neuronal apoptosis, synaptic deficits, and glia activation. In view of this, the role of NFAT isoforms in AD has been linked to disease progression at different stages, some of which are paralleled to diminished cognitive status. The use of classical inhibitors of CaN/NFAT signaling, such as tacrolimus or cyclosporine, or adeno-associated viruses to specifically inhibit astrocytic NFAT activation, has alleviated some symptoms of AD by diminishing β-amyloid neurotoxicity and neuroinflammation. In this article, we discuss the recent findings related to the contribution of CaN/NFAT signaling to the progression of AD and highlight the possible benefits of targeting this pathway in AD treatment.
Collapse
Affiliation(s)
| | | | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Xue Y, Li M, Hu J, Song Y, Guo W, Miao C, Ge D, Hou Y, Wang X, Huang X, Liu T, Zhang X, Huang Q. Ca v2.2-NFAT2-USP43 axis promotes invadopodia formation and breast cancer metastasis through cortactin stabilization. Cell Death Dis 2022; 13:812. [PMID: 36137995 PMCID: PMC9500045 DOI: 10.1038/s41419-022-05174-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 01/23/2023]
Abstract
Distant metastasis is the main cause of mortality in breast cancer patients. Using the breast cancer genomic data from The Cancer Genome Atlas (TCGA), we identified brain specific Cav2.2 as a critical regulator of metastasis. Cav2.2 expression is significantly upregulated in breast cancer and its higher expression is inversely correlated with survival suggesting a previously unappreciated role of Cav2.2 in breast cancer. Cav2.2 is required for breast cancer migration, invasion, and metastasis. Interestingly, Cav2.2 promotes invadopodia formation and extracellular matrix (ECM) degradation through the stabilization of invadopodia component cortactin in a proteosome-dependent manner. Moreover, deubiquitinating enzyme USP43 mediated the functions of Cav2.2 in cortactin stabilization, invadopodia formation, ECM degradation, and metastasis. Interestingly, Cav2.2 upregulates USP43 expression through NFAT2 dephosphorylation and nuclear localization. Our study uncovered a novel pathway that regulates cortactin expression and invadopodia formation in breast cancer metastasis.
Collapse
Affiliation(s)
- Ying Xue
- grid.8547.e0000 0001 0125 2443Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, PR China ,grid.8547.e0000 0001 0125 2443Institute of Clinical Sciences, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Min Li
- grid.8547.e0000 0001 0125 2443Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, PR China ,grid.8547.e0000 0001 0125 2443Institute of Clinical Sciences, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Jie Hu
- grid.8547.e0000 0001 0125 2443Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Yuanlin Song
- grid.8547.e0000 0001 0125 2443Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Wei Guo
- grid.8547.e0000 0001 0125 2443Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Changhong Miao
- grid.8547.e0000 0001 0125 2443Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, PR China ,grid.8547.e0000 0001 0125 2443Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Di Ge
- grid.8547.e0000 0001 0125 2443Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Yingyong Hou
- grid.8547.e0000 0001 0125 2443Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Xuefei Wang
- grid.8547.e0000 0001 0125 2443Department of General Surgery/Gastric Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Xingxu Huang
- grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, PR China
| | - Tianshu Liu
- grid.8547.e0000 0001 0125 2443Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, PR China ,grid.8547.e0000 0001 0125 2443Department of Medicial Oncology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Xiaoping Zhang
- grid.24516.340000000123704535The Institute of Intervention Vessel, Tongji University School of Medicine, Shanghai, PR China
| | - Qihong Huang
- grid.8547.e0000 0001 0125 2443Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, PR China ,grid.8547.e0000 0001 0125 2443Institute of Clinical Sciences, Zhongshan Hospital, Fudan University, Shanghai, PR China ,grid.413087.90000 0004 1755 3939Shanghai Respiratory Research Institute, Shanghai, PR China
| |
Collapse
|
3
|
Adewale Q, Khan AF, Carbonell F, Iturria-Medina Y, Alzheimer's Disease Neuroimaging Initiative. Integrated transcriptomic and neuroimaging brain model decodes biological mechanisms in aging and Alzheimer's disease. eLife 2021; 10:e62589. [PMID: 34002691 PMCID: PMC8131100 DOI: 10.7554/elife.62589] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Both healthy aging and Alzheimer's disease (AD) are characterized by concurrent alterations in several biological factors. However, generative brain models of aging and AD are limited in incorporating the measures of these biological factors at different spatial resolutions. Here, we propose a personalized bottom-up spatiotemporal brain model that accounts for the direct interplay between hundreds of RNA transcripts and multiple macroscopic neuroimaging modalities (PET, MRI). In normal elderly and AD participants, the model identifies top genes modulating tau and amyloid-β burdens, vascular flow, glucose metabolism, functional activity, and atrophy to drive cognitive decline. The results also revealed that AD and healthy aging share specific biological mechanisms, even though AD is a separate entity with considerably more altered pathways. Overall, this personalized model offers novel insights into the multiscale alterations in the elderly brain, with important implications for identifying effective genetic targets for extending healthy aging and treating AD progression.
Collapse
Affiliation(s)
- Quadri Adewale
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealCanada
| | - Ahmed F Khan
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealCanada
| | | | - Yasser Iturria-Medina
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill UniversityMontrealCanada
| | | |
Collapse
|
4
|
Esfandi F, Ghafouri-Fard S, Oskooei VK, Taheri M. β-Secretase 1 and its Naturally Occurring Anti-Sense RNA are Down-Regulated in Gastric Cancer. Pathol Oncol Res 2019; 25:1627-1633. [DOI: 10.1007/s12253-019-00621-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
|
5
|
Roberts HL, Schneider BL, Brown DR. α-Synuclein increases β-amyloid secretion by promoting β-/γ-secretase processing of APP. PLoS One 2017; 12:e0171925. [PMID: 28187176 PMCID: PMC5302447 DOI: 10.1371/journal.pone.0171925] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/29/2017] [Indexed: 11/18/2022] Open
Abstract
α-Synuclein misfolding and aggregation is often accompanied by β-amyloid deposition in some neurodegenerative diseases. We hypothesised that α-synuclein promotes β-amyloid production from APP. β-Amyloid levels and APP amyloidogenic processing were investigated in neuronal cell lines stably overexpressing wildtype and mutant α-synuclein. γ-Secretase activity and β-secretase expression were also measured. We show that α-synuclein expression induces β-amyloid secretion and amyloidogenic processing of APP in neuronal cell lines. Certain mutations of α-synuclein potentiate APP amyloidogenic processing. γ-Secretase activity was not enhanced by wildtype α-synuclein expression, however β-secretase protein levels were induced. Furthermore, a correlation between α-synuclein and β-secretase protein was seen in rat brain striata. Iron chelation abolishes the effect of α-synuclein on neuronal cell β-amyloid secretion, whereas overexpression of the ferrireductase enzyme Steap3 is robustly pro-amyloidogenic. We propose that α-synuclein promotes β-amyloid formation by modulating β-cleavage of APP, and that this is potentially mediated by the levels of reduced iron and oxidative stress.
Collapse
Affiliation(s)
- Hazel L. Roberts
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Bernard L. Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David R. Brown
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Asai M, Kinjo A, Kimura S, Mori R, Kawakubo T, Shirotani K, Yagishita S, Maruyama K, Iwata N. Perturbed Calcineurin-NFAT Signaling Is Associated with the Development of Alzheimer's Disease. Biol Pharm Bull 2017; 39:1646-1652. [PMID: 27725441 DOI: 10.1248/bpb.b16-00350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Down syndrome (DS), the most common genetic disorder, is caused by trisomy 21. DS is accompanied by heart defects, hearing and vision problems, obesity, leukemia, and other conditions, including Alzheimer's disease (AD). In comparison, most cancers are rare in people with DS. Overexpression of dual specificity tyrosine-phosphorylation-regulated kinase 1A and a regulator of calcineurin 1 located on chromosome 21 leads to excessive suppression of the calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway, resulting in reduced expression of a critical angiogenic factor. However, it is unclear whether the calcineurin-NFAT signaling pathway is involved in AD pathology in DS patients. Here, we investigated the association between the calcineurin-NFAT signaling pathway and AD using neuronal cells. Short-term pharmacological stimulation decreased gene expression of tau and neprilysin, and long-term inhibition of the signaling pathway decreased that of amyloid precursor protein. Moreover, a calcineurin inhibitor, cyclosporine A, also decreased neprilysin activity, leading to increases in amyloid-β peptide levels. Taken together, our results suggest that a dysregulation in calcineurin-NFAT signaling may contribute to the early onset of AD in people with DS.
Collapse
Affiliation(s)
- Masashi Asai
- School of Pharmaceutical Sciences, Nagasaki University
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Manocha GD, Ghatak A, Puig KL, Kraner SD, Norris CM, Combs CK. NFATc2 Modulates Microglial Activation in the AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2017; 58:775-787. [PMID: 28505967 PMCID: PMC6265241 DOI: 10.3233/jad-151203] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) brains are characterized by fibrillar amyloid-β (Aβ) peptide containing plaques and associated reactive microglia. The proinflammatory phenotype of the microglia suggests that they may negatively affect disease course and contribute to behavioral decline. This hypothesis predicts that attenuating microglial activation may provide benefit against disease. Prior work from our laboratory and others has characterized a role for the transcription factor, nuclear factor of activated T cells (NFAT), in regulating microglial phenotype in response to different stimuli, including Aβ peptide. We observed that the NFATc2 isoform was the most highly expressed in murine microglia cultures, and inhibition or deletion of NFATc2 was sufficient to attenuate the ability of the microglia to secrete cytokines. In order to determine whether the NFATc2 isoform, in particular, was a valid immunomodulatory target in vivo, we crossed an NFATc2-/- line to a well-known AD mouse model, an AβPP/PS1 mouse line. As expected, the AβPP/PS1 x NFATc2-/- mice had attenuated cytokine levels compared to AβPP/PS1 mice as well as reduced microgliosis and astrogliosis with no effect on plaque load. Although some species differences in relative isoform expression may exist between murine and human microglia, it appears that microglial NFAT activity is a viable target for modulating the proinflammatory changes that occur during AD.
Collapse
Affiliation(s)
- Gunjan D. Manocha
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Atreyi Ghatak
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Kendra L. Puig
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Susan D. Kraner
- Department of Pharmacology and Nutritional Sciences and the Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Christopher M. Norris
- Department of Pharmacology and Nutritional Sciences and the Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Colin K. Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
8
|
The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases. J Aging Res 2016; 2016:5081021. [PMID: 27597899 PMCID: PMC5002468 DOI: 10.1155/2016/5081021] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022] Open
Abstract
The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.
Collapse
|
9
|
Goetzl EJ, Mustapic M, Kapogiannis D, Eitan E, Lobach IV, Goetzl L, Schwartz JB, Miller BL. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer's disease. FASEB J 2016; 30:3853-3859. [PMID: 27511944 DOI: 10.1096/fj.201600756r] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/27/2016] [Indexed: 01/18/2023]
Abstract
Efficient intercellular transfer of RNAs, proteins, and lipids as protected exosomal cargo has been demonstrated in the CNS, but distinct physiologic and pathologic roles have not been well defined for this pathway. The capacity to isolate immunochemically human plasma neuron-derived exosomes (NDEs), containing neuron-specific cargo, has permitted characterization of CNS-derived exosomes in living humans. Constituents of the amyloid β-peptide (Aβ)42-generating system now are examined in 2 distinct sets of human neural cells by quantification in astrocyte-derived exosomes (ADEs) and NDEs, enriched separately from plasmas of patients with Alzheimer's disease (AD) or frontotemporal dementia (FTD) and matched cognitively normal controls. ADE levels of β-site amyloid precursor protein-cleaving enzyme 1 (BACE-1), γ-secretase, soluble Aβ42, soluble amyloid precursor protein (sAPP)β, sAPPα, glial-derived neurotrophic factor (GDNF), P-T181-tau, and P-S396-tau were significantly (3- to 20-fold) higher than levels in NDEs for patients and controls. BACE-1 levels also were a mean of 7-fold higher in ADEs than in NDEs from cultured rat type-specific neural cells. Levels of BACE-1 and sAPPβ were significantly higher and of GDNF significantly lower in ADEs of patients with AD than in those of controls, but not significantly different in patients with FTD than in controls. Abundant proteins of the Aβ42 peptide-generating system in ADEs may sustain levels in neurons. ADE cargo proteins may be useful for studies of mechanisms of cellular interactions and effects of BACE-1 inhibitors in AD.-Goetzl, E. J., Mustapic, M., Kapogiannis, D., Eitan, E., Lobach, I. V., Goetzl, L., Schwartz, J. B., Miller, B. L. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer's disease.
Collapse
Affiliation(s)
- Edward J Goetzl
- Department of Medicine, University of California, San Francisco, California, USA; .,Jewish Home of San Francisco, Geriatric Research Center, San Francisco, California, USA
| | - Maja Mustapic
- Laboratory of Neurosciences, National Institutes of Health, National Institute on Aging, Baltimore, Maryland, USA
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, National Institutes of Health, National Institute on Aging, Baltimore, Maryland, USA
| | - Erez Eitan
- Laboratory of Neurosciences, National Institutes of Health, National Institute on Aging, Baltimore, Maryland, USA
| | - Irina V Lobach
- Clinical Translational Science Institute, University of California, San Francisco, California, USA
| | - Laura Goetzl
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Janice B Schwartz
- Department of Medicine, University of California, San Francisco, California, USA.,Jewish Home of San Francisco, Geriatric Research Center, San Francisco, California, USA.,Department of Bioengineering, University of California, San Francisco, California, USA; and
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
| |
Collapse
|
10
|
Genetic Susceptibility to Bortezomib-Induced Peripheral Neuroropathy: Replication of the Reported Candidate Susceptibility Loci. Neurochem Res 2016; 42:925-931. [PMID: 27422265 DOI: 10.1007/s11064-016-2007-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Abstract
The introduction of proteasome inhibitors in the treatment of multiple myeloma (MM) patients has been a therapeutic success. Peripheral neuropathy (PNP) remains one of the most frequent side-effects experienced by patients who receive these novel agents. Recent investigations on the mechanisms of PNP in patients treated with bortezomib have suggested genetic susceptibility to neurotoxicity. We used data from a genome-wide association study conducted on 646 bortezomib-treated German MM patients to replicate the previously reported associations between single-nucleotide polymorphisms (SNPs) in candidate genes and PNP in MM patients, including 298 SNPs with a nominal significance (p value <0.05). Twelve associations were confirmed at a significance level p value <0.05. The corresponding SNPs are located in genes involved in drug metabolism (ABCC1, ABCC6), development and function of the nervous system (POGZ, NFAT pathway, EDN1), modulation of immune responses (IL17RD, IL10RA) and the NF-κB signaling pathway (PSMB4, BTCR, F2). We systematically investigated functional consequences of those variants using several bioinformatics tools, such as HaploRegV4.1, RegulomeDB and UCSC Genome Browser. Expression quantitative trait loci (eQTL) data suggested that some of the identified SNPs might influence gene expression through a differential recruitment of transcription factors. In conclusion, we confirmed some of the recently reported associations between germline variation and PNP. Elucidating the mechanisms underlying these associations will contribute to the development of new strategies for the prevention or reduction of PNP.
Collapse
|
11
|
Anukulthanakorn K, Parhar IS, Jaroenporn S, Kitahashi T, Watanbe G, Malaivijitnond S. Neurotherapeutic Effects of Pueraria mirifica Extract in Early- and Late-Stage Cognitive Impaired Rats. Phytother Res 2016; 30:929-39. [PMID: 26915634 DOI: 10.1002/ptr.5595] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/24/2016] [Accepted: 01/30/2016] [Indexed: 12/28/2022]
Abstract
We determined the neurotherapeutic effects of Pueraria mirifica extract (PME) and pure puerarin (PU) in comparison with 17β-estradiol (E2 ) in early- and late-stage cognitive impaired rats. Rats were ovariectomized (OVX), kept for 2 and 4 months to induce early- and late-stage cognitive impairment, respectively, and divided into four groups that were treated daily with (i) distilled water, (ii) 100 mg/kg of PME, (iii) 7 mg/kg of PU, and (iv) 80 µg/kg of E2 for 4 months. The estrogen deficiency symptoms of OVX rats were abrogated by treatment with E2 or PME, but not by treatment with PU. The mRNA level of genes associated with amyloid production (App and Bace1) and hyperphosphorylated Tau (Tau4) were upregulated together with the level of impaired cognition in the 2- and 4-month OVX rats. Treatment with E2 reduced the level of cognitive impairment more than that with PME and PU, and 2-month OVX rats were more responsive than 4-month OVX rats. All treatments down-regulated the Bace1 mRNA level in 2-month OVX rats, while PU and PME also decreased the App mRNA level in 2- and 4-month OVX rats, respectively. Only PU suppressed Tau4 expression in 2-month OVX rats. Thus, PME and PU elicit neurotherapeutic effects in different pathways, and earlier treatment is optimal. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kanya Anukulthanakorn
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, PJ46150, Malaysia
| | - Sukanya Jaroenporn
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Takashi Kitahashi
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, PJ46150, Malaysia
| | - Gen Watanbe
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Suchinda Malaivijitnond
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
12
|
Zheng K, Dai X, Xiao N, Wu X, Wei Z, Fang W, Zhu Y, Zhang J, Chen X. Curcumin Ameliorates Memory Decline via Inhibiting BACE1 Expression and β-Amyloid Pathology in 5×FAD Transgenic Mice. Mol Neurobiol 2016; 54:1967-1977. [PMID: 26910813 DOI: 10.1007/s12035-016-9802-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/16/2016] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common dementia and the trigger of its pathological cascade is widely believed to be the overproduction and accumulation of β-amyloid protein (Aβ) in the affected brain. However, effective AD remedies are still anxiously awaited. Recent evidence suggests that curcumin may be a potential agent for AD treatment. In this study, we used 5×FAD transgenic mice as an AD model to investigate the effects of curcumin on AD. Our results showed that curcumin administration (150 or 300 mg/kg/day, intragastrically, for 60 days) dramatically reduced Aβ production by downregulating BACE1 expression, preventing synaptic degradation, and improving spatial learning and memory impairment of 5×FAD mice. These findings suggest that curcumin is a potential candidate for AD treatment.
Collapse
Affiliation(s)
- Kunmu Zheng
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.,Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, China
| | - Xiaoman Dai
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Nai'an Xiao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.,Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, China
| | - Xilin Wu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Zhen Wei
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Wenting Fang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Yuangui Zhu
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Jing Zhang
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China. .,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.
| | - Xiaochun Chen
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Affiliated Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China. .,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.
| |
Collapse
|