1
|
Peng L, Luan S, Shen X, Zhan H, Ge Y, Liang Y, Wang J, Xu Y, Wu S, Zhong X, Zhang H, Gao L, Zhao J, He Z. Thyroid hormone deprival and TSH/TSHR signaling deficiency lead to central hypothyroidism-associated intestinal dysplasia. Life Sci 2024; 345:122577. [PMID: 38521387 DOI: 10.1016/j.lfs.2024.122577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/22/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Central hypothyroidism (CH) is characterized by low T4 levels and reduced levels or bioactivity of circulating TSH. However, there is a lack of studies on CH-related intestinal maldevelopment. In particular, the roles of TH and TSH/TSHR signaling in CH-related intestinal maldevelopment are poorly understood. Herein, we utilized Tshr-/- mice as a congenital hypothyroidism model with TH deprival and absence of TSHR signaling. METHODS The morphological characteristics of intestines were determined by HE staining, periodic acid-shiff staining, and immunohistochemical staining. T4 was administrated into the offspring of homozygous mice from the fourth postnatal day through weaning or administrated after weaning. RT-PCR was used to evaluate the expression of markers of goblet cells and intestinal digestive enzymes. Single-cell RNA-sequencing analysis was used to explore the cell types and gene profiles of metabolic alternations in early-T4-injected Tshr-/- mice. KEY FINDINGS Tshr deletion caused significant growth retardation and intestinal maldevelopment, manifested as smaller and more slender small intestines due to reduced numbers of stem cells and differentiated epithelial cells. Thyroxin supplementation from the fourth postnatal day, but not from weaning, significantly rescued the abnormal intestinal structure and restored the decreased number of proliferating intestinal cells in crypts of Tshr-/- mice. Tshr-/- mice with early-life T4 injections had more early goblet cells and impaired metabolism compared to Tshr+/+ mice. SIGNIFICANCE TH deprival leads to major defects of CH-associated intestinal dysplasia while TSH/TSHR signaling deficiency promotes the differentiation of goblet cells and impairs nutrition metabolism.
Collapse
Affiliation(s)
- Li Peng
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Sisi Luan
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xin Shen
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Huidong Zhan
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yueping Ge
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yixiao Liang
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Jing Wang
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yang Xu
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Shanshan Wu
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xia Zhong
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital, Medical Integration and Practice Center, Shandong University, Jinan, Shandong 250021, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Institute of Endocrine and Metabolic Diseases, Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.
| |
Collapse
|
2
|
Martin JV, Sarkar PK. Nongenomic roles of thyroid hormones and their derivatives in adult brain: are these compounds putative neurotransmitters? Front Endocrinol (Lausanne) 2023; 14:1210540. [PMID: 37701902 PMCID: PMC10494427 DOI: 10.3389/fendo.2023.1210540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/02/2023] [Indexed: 09/14/2023] Open
Abstract
We review the evidence regarding the nongenomic (or non-canonical) actions of thyroid hormones (thyronines) and their derivatives (including thyronamines and thyroacetic acids) in the adult brain. The paper seeks to evaluate these compounds for consideration as candidate neurotransmitters. Neurotransmitters are defined by their (a) presence in the neural tissue, (b) release from neural tissue or cell, (c) binding to high-affinity and saturable recognition sites, (d) triggering of a specific effector mechanism and (e) inactivation mechanism. Thyronines and thyronamines are concentrated in brain tissue and show distinctive patterns of distribution within the brain. Nerve terminals accumulate a large amount of thyroid hormones in mature brain, suggesting a synaptic function. However, surprisingly little is known about the potential release of thyroid hormones at synapses. There are specific binding sites for thyroid hormones in nerve-terminal fractions (synaptosomes). A notable cell-membrane binding site for thyroid hormones is integrin αvβ3. Furthermore, thyronines bind specifically to other defined neurotransmitter receptors, including GABAergic, catecholaminergic, glutamatergic, serotonergic and cholinergic systems. Here, the thyronines tend to bind to sites other than the primary sites and have allosteric effects. Thyronamines also bind to specific membrane receptors, including the trace amine associated receptors (TAARs), especially TAAR1. The thyronines and thyronamines activate specific effector mechanisms that are short in latency and often occur in subcellular fractions lacking nuclei, suggesting nongenomic actions. Some of the effector mechanisms for thyronines include effects on protein phosphorylation, Na+/K+ ATPase, and behavioral measures such as sleep regulation and measures of memory retention. Thyronamines promptly regulate body temperature. Lastly, there are numerous inactivation mechanisms for the hormones, including decarboxylation, deiodination, oxidative deamination, glucuronidation, sulfation and acetylation. Therefore, at the current state of the research field, thyroid hormones and their derivatives satisfy most, but not all, of the criteria for definition as neurotransmitters.
Collapse
Affiliation(s)
- Joseph V. Martin
- Biology Department, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Pradip K. Sarkar
- Department of Basic Sciences, Parker University, Dallas, TX, United States
| |
Collapse
|
3
|
Günay Ç, Aykol D, Özsoy Ö, Sönmezler E, Hanci YS, Kara B, Akkoyunlu Sünnetçi D, Cine N, Deniz A, Özer T, Ölçülü CB, Yilmaz Ö, Kanmaz S, Yilmaz S, Tekgül H, Yildiz N, Acar Arslan E, Cansu A, Olgaç Dündar N, Kusgoz F, Didinmez E, Gençpinar P, Aksu Uzunhan T, Ertürk B, Gezdirici A, Ayaz A, Ölmez A, Ayanoğlu M, Tosun A, Topçu Y, Kiliç B, Aydin K, Çağlar E, Ersoy Kosvali Ö, Okuyaz Ç, Besen Ş, Tekin Orgun L, Erol İ, Yüksel D, Sezer A, Atasoy E, Toprak Ü, Güngör S, Ozgor B, Karadağ M, Dilber C, Şahinoğlu B, Uyur Yalçin E, Eldes Hacifazlioglu N, Yaramiş A, Edem P, Gezici Tekin H, Yilmaz Ü, Ünalp A, Turay S, Biçer D, Gül Mert G, Dokurel Çetin İ, Kirik S, Öztürk G, Karal Y, Sanri A, Aksoy A, Polat M, Özgün N, Soydemir D, Sarikaya Uzan G, Ülker Üstebay D, Gök A, Yeşilmen MC, Yiş U, Karakülah G, Bursali A, Oktay Y, Hiz Kurul S. Shared Biological Pathways and Processes in Patients with Intellectual Disability: A Multicenter Study. Neuropediatrics 2023. [PMID: 36787800 DOI: 10.1055/a-2034-8528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
BACKGROUND Although the underlying genetic causes of intellectual disability (ID) continue to be rapidly identified, the biological pathways and processes that could be targets for a potential molecular therapy are not yet known. This study aimed to identify ID-related shared pathways and processes utilizing enrichment analyses. METHOD In this multicenter study, causative genes of patients with ID were used as input for Disease Ontology (DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. RESULTS Genetic test results of 720 patients from 27 centers were obtained. Patients with chromosomal deletion/duplication, non-ID genes, novel genes, and results with changes in more than one gene were excluded. A total of 558 patients with 341 different causative genes were included in the study. Pathway-based enrichment analysis of the ID-related genes via ClusterProfiler revealed 18 shared pathways, with lysine degradation and nicotine addiction being the most common. The most common of the 25 overrepresented DO terms was ID. The most frequently overrepresented GO biological process, cellular component, and molecular function terms were regulation of membrane potential, ion channel complex, and voltage-gated ion channel activity/voltage-gated channel activity, respectively. CONCLUSION Lysine degradation, nicotine addiction, and thyroid hormone signaling pathways are well-suited to be research areas for the discovery of new targeted therapies in ID patients.
Collapse
Affiliation(s)
- Çağatay Günay
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Duygu Aykol
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Özlem Özsoy
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Ece Sönmezler
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Yaren Sena Hanci
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Bülent Kara
- Department of Pediatric Neurology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | | | - Naci Cine
- Department of Medical Genetics, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Adnan Deniz
- Department of Pediatric Neurology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Tolgahan Özer
- Department of Medical Genetics, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Cemile Büşra Ölçülü
- Department of Child Neurology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Özlem Yilmaz
- Department of Child Neurology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Seda Kanmaz
- Department of Child Neurology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Sanem Yilmaz
- Department of Child Neurology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Hasan Tekgül
- Department of Child Neurology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Nihal Yildiz
- Department of Pediatric Neurology, Karadeniz Technical University, Faculty of Medicine, Farabi Hospital, Trabzon, Turkey
| | - Elif Acar Arslan
- Department of Pediatric Neurology, Karadeniz Technical University, Faculty of Medicine, Farabi Hospital, Trabzon, Turkey
| | - Ali Cansu
- Department of Pediatric Neurology, Karadeniz Technical University, Faculty of Medicine, Farabi Hospital, Trabzon, Turkey
| | - Nihal Olgaç Dündar
- Department of Pediatric Neurology, İzmir Katip Çelebi University, Izmir, Turkey
| | - Fatma Kusgoz
- Department of Pediatric Neurology, Tepecik Research and Training Hospital, Izmir, Turkey
| | - Elif Didinmez
- Department of Pediatric Neurology, Tepecik Research and Training Hospital, Izmir, Turkey
| | - Pınar Gençpinar
- Department of Pediatric Neurology, İzmir Katip Çelebi University, Izmir, Turkey
| | - Tuğçe Aksu Uzunhan
- Department of Pediatric Neurology, Prof Dr Cemil Tascioglu City Hospital, Istanbul, Turkey
| | - Biray Ertürk
- Department of Pediatric Neurology, Prof Dr Cemil Tascioglu City Hospital, Istanbul, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
| | - Akif Ayaz
- Department of Medical Genetics, Istanbul Medipol University School of Medicine, Istanbul, Turkey
| | - Akgün Ölmez
- Denizli Pediatric Neurology Clinic, Denizli, Turkey
| | - Müge Ayanoğlu
- Department of Child Neurology, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - Ayşe Tosun
- Department of Child Neurology, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - Yasemin Topçu
- Department of Pediatric Neurology, Istanbul Medipol University Faculty of Medicine, Istanbul, Turkey
| | - Betül Kiliç
- Department of Pediatric Neurology, Istanbul Medipol University Faculty of Medicine, Istanbul, Turkey
| | - Kürşad Aydin
- Department of Pediatric Neurology, Istanbul Medipol University Faculty of Medicine, Istanbul, Turkey
| | - Ezgi Çağlar
- Departments of Pediatric Neurology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Özlem Ersoy Kosvali
- Departments of Pediatric Neurology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Çetin Okuyaz
- Departments of Pediatric Neurology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Şeyda Besen
- Division of Pediatric Neurology, Başkent University Adana Medical and Research Center Faculty of Medicine, Adana, Turkey
| | - Leman Tekin Orgun
- Division of Pediatric Neurology, Başkent University Adana Medical and Research Center Faculty of Medicine, Adana, Turkey
| | - İlknur Erol
- Division of Pediatric Neurology, Başkent University Adana Medical and Research Center Faculty of Medicine, Adana, Turkey
| | - Deniz Yüksel
- Department of Pediatric Neurology, University of Health Sciences Faculty of Medicine, Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Abdullah Sezer
- Department of Genetics, University of Health Sciences Faculty of Medicine, Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Ergin Atasoy
- Department of Pediatric Neurology, University of Health Sciences Faculty of Medicine, Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Ülkühan Toprak
- Department of Pediatric Neurology, University of Health Sciences Faculty of Medicine, Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Serdal Güngör
- Department of Paediatric Neurology, Inonu University Faculty of Medicine, Turgut Ozal Research Center, Malatya, Turkey
| | - Bilge Ozgor
- Department of Paediatric Neurology, Inonu University Faculty of Medicine, Turgut Ozal Research Center, Malatya, Turkey
| | - Meral Karadağ
- Department of Paediatric Neurology, Inonu University Faculty of Medicine, Turgut Ozal Research Center, Malatya, Turkey
| | - Cengiz Dilber
- Department of Pediatric Neurology, Kahramanmaras Sutcu Imam University Faculty of Medicine, Kahramanmaraş, Turkey
| | - Bahtiyar Şahinoğlu
- Deparment of Genetics, Dr Ersin Arslan Traning and Research Hospital, Gaziantep, Turkey
| | - Emek Uyur Yalçin
- Departments of Pediatrics and Pediatric Neurology, University of Health Sciences, Zeynep Kamil Maternity and Children's Diseases Hospital, Istanbul, Turkey
| | - Nilüfer Eldes Hacifazlioglu
- Departments of Pediatrics and Pediatric Neurology, University of Health Sciences, Zeynep Kamil Maternity and Children's Diseases Hospital, Istanbul, Turkey
| | - Ahmet Yaramiş
- Diyarbakır Pediatric Neurology Clinic, Diyarbakır, Turkey
| | - Pınar Edem
- Department of Pediatric Neurology, Bakırcay University, Cigli District Training Hospital, Izmir, Turkey
| | - Hande Gezici Tekin
- Department of Pediatric Neurology, Bakırcay University, Cigli District Training Hospital, Izmir, Turkey
| | - Ünsal Yilmaz
- Department of Pediatric Neurology, Dr. Behcet Uz Children's Hospital, Izmir, Turkey
| | - Aycan Ünalp
- Department of Pediatric Neurology, Dr. Behcet Uz Children's Hospital, Izmir, Turkey
| | - Sevim Turay
- Department of Pediatric Neurology, Duzce University Faculty of Medicine, Düzce, Turkey
| | - Didem Biçer
- Department of Pediatric Neurology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Gülen Gül Mert
- Department of Pediatric Neurology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - İpek Dokurel Çetin
- Department of Pediatric Neurology, Balıkesir Atatürk Training and Research Hospital, Balıkesir, Turkey
| | - Serkan Kirik
- Fırat University School of Medicine, Pediatric Neurology, Elazığ, Turkey
| | - Gülten Öztürk
- Department of Pediatric Neurology, Marmara University School of Medicine, Istanbul, Turkey
| | - Yasemin Karal
- Department of Pediatric Neurology, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Aslıhan Sanri
- Department of Pediatric Genetics, University of Health Sciences, Samsun Training and Research Hospital, Samsun, Turkey
| | - Ayşe Aksoy
- Department of Pediatric Neurology, Ondokuz Mayıs University, Samsun, Turkey
| | - Muzaffer Polat
- Department of Pediatric Neurology, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Nezir Özgün
- Department of Pediatric Neurology, Mardin Artuklu University, Faculty of Health Sciences, Mardin, Turkey
| | - Didem Soydemir
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Gamze Sarikaya Uzan
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Döndü Ülker Üstebay
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Ayşen Gök
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Mehmet Can Yeşilmen
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Uluç Yiş
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Ahmet Bursali
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Yavuz Oktay
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Semra Hiz Kurul
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| |
Collapse
|
4
|
Antibodies Regulate Dual-Function Enzyme IYD to Induce Functional Synergy between Metabolism and Thermogenesis. Int J Mol Sci 2022; 23:ijms23147834. [PMID: 35887180 PMCID: PMC9316475 DOI: 10.3390/ijms23147834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Iodotyrosine deiodinase (IYD) is a type of deiodinase enzyme that scavenges iodide from the thyroid gland. Previously, we showed that H3 Ab acts as an agonist on IYD to induce migration of cells to the heart and differentiate human stem cells into brown adipocyte-like cells. To continue this study, we investigated the dual function of IYD in hypothyroidism by blocking IYD and in thermogenesis by looking at the induction of brown adipocyte-like cells by treatment with H3 Ab in a mouse model. Surprisingly, our results suggest H3 Ab acts on IYD as both an antagonist and agonist to reduce T4 and increase core body temperature in the mouse model. Taken together, the data suggest IYD has a dual function that can regulate physiological metabolism and enhance thermogenesis.
Collapse
|
5
|
Belostotsky R, Frishberg Y. Catabolism of Hydroxyproline in Vertebrates: Physiology, Evolution, Genetic Diseases and New siRNA Approach for Treatment. Int J Mol Sci 2022; 23:ijms23021005. [PMID: 35055190 PMCID: PMC8779045 DOI: 10.3390/ijms23021005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Hydroxyproline is one of the most prevalent amino acids in animal proteins. It is not a genetically encoded amino acid, but, rather, it is produced by the post-translational modification of proline in collagen, and a few other proteins, by prolyl hydroxylase enzymes. Although this post-translational modification occurs in a limited number of proteins, its biological significance cannot be overestimated. Considering that hydroxyproline cannot be re-incorporated into pro-collagen during translation, it should be catabolized following protein degradation. A cascade of reactions leads to production of two deleterious intermediates: glyoxylate and hydrogen peroxide, which need to be immediately converted. As a result, the enzymes involved in hydroxyproline catabolism are located in specific compartments: mitochondria and peroxisomes. The particular distribution of catabolic enzymes in these compartments, in different species, depends on their dietary habits. Disturbances in hydroxyproline catabolism, due to genetic aberrations, may lead to a severe disease (primary hyperoxaluria), which often impairs kidney function. The basis of this condition is accumulation of glyoxylate and its conversion to oxalate. Since calcium oxalate is insoluble, children with this rare inherited disorder suffer from progressive kidney damage. This condition has been nearly incurable until recently, as significant advances in substrate reduction therapy using small interference RNA led to a breakthrough in primary hyperoxaluria type 1 treatment.
Collapse
|
6
|
M VNUM, Faidh MA, Chadha A. The ornithine cyclodeaminase/µ-crystallin superfamily of proteins: A novel family of oxidoreductases for the biocatalytic synthesis of chiral amines. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
7
|
Deligiorgi MV, Trafalis DT. The Intriguing Thyroid Hormones-Lung Cancer Association as Exemplification of the Thyroid Hormones-Cancer Association: Three Decades of Evolving Research. Int J Mol Sci 2021; 23:436. [PMID: 35008863 PMCID: PMC8745569 DOI: 10.3390/ijms23010436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022] Open
Abstract
Exemplifying the long-pursued thyroid hormones (TH)-cancer association, the TH-lung cancer association is a compelling, yet elusive, issue. The present narrative review provides background knowledge on the molecular aspects of TH actions, with focus on the contribution of TH to hallmarks of cancer. Then, it provides a comprehensive overview of data pertinent to the TH-lung cancer association garnered over the last three decades and identifies obstacles that need to be overcome to enable harnessing this association in the clinical setting. TH contribute to all hallmarks of cancer through integration of diverse actions, currently classified according to molecular background. Despite the increasingly recognized implication of TH in lung cancer, three pending queries need to be resolved to empower a tailored approach: (1) How to stratify patients with TH-sensitive lung tumors? (2) How is determined whether TH promote or inhibit lung cancer progression? (3) How to mimic the antitumor and/or abrogate the tumor-promoting TH actions in lung cancer? To address these queries, research should prioritize the elucidation of the crosstalk between TH signaling and oncogenic signaling implicated in lung cancer initiation and progression, and the development of efficient, safe, and feasible strategies leveraging this crosstalk in therapeutics.
Collapse
Affiliation(s)
- Maria V. Deligiorgi
- Department of Pharmacology—Clinical Pharmacology Unit, Faculty of Medicine, National and Kapodistrian University of Athens, Building 16, 1st Floor, 75 Mikras Asias Str, 11527 Athens, Greece;
| | | |
Collapse
|
8
|
Chevreau R, Ghazale H, Ripoll C, Chalfouh C, Delarue Q, Hemonnot-Girard AL, Mamaeva D, Hirbec H, Rothhut B, Wahane S, Perrin FE, Noristani HN, Guerout N, Hugnot JP. RNA Profiling of Mouse Ependymal Cells after Spinal Cord Injury Identifies the Oncostatin Pathway as a Potential Key Regulator of Spinal Cord Stem Cell Fate. Cells 2021; 10:cells10123332. [PMID: 34943841 PMCID: PMC8699053 DOI: 10.3390/cells10123332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 01/31/2023] Open
Abstract
Ependymal cells reside in the adult spinal cord and display stem cell properties in vitro. They proliferate after spinal cord injury and produce neurons in lower vertebrates but predominantly astrocytes in mammals. The mechanisms underlying this glial-biased differentiation remain ill-defined. We addressed this issue by generating a molecular resource through RNA profiling of ependymal cells before and after injury. We found that these cells activate STAT3 and ERK/MAPK signaling post injury and downregulate cilia-associated genes and FOXJ1, a central transcription factor in ciliogenesis. Conversely, they upregulate 510 genes, seven of them more than 20-fold, namely Crym, Ecm1, Ifi202b, Nupr1, Rbp1, Thbs2 and Osmr—the receptor for oncostatin, a microglia-specific cytokine which too is strongly upregulated after injury. We studied the regulation and role of Osmr using neurospheres derived from the adult spinal cord. We found that oncostatin induced strong Osmr and p-STAT3 expression in these cells which is associated with reduction of proliferation and promotion of astrocytic versus oligodendrocytic differentiation. Microglial cells are apposed to ependymal cells in vivo and co-culture experiments showed that these cells upregulate Osmr in neurosphere cultures. Collectively, these results support the notion that microglial cells and Osmr/Oncostatin pathway may regulate the astrocytic fate of ependymal cells in spinal cord injury.
Collapse
Affiliation(s)
- Robert Chevreau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Hussein Ghazale
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Chantal Ripoll
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Chaima Chalfouh
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France; (C.C.); (Q.D.); (N.G.)
| | - Quentin Delarue
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France; (C.C.); (Q.D.); (N.G.)
| | - Anne Laure Hemonnot-Girard
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Daria Mamaeva
- Institut des Neurosciences de Montpellier, Université de Montpellier, INSERM, 34295 Montpellier, France;
| | - Helene Hirbec
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Bernard Rothhut
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Shalaka Wahane
- Departments of Neurobiology and Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Florence Evelyne Perrin
- Department of Biology, University of Montpellier, INSERM MMDN, EPHE, 34295 Montpellier, France;
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Harun Najib Noristani
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Nicolas Guerout
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France; (C.C.); (Q.D.); (N.G.)
| | - Jean Philippe Hugnot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
- Correspondence:
| |
Collapse
|
9
|
Abstract
µ-Crystallin is a NADPH-regulated thyroid hormone binding protein encoded by the CRYM gene in humans. It is primarily expressed in the brain, muscle, prostate, and kidney, where it binds thyroid hormones, which regulate metabolism and thermogenesis. It also acts as a ketimine reductase in the lysine degradation pathway when it is not bound to thyroid hormone. Mutations in CRYM can result in non-syndromic deafness, while its aberrant expression, predominantly in the brain but also in other tissues, has been associated with psychiatric, neuromuscular, and inflammatory diseases. CRYM expression is highly variable in human skeletal muscle, with 15% of individuals expressing ≥13 fold more CRYM mRNA than the median level. Ablation of the Crym gene in murine models results in the hypertrophy of fast twitch muscle fibers and an increase in fat mass of mice fed a high fat diet. Overexpression of Crym in mice causes a shift in energy utilization away from glycolysis towards an increase in the catabolism of fat via β-oxidation, with commensurate changes of metabolically involved transcripts and proteins. The history, attributes, functions, and diseases associated with CRYM, an important modulator of metabolism, are reviewed.
Collapse
Affiliation(s)
- Christian J Kinney
- Department of Physiology School of Medicine, University of Maryland, Baltimore, Baltimore, MD 21201
| | - Robert J Bloch
- Department of Physiology School of Medicine, University of Maryland, Baltimore, Baltimore, MD 21201
| |
Collapse
|
10
|
Kinney CJ, O'Neill A, Noland K, Huang W, Muriel J, Lukyanenko V, Kane MA, Ward CW, Collier AF, Roche JA, McLenithan JC, Reed PW, Bloch RJ. μ-Crystallin in Mouse Skeletal Muscle Promotes a Shift from Glycolytic toward Oxidative Metabolism. Curr Res Physiol 2021; 4:47-59. [PMID: 34746826 PMCID: PMC8562245 DOI: 10.1016/j.crphys.2021.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 01/24/2023] Open
Abstract
μ-Crystallin, encoded by the CRYM gene, binds the thyroid hormones, T3 and T4. Because T3 and T4 are potent regulators of metabolism and gene expression, and CRYM levels in human skeletal muscle can vary widely, we investigated the effects of overexpression of Crym. We generated transgenic mice, Crym tg, that expressed Crym protein specifically in skeletal muscle at levels 2.6-147.5 fold higher than in controls. Muscular functions, Ca2+ transients, contractile force, fatigue, running on treadmills or wheels, were not significantly altered, although T3 levels in tibialis anterior (TA) muscle were elevated ~190-fold and serum T4 was decreased 1.2-fold. Serum T3 and thyroid stimulating hormone (TSH) levels were unaffected. Crym transgenic mice studied in metabolic chambers showed a significant decrease in the respiratory exchange ratio (RER) corresponding to a 13.7% increase in fat utilization as an energy source compared to controls. Female but not male Crym tg mice gained weight more rapidly than controls when fed high fat or high simple carbohydrate diets. Although labeling for myosin heavy chains showed no fiber type differences in TA or soleus muscles, application of machine learning algorithms revealed small but significant morphological differences between Crym tg and control soleus fibers. RNA-seq and gene ontology enrichment analysis showed a significant shift towards genes associated with slower muscle function and its metabolic correlate, β-oxidation. Protein expression showed a similar shift, though with little overlap. Our study shows that μ-crystallin plays an important role in determining substrate utilization in mammalian muscle and that high levels of μ-crystallin are associated with a shift toward greater fat metabolism.
Collapse
Affiliation(s)
- Christian J. Kinney
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Andrea O'Neill
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Kaila Noland
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Joaquin Muriel
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Valeriy Lukyanenko
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Christopher W. Ward
- Department of Orthopedics School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Alyssa F. Collier
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Joseph A. Roche
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - John C. McLenithan
- Department of Medicine School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Patrick W. Reed
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Robert J. Bloch
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| |
Collapse
|
11
|
An economically and environmentally acceptable synthesis of chiral drug intermediate l-pipecolic acid from biomass-derived lysine via artificially engineered microbes. ACTA ACUST UNITED AC 2018; 45:405-415. [DOI: 10.1007/s10295-018-2044-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/29/2018] [Indexed: 12/29/2022]
Abstract
Abstract
Deficiency in petroleum resources and increasing environmental concerns have pushed a bio-based economy to be built, employing a highly reproducible, metal contaminant free, sustainable and green biomanufacturing method. Here, a chiral drug intermediate l-pipecolic acid has been synthesized from biomass-derived lysine. This artificial bioconversion system involves the coexpression of four functional genes, which encode l-lysine α-oxidase from Scomber japonicus, glucose dehydrogenase from Bacillus subtilis, Δ1-piperideine-2-carboxylase reductase from Pseudomonas putida, and lysine permease from Escherichia coli. Besides, a lysine degradation enzyme has been knocked out to strengthen the process in this microbe. The overexpression of LysP improved the l-pipecolic acid titer about 1.6-folds compared to the control. This engineered microbial factory showed the highest l-pipecolic acid production of 46.7 g/L reported to date and a higher productivity of 2.41 g/L h and a yield of 0.89 g/g. This biotechnological l-pipecolic acid production is a simple, economic, and green technology to replace the presently used chemical synthesis.
Collapse
|
12
|
Hommyo R, Suzuki SO, Abolhassani N, Hamasaki H, Shijo M, Maeda N, Honda H, Nakabeppu Y, Iwaki T. Expression of CRYM in different rat organs during development and its decreased expression in degenerating pyramidal tracts in amyotrophic lateral sclerosis. Neuropathology 2018; 38:247-259. [PMID: 29603402 DOI: 10.1111/neup.12466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 11/30/2022]
Abstract
The protein μ-crystallin (CRYM) is a novel component of the marsupial lens that has two functions: it is a key regulator of thyroid hormone transportation and a reductase of sulfur-containing cyclic ketimines. In this study, we examined changes of the expression pattern of CRYM in different rat organs during development using immunohistochemistry and immunoblotting. As CRYM is reportedly expressed in the corticospinal tract, we also investigated CRYM expression in human cases of amyotrophic lateral sclerosis (ALS) using immunohistochemistry. In the rat brain, CRYM was expressed in the cerebral cortex, basal ganglia, hippocampus and corticospinal tract in the early postnatal period. As postnatal development progressed, CRYM expression was restricted to large pyramidal neurons in layers V and VI of the cerebral cortex and pyramidal cells in the deep layer of CA1 in the hippocampus. Even within the same regions, CRYM-positive and negative neurons were distributed in a mosaic pattern. In the kidney, CRYM was expressed in epithelial cells of the proximal tubule and mesenchymal cells of the medulla in the early postnatal period; however, CRYM expression in the medulla was lost as mesenchymal cell numbers decreased with the rapid growth of the medulla. In human ALS brains, we observed marked loss of CRYM in the corticospinal tract, especially distally. Our results suggest that CRYM may play roles in development of cortical and hippocampal pyramidal cells in the early postnatal period, and in the later period, performs cell-specific functions in selected neuronal populations. In the kidney, CRYM may play roles in maturation of renal function. The expression patterns of CRYM may reflect significance of its interactions with T3 or ketimines in these cells and organs. The results also indicate that CRYM may be used as a marker of axonal degeneration in the corticospinal tract.
Collapse
Affiliation(s)
- Reiji Hommyo
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi O Suzuki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideomi Hamasaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Shijo
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norihisa Maeda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Toru Iwaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Richard S, Flamant F. Regulation of T3 Availability in the Developing Brain: The Mouse Genetics Contribution. Front Endocrinol (Lausanne) 2018; 9:265. [PMID: 29892264 PMCID: PMC5985302 DOI: 10.3389/fendo.2018.00265] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
Alterations in maternal thyroid physiology may have deleterious consequences on the development of the fetal brain, but the underlying mechanisms remain elusive, hampering the development of appropriate therapeutic strategies. The present review sums up the contribution of genetically modified mouse models to this field. In particular, knocking out genes involved in thyroid hormone (TH) deiodination, transport, and storage has significantly improved the picture that we have of the economy of TH in the fetal brain and the underlying genetic program. These data pave the way for future studies to bridge the gap in knowledge between thyroid physiology and brain development.
Collapse
|
14
|
Davis PJ, Leonard JL, Lin HY, Leinung M, Mousa SA. Molecular Basis of Nongenomic Actions of Thyroid Hormone. VITAMINS AND HORMONES 2017; 106:67-96. [PMID: 29407448 DOI: 10.1016/bs.vh.2017.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nongenomic actions of thyroid hormone are initiated by the hormone at receptors in the plasma membrane, in cytoplasm, or in mitochondria and do not require the interaction of nuclear thyroid hormone receptors (TRs) with their primary ligand, 3,5,3'-triiodo-l-thyronine (T3). Receptors involved in nongenomic actions may or may not have structural homologies with TRs. Certain nongenomic actions that originate at the plasma membrane may modify the state and function of intranuclear TRs. Reviewed here are nongenomic effects of the hormone-T3 or, in some cases, l-thyroxine (T4)-that are initiated at (a) truncated TRα isoforms, e.g., p30 TRα1, (b) cytoplasmic proteins, or (c) plasma membrane integrin αvβ3. p30 TRα1 is not transcriptionally competent, binds T3 at the cell surface, and consequently expresses a number of important functions in bone cells. Nongenomic hormonal control of mitochondrial respiration involves a TRα isoform, and another truncated TRα isoform nongenomically regulates the state of cellular actin. Cytoplasmic hormone-binding proteins involved in nongenomic actions of thyroid hormone include ketimine reductase, pyruvate kinase, and TRβ that shuttle among intracellular compartments. Functions of the receptor for T4 on integrin αvβ3 include stimulation of proliferation of cancer and endothelial cells (angiogenesis) and regulation of transcription of cancer cell survival pathway genes. T4 serves as a prohormone for T3 in genomic actions of thyroid hormone, but T4 is a hormone at αvβ3 and more important to cancer cell function than is T3. Thus, characterization of nongenomic actions of the hormone has served to broaden our understanding of the cellular roles of T3 and T4.
Collapse
Affiliation(s)
- Paul J Davis
- Albany Medical College, Albany, NY, United States; Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States.
| | - Jack L Leonard
- University of Massachusetts Medical School, Worcester, MA, United States
| | - Hung-Yun Lin
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | | | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| |
Collapse
|
15
|
Flamant F, Cheng SY, Hollenberg AN, Moeller LC, Samarut J, Wondisford FE, Yen PM, Refetoff S. Thyroid Hormone Signaling Pathways: Time for a More Precise Nomenclature. Endocrinology 2017; 158:2052-2057. [PMID: 28472304 PMCID: PMC6283428 DOI: 10.1210/en.2017-00250] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022]
Abstract
Current literature makes a distinction between two pathways for thyroid hormone signaling: genomic and nongenomic. However, this classification is a source of confusion. We propose a clarification in the nomenclature that may help to avoid unproductive controversies and favor progress in this field of research. Four types of thyroid hormone signaling are defined, and the experimental criteria for classification are discussed.
Collapse
Affiliation(s)
- Frédéric Flamant
- Institut de Génomique Fonctionnelle de Lyon, INRA USC 1370, Université de Lyon, Université Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| | - Sheue-Yann Cheng
- Gene Regulation Section, Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-6264
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215
| | - Lars C Moeller
- Division of Laboratory Research, Department of Endocrinology and Metabolic Diseases, University of Duisburg-Essen, 45127 Essen, Germany
| | - Jacques Samarut
- Institut de Génomique Fonctionnelle de Lyon, INRA USC 1370, Université de Lyon, Université Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 169857, Singapore
| | - Samuel Refetoff
- Department of Medicine, University of Chicago, Chicago, Illinois 60637
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637
- Department of Genetics, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
16
|
Flamant F, Gauthier K, Richard S. Genetic Investigation of Thyroid Hormone Receptor Function in the Developing and Adult Brain. Curr Top Dev Biol 2017; 125:303-335. [PMID: 28527576 DOI: 10.1016/bs.ctdb.2017.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thyroid hormones exert a broad influence on brain development and function, which has been extensively studied over the years. Mouse genetics has brought an important contribution, allowing precise analysis of the interplay between TRα1 and TRβ1 nuclear receptors in neural cells. However, the exact contribution of each receptor, the possible intervention of nongenomic signaling, and the nature of the genetic program that is controlled by the receptors remain poorly understood.
Collapse
Affiliation(s)
- Frédéric Flamant
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon cedex, France.
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon cedex, France
| | - Sabine Richard
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon cedex, France
| |
Collapse
|
17
|
Reciprocal Control of Thyroid Binding and the Pipecolate Pathway in the Brain. Neurochem Res 2016; 42:217-243. [DOI: 10.1007/s11064-016-2015-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/15/2016] [Accepted: 07/22/2016] [Indexed: 12/21/2022]
|
18
|
Abstract
The nongenomic actions of thyroid hormone begin at receptors in the plasma membrane, mitochondria or cytoplasm. These receptors can share structural homologies with nuclear thyroid hormone receptors (TRs) that mediate transcriptional actions of T3, or have no homologies with TR, such as the plasma membrane receptor on integrin αvβ3. Nongenomic actions initiated at the plasma membrane by T4 via integrin αvβ3 can induce gene expression that affects angiogenesis and cell proliferation, therefore, both nongenomic and genomic effects can overlap in the nucleus. In the cytoplasm, a truncated TRα isoform mediates T4-dependent regulation of intracellular microfilament organization, contributing to cell and tissue structure. p30 TRα1 is another shortened TR isoform found at the plasma membrane that binds T3 and mediates nongenomic hormonal effects in bone cells. T3 and 3,5-diiodo-L-thyronine are important to the complex nongenomic regulation of cellular respiration in mitochondria. Thus, nongenomic actions expand the repertoire of cellular events controlled by thyroid hormone and can modulate TR-dependent nuclear events. Here, we review the experimental approaches required to define nongenomic actions of the hormone, enumerate the known nongenomic effects of the hormone and their molecular basis, and discuss the possible physiological or pathophysiological consequences of these actions.
Collapse
Affiliation(s)
- Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy &Health Sciences, One Discovery Drive, Rennselaer, New York 12144, USA
| | - Fernando Goglia
- Dipartimento di Scienze e Tecnologie, Università degli studi del Sannio, Via Port'Arsa 11, 82100, Benevento, Italy
| | - Jack L Leonard
- Department of Microbiology &Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts 01605, USA
| |
Collapse
|
19
|
Hallen A, Cooper AJL, Smith JR, Jamie JF, Karuso P. Ketimine reductase/CRYM catalyzes reductive alkylamination of α-keto acids, confirming its function as an imine reductase. Amino Acids 2015; 47:2457-61. [PMID: 26173510 DOI: 10.1007/s00726-015-2044-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
Abstract
Recently, crystalized mouse ketimine reductase/CRYM complexed with NADPH was found to have pyruvate bound in its active site. We demonstrate that the enzyme binds α-keto acids, such as pyruvate, in solution, and catalyzes the formation of N-alkyl-amino acids from alkylamines and α-keto acids (via reduction of imine intermediates), but at concentrations of these compounds not expected to be encountered in vivo. These findings confirm that, mechanistically, ketimine reductase/CRYM acts as a classical imine reductase and may explain the finding of bound pyruvate in the crystallized protein.
Collapse
Affiliation(s)
- André Hallen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Balaclava Road, North Ryde, NSW, 2109, Australia.
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, 10595, USA
| | - Jason R Smith
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Balaclava Road, North Ryde, NSW, 2109, Australia
| | - Joanne F Jamie
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Balaclava Road, North Ryde, NSW, 2109, Australia
| | - Peter Karuso
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Balaclava Road, North Ryde, NSW, 2109, Australia
| |
Collapse
|