1
|
Etaka JCE, Lu Y, Kang W, Salsbury FR, Derreumaux P. Impact of Amidation on Aβ 25-35 Aggregation. J Phys Chem B 2025; 129:2149-2158. [PMID: 39945395 DOI: 10.1021/acs.jpcb.4c07692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Toxic oligomeric species are suspected in the etiology of Alzheimer's disease. The full-length Aβ42 can be studied by the fragment Aβ25-35 as it retains neurotoxicity. According to experimental studies, amidation of the Aβ25-35 carboxyl terminal decreases fibrillation activity while retaining its neurotoxic properties. Our molecular dynamics simulation studied the aggregation of the Aβ25-35 trimer from two initial structures (fibril and randomized helical structures) in their amidated and nonamidated forms. Comparing the amidated and nonamidated systems, the results suggest that antiparallel chains are dominant in nonamidated systems, while the amide group leads to parallel chains. In terms of secondary structures, a higher helix content with a corresponding decrease in β-sheet content is observed as a consequence of amidation. Despite the variation in secondary structures, the chain-chain contacts are still mediated by the Gly motif (GxxxG) and Ile residues in both amidated and nonamidated systems. As neurotoxicity does not change upon amidation, our results imply that clumping of peptides sustained by the Gly motif is a greater contributing factor to toxicity than secondary and quaternary structures.
Collapse
Affiliation(s)
- Judith C E Etaka
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
- School of Physics, Xidian University, Xi'an 710071, China
| | - Yan Lu
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
- School of Physics, Xidian University, Xi'an 710071, China
| | - Wei Kang
- School of Physics, Xidian University, Xi'an 710071, China
| | - Freddie R Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, United States
| | - Philippe Derreumaux
- UPR 9080 CNRS, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
- Institut Universitaire de France (IUF) et Université Paris Cité, 75005 Paris, France
| |
Collapse
|
2
|
Paing YMM, Lee SH. Protective effects of enzymatically digested velvet antler polypeptides on mitochondria in primary astrocytes. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2025; 67:164-178. [PMID: 39974783 PMCID: PMC11833196 DOI: 10.5187/jast.2023.e135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 02/21/2025]
Abstract
Traditionally, velvet antler (VA) has been used as a medicine or dietary supplement in East Asia. It contains biologically active compounds that exert anti-inflammatory, anti-fatigue, anti-aging, and anticancer effects. Although demand for VA has increased globally, its supply and consumption are limited due to the low recovery of its bioactive compounds from traditional decoctions. Therefore, alternative extraction methods are required to enrich the active compounds and enhance their biological efficacy. The extract has been reported to protect against neuropathological conditions in brain cells and suppress oxidative stress and neuroinflammation-crucial for the initiation or progression of neurodegenerative diseases. Therefore, VA is a potential therapeutic agent for neurodegenerative diseases. However, the beneficial effects of VA on astrocytes, which are the predominant glial cells in the brain, remain unclear. In the present study, we investigated the protective effects of enzymatically digested VA extract (YC-1101) on the mitochondria in astrocytes, which are essential organelles regulating oxidative stress. Proteomic and metabolomic results using liquid chromatography-mass spectrometry (LC-MS/MS) identified enriched bioactive ingredients in YC-1101 compared to hot water extract of VA. YC-1101 displayed significant protective effects against mitochondrial stressors in astrocytes compared with other health functional ingredients. Altogether, our results showed improved bioactive efficacy of YC-1101 and its protective role against mitochondrial stressors in astrocytes.
Collapse
Affiliation(s)
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang
University, Seoul 06974, Korea
| |
Collapse
|
3
|
Hosseini A, Sheibani M, Valipour M. Exploring the Therapeutic Potential of BBB-Penetrating Phytochemicals With p38 MAPK Modulatory Activity in Addressing Oxidative Stress-Induced Neurodegenerative Disorders, With a Focus on Alzheimer's Disease. Phytother Res 2024; 38:5598-5625. [PMID: 39300812 DOI: 10.1002/ptr.8329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/17/2024] [Accepted: 08/17/2024] [Indexed: 09/22/2024]
Abstract
Oxidative stress plays an important role in the occurrence of neurodegenerative diseases. Previous studies indicate a strong connection between oxidative stress, inappropriate activation of the p38 MAPK signaling pathway, and the pathogenesis of neurodegenerative diseases. Although antioxidant therapy is a valid strategy to alleviate these problems, the most important limitation of this approach is the ineffectiveness of drug administration due to the limited permeability of the BBB. Therefore, BBB-penetrating p38 MAPK modulators with proper antioxidant capacity could be useful in preventing/reducing the complications of neurodegenerative disorders. The current manuscript aims to review the therapeutic capabilities of some recently reviewed naturally occurring p38 MAPK inhibitors in the management of neurodegenerative problems such as Alzheimer's disease. In data collection, we tried to use more recent studies published in high-quality journals indexed in databases Scopus, Web of Science, PubMed, and so on, but no specific time frame was considered due to the nature of the study. Our evaluations indicate that natural compounds tanshinones, protoberberines, pinocembrin, osthole, rhynchophylline, oxymatrine, schisandrin, piperine, paeonol, ferulic acid, 6-gingerol, obovatol, and trolox have significant potential for use as supplements/adjuvants in the reduction of neurodegenerative-related problems. Our findings emphasize the usefulness of BBB-penetrating phytochemicals with p38 MAPK modulatory activity as potential therapeutic options against neurodegenerative disorders. Of course, the proper use of these compounds depends on considering their toxicity/safety profile and pharmacokinetic characteristics as well as the clinical conditions of users.
Collapse
Affiliation(s)
- Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Chen Z, Wang F, Chen Z, Zheng N, Zhou Q, Xie L, Sun Q, Li L, Li B. Decursin ameliorates neurotoxicity induced by glutamate through restraining ferroptosis by up-regulating FTH1 in SH-SY5Y neuroblastoma cells. Neuroscience 2024; 559:139-149. [PMID: 39197742 DOI: 10.1016/j.neuroscience.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegeneration which currently has no effective treatment. Ferroptosis is a new style of programmed cell death and is widely implicated in the pathogenesis and progression of AD. Decursin has been shown widely neuroprotective effects but poorly understood about the underlying mechanisms between decursin and ferroptosis in AD. Here, the protective effect of decursin and the underlying mechanism under glutamate treatment in SH-SY5Y cells was investigated. SH-SY5Y cells were cultured with glutamate in the presence or absence of decursin. The safe concentrations of decursin on SH-SY5Y cells were measured via CCK-8. Furthermore, LDH content, antioxidant enzyme activities including GPx, CAT and SOD, MDA contents, GSH levels, ROS formation, MMP, mitochondria ultrastructure morphology change, and intracellular Fe2+ levels were measured to investigate the influence of decursin and Fer-1 on ferroptosis in glutamate-treated SH-SY5Y cells. Moreover, the expressions of ferroptosis-related proteins were determined by Western blot. As a result, glutamate-induced cell survival was markedly elevated and morphological change was improved by decursin administrated in SH-SY5Y cells. Furthermore, decursin could reversed the decreased antioxidant enzyme activities, GSH levels, GPX4n and FTH1 expression, as well as the increased iron levels, LDH, MDA, ROS formation, and MMP, which showed similar effects to Fer-1, the specific ferroptosis inhibitor. Therefore, the inhibitory effect of decursin on ferroptosis probably was partially governed by FTH1 expression to regulate the cellular iron homeostasis. Additionally, decursin facilitated the translocation of Nrf2 from the cytoplasm to the nucleus. Taken together, our data for the first time suggest that decursin could ameliorate neurotoxicity induced by glutamate by attenuating ferroptosis via alleviating cellular iron levels by up-regulating FTH1 expression which is attributing to its promotion of Nrf2 translocation into the nucleus in SH-SY5Y neuroblastoma cells. Hence, decursin might be a novel and promising therapeutic option for AD. In addition, our study also provided some new clues to potential target for the intervention and therapy of AD.
Collapse
Affiliation(s)
- Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiu Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Lihua Xie
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
5
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
6
|
Tran NKS, Trinh TA, Pyo J, Kim CG, Park JG, Kang KS. Neuroprotective Potential of Pyranocoumarins from Angelica gigas Nakai on Glutamate-Induced Hippocampal Cell Death. Antioxidants (Basel) 2023; 12:1651. [PMID: 37627646 PMCID: PMC10451762 DOI: 10.3390/antiox12081651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic neurodegenerative diseases are typically associated with oxidative stress conditions leading to neuronal cell death. We aimed to investigate the neuroprotective effect of three pyranocoumarins (decursin, decursinol angelate, and decursinol) targeting oxidative stress factors. Decursin (also known as dehydro-8-prenylnaringenin) is a prenylated coumarin compound consisting of a coumarin ring system with a prenyl group attached to one of the carbons in the ring. As a secondary metabolite of plants, pyranocoumarin decursin from Angelica gigas Nakai presented protective effects against glutamate-induced oxidative stress in HT22, a murine hippocampal neuronal cell line. Decursinol (DOH) is a metabolite of decursin, sharing same coumarin ring system but a slightly different chemical structure with the prenyl group replaced by a hydroxyl group (-OH). In our findings, DOH was ineffective while decursin was, suggesting that this prenyl structure may be important for compound absorption and neuroprotection. By diminishing the accumulation of intracellular reactive oxygen species as well as stimulating the expression of HO-1, decursin triggers the self-protection system in neuronal cells. Additionally, decursin also revealed an anti-apoptotic effect by inhibiting chromatin condensation and reducing the forming of annexin-V-positive cells.
Collapse
Affiliation(s)
| | - Tuy An Trinh
- Saigon Pharmaceutical Science and Technology Center, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh 70000, Vietnam;
| | - Jaesung Pyo
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea;
| | - Chang Geon Kim
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang 37668, Republic of Korea;
| | - Jae Gyu Park
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang 37668, Republic of Korea;
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea;
| |
Collapse
|
7
|
Guo P, Zhang B, Zhao J, Wang C, Wang Z, Liu A, Du G. Medicine-Food Herbs against Alzheimer’s Disease: A Review of Their Traditional Functional Features, Substance Basis, Clinical Practices and Mechanisms of Action. Molecules 2022; 27:molecules27030901. [PMID: 35164167 PMCID: PMC8839204 DOI: 10.3390/molecules27030901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive, neurodegenerative disorder that currently has reached epidemic proportions among elderly populations around the world. In China, available traditional Chinese medicines (TCMs) that organically combine functional foods with medicinal values are named “Medicine Food Homology (MFH)”. In this review, we focused on MFH varieties for their traditional functional features, substance bases, clinical uses, and mechanisms of action (MOAs) for AD prevention and treatment. We consider the antiAD active constituents from MFH species, their effects on in vitro/in vivo AD models, and their drug targets and signal pathways by summing up the literature via a systematic electronic search (SciFinder, PubMed, and Web of Science). In this paper, several MFH plant sources are discussed in detail from in vitro/in vivo models and methods, to MOAs. We found that most of the MFH varieties exert neuroprotective effects and ameliorate cognitive impairments by inhibiting neuropathological signs (Aβ-induced toxicity, amyloid precursor protein, and phosphorylated Tau immunoreactivity), including anti-inflammation, antioxidative stress, antiautophagy, and antiapoptosis, etc. Indeed, some MFH substances and their related phytochemicals have a broad spectrum of activities, so they are superior to simple single-target drugs in treating chronic diseases. This review can provide significant guidance for people’s healthy lifestyles and drug development for AD prevention and treatment.
Collapse
Affiliation(s)
- Pengfei Guo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Baoyue Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jun Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chao Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ailin Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (A.L.); (G.D.)
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (A.L.); (G.D.)
| |
Collapse
|
8
|
Lee SE, Lim C, Cho S. Angelica gigas root ameliorates ischaemic stroke-induced brain injury in mice by activating the PI3K/AKT/mTOR and MAPK pathways. PHARMACEUTICAL BIOLOGY 2021; 59:662-671. [PMID: 34062098 PMCID: PMC8172223 DOI: 10.1080/13880209.2021.1928241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/12/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Traditionally, the root of Angelica gigas Nakai (Umbelliferae), has long been used to treat ischaemic diseases and is considered safe in humans. OBJECTIVE To investigate the neuroprotective effects of a methanol extract of A. gigas root (AGmex) on the middle cerebral artery occlusion (MCAO)-induced brain injury in mice, and the underlying mechanisms. MATERIALS AND METHODS Two hours of transient MCAO (tMCAO) was induced in C57BL/6 mice (MCAO control group and AGmex groups), AGmex was administered to the AGmex group at 300-3,000 mg/kg bw at 1, 1, and 24 h before tMCAO or at 1000 mg/kg bw at 1 h before and after tMCAO. Infarction volumes, tissue staining, and western blotting were used to investigate the mechanism underlying the neuroprotective effects of AGmex. RESULTS The median effective dose (ED50) could not be measured because the AGmex treatment did not reduce the infarction volume caused by 2 h of tMCAO to within 50%; however, pre-treatment with AGmex twice at 1,000 mg/kg bw before tMCAO significantly reduced the infarction volumes. The proteins related to cell growth, differentiation, and death were upregulated by this treatment, and the major recovery mechanisms appeared to involve the attenuation of the mitochondrial function of Bcl-2/Bax and activation of the PI3K/AKT/mTOR and MAPK signalling pathways in ischaemic neurons. CONCLUSIONS This study provides evidence supporting the use of A. gigas root against ischaemic stroke and suggests a novel developmental starting point for the treatment of ischaemic stroke.
Collapse
Affiliation(s)
- Se-Eun Lee
- Research Institute for Korean Medicine, Yangsan Campus of Pusan National University, Yangsan-si, Republic of Korea
| | - Chiyeon Lim
- College of Medicine, Dongguk University, Ilsandong-gu, Republic of Korea
| | - Suin Cho
- School of Korean Medicine, Yangsan Campus of Pusan National University, Yangsan-si, Republic of Korea
| |
Collapse
|
9
|
Therapeutic Effects of Decursin and Angelica gigas Nakai Root Extract in Gerbil Brain after Transient Ischemia via Protecting BBB Leakage and Astrocyte Endfeet Damage. Molecules 2021; 26:molecules26082161. [PMID: 33918660 PMCID: PMC8069195 DOI: 10.3390/molecules26082161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022] Open
Abstract
Angelica gigas Nakai root contains decursin which exerts beneficial properties such as anti-amnesic and anti-inflammatory activities. Until now, however, the neuroprotective effects of decursin against transient ischemic injury in the forebrain have been insufficiently investigated. Here, we revealed that post-treatment with decursin and the root extract saved pyramidal neurons in the hippocampus following transient ischemia for 5 min in gerbil forebrain. Through high-performance liquid chromatography, we defined that decursin was contained in the extract as 7.3 ± 0.2%. Based on this, we post-treated with 350 mg/kg of extract, which is the corresponding dosage of 25 mg/kg of decursin that exerted neuroprotection in gerbil hippocampus against the ischemia. In addition, behavioral tests were conducted to evaluate ischemia-induced dysfunctions via tests of spatial memory (by the 8-arm radial maze test) and learning memory (by the passive avoidance test), and post-treatment with the extract and decursin attenuated ischemia-induced memory impairments. Furthermore, we carried out histochemistry, immunohistochemistry, and double immunohistofluorescence. Pyramidal neurons located in the subfield cornu ammonis 1 (CA1) among the hippocampal subfields were dead at 5 days after the ischemia; however, treatment with the extract and decursin saved the pyramidal neurons after ischemia. Immunoglobulin G (IgG, an indicator of extravasation), which is not found in the parenchyma in normal brain tissue, was apparently shown in CA1 parenchyma from 2 days after the ischemia, but IgG leakage was dramatically attenuated in the CA1 parenchyma treated with the extract and decursin. Furthermore, astrocyte endfeet, which are a component of the blood–brain barrier (BBB), were severely damaged at 5 days after the ischemia; however, post-treatment with the extract and decursin dramatically attenuated the damage of the endfeet. In brief, therapeutic treatment of the extract of Angelica gigas Nakai root and decursin after 5 min transient forebrain ischemia protected hippocampal neurons from the ischemia, showing that ischemia-induced BBB leakage and damage of astrocyte endfeet was significantly attenuated by the extract and decursin. Based on these findings, we suggest that Angelica gigas Nakai root containing decursin can be employed as a pharmaceutical composition to develop a therapeutic strategy for brain ischemic injury.
Collapse
|
10
|
Farkhondeh T, Ashrafizadeh M, Azimi-Nezhad M, Samini F, Aschner M, Samarghandian S. Curcumin Efficacy in a Serum/Glucose Deprivation-Induced Neuronal PC12 Injury Model. Curr Mol Pharmacol 2021; 14:1146-1155. [PMID: 33538682 PMCID: PMC8329120 DOI: 10.2174/1874467214666210203211312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Glucose/serum deprivation (GSD), has been used for understanding molecular mechanisms of neuronal damage during ischemia. It has been suggested that curcumin may improve neurodegenerative diseases. AIM In this study, the protective effects of curcumin and its underlying mechanisms were investigated in PC12 cells upon GSD-induced stress. METHODS PC12 cells were cultured in DMEM overnight and then incubated in GSD condition for either 6 or 12h. GSD-treated cells were pretreated with various concentrations of curcumin (10, 20, and 40 μM) for 5h. The cell viability, apoptosis, reactive oxygen species (ROS) level, oxidative stress, expression of apoptosis-related genes, and IL-6 were determined. RESULTS Curcumin increased cell viability and caused an anti-apoptotic effect in PC12 cells exposed for 12h to GSD . Curcumin also increased antioxidant enzyme expression, suppressed lipid peroxidation, and decreased interleukin-6 secretion in PC12 cells subjected to GSD. In addition, pretreatment with curcumin down-regulated pro-apoptotic (Bax), and up-regulated antiapoptotic (Bcl2) mediators. CONCLUSION Curcumin mitigates many of the adverse effects of ischemia, and therefore, should be considered as an adjunct therapy in ischemic patients.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC),
Birjand University of Medical Sciences (BUMS), Birjand. Iran
- Faculty of Pharmacy, Birjand University of Medical
Sciences, Birjand, Iran
- Innovative Medical Research Center, Mashhad Branch, Islamic
Azad University, Mashhad, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla,
34956 Istanbul, Turkey
| | - Mohsen Azimi-Nezhad
- Noncommunicable Diseases Research Center, Neyshabur
University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, IGE-PCV “Interactions
Gène-Environnement en Physiopathologie CardioVasculaire”,
Université de Lorraine, 54000, Nancy, France
| | - Fariborz Samini
- Department of Neurosurgery, Faculty of Medicine, Mashhad
University of Medical Sciences, Mashhad, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein
College of Medicine, Bronx, New York, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur
University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
11
|
Kudoh C, Hori T, Yasaki S, Ubagai R, Tabira T. Effects of Ferulic Acid and Angelica archangelica Extract (Feru-guard ®) on Mild Cognitive Impairment: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Prospective Trial. J Alzheimers Dis Rep 2020; 4:393-398. [PMID: 33163900 PMCID: PMC7592837 DOI: 10.3233/adr-200211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We conducted a multicenter, randomized, double-blind, placebo-controlled prospective trial examining a supplement containing ferulic acid and Angelica archangelica extract (Feru-guard ®) for mild cognitive impairment (MCI). In the intention-to-treat population, Mini-Mental State Examination (MMSE) scores were significantly better at 24 weeks (p = 0.041) in the active group. In the per protocol population, MMSE was significantly better in the active group at 24 weeks (p = 0.008), and mixed effect models for repeated measures (MMRM) showed significant difference (p = 0.016). ADAS-Jcog was significantly better at 24 (p = 0.035) and 48 weeks (p = 0.015) in the active group, and MMRM was significant (p = 0.031). Thus, Feru-guard ® may be useful for MCI.
Collapse
Affiliation(s)
- Chiaki Kudoh
- Kudoh Clinic for Neurosurgery & Neurology, Ota-ku, Tokyo, Japan
| | - Tomokatsu Hori
- Moriyama Neurological Center Hospital, Edogawa-ku, Tokyo, Japan
| | - Shunji Yasaki
- Department of Neurology, Shin-Yurigaoka General Hospital, Furusawa, Aso-ku, Kawasaki, Japan
| | - Ryu Ubagai
- Moriyama Neurological Center Hospital, Edogawa-ku, Tokyo, Japan
| | - Takeshi Tabira
- Kudoh Clinic for Neurosurgery & Neurology, Ota-ku, Tokyo, Japan.,Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
12
|
Habaike A, Yakufu M, Cong Y, Gahafu Y, Li Z, Abulizi P. Neuroprotective effects of Fomes officinalis Ames polysaccharides on Aβ 25-35-induced cytotoxicity in PC12 cells through suppression of mitochondria-mediated apoptotic pathway. Cytotechnology 2020; 72:539-549. [PMID: 32430659 DOI: 10.1007/s10616-020-00400-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/09/2020] [Indexed: 12/30/2022] Open
Abstract
Aggregation of Aβ is a pathological hallmark of Alzheimer's disease (AD). The purpose of this study was to identify the protective roles of different polysaccharide components in Fomes officinalis Ames polysaccharides (FOAPs) against Aβ25-35-induced neurotoxicity in PC12 cells. Different doses of FOAPs components (i.e. FOAPs-a and FOAPs-b) were added to PC12 cells about 2 h before β-amyloid protein fragment 25-35 (Aβ25-35) exposure. The AD cellular model of PC12 cells was established using Aβ25-35. Then the PC12 cells were divided into 9 groups including: control group, Donepezil hydrochloride (DHCL) group, model group treated using 40 μM Aβ25-35, followed by FOAPs-a and FOAPs-b interference (50, 100 and 200 μg/mL). The mitochondrial reactive oxygen species (ROS), ATP, superoxide dismutase (SOD), malondialdehyde (MDA), lactate dehydrogenase (LDH) and mitochondrial membrane potential (MMP) were determined by commercial kits. The Cytochrome C, Bcl-2 and Bax expressions in the mitochondria and cytosol was determined by using Western blot analysis. FOAPs-a and FOAPs-b could significantly inhibit the LDH release, MDA level and the over accumulation of ROS induced by Aβ25-35 in PC12 cells in a dose-dependent manner. They could also effectively prevent Aβ25-35-stimulated cytotoxicity, which involved in attenuating cell apoptosis, increasing the ratio of Bcl-2/Bax and inhibiting Cytochrome C release from mitochondria to cytosol in PC12 cells. Moreover, FOAPs-a and FOAPs-b significantly alleviated mitochondrial dysfunction by regulating the MMP, as well as promoting the mitochondrial ATP synthesis. FOAPs-a and FOAPs-b played neuroprotective roles against Aβ25-35-induced cytotoxicity in PC12 cells through suppressing the mitochondria-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Ayijiang Habaike
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Mirensha Yakufu
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yuanyuan Cong
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yimin Gahafu
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Zhen Li
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Palida Abulizi
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
13
|
Abstract
Pyrano- and dipyranocoumarins are classes of naturally occurring organic compounds with very interesting biological activities. This review focuses on the synthetic strategies for the synthesis of pyranocoumarins and dipyranocoumarins and the biological properties of those compounds. The synthesis involves the formation of the pyran ring, at first, from a coumarin or the formation of pyranone moiety from an existing pyran. Pyranocoumarins and dipyranocoumarins present anti-HIV, anti-cancer, neuroprotective, antidiabetic, antibacterial, antifungal, anti-inflammatory activities. Especially khellactones and calanolides are usually potent and selective in anti-HIV activity. Decursin and decursinol derivatives are effective as anticancer, neuroprotective, antidiabetic, antibacterial, and antifungal agents.
Collapse
Affiliation(s)
- Evangelia-Eirini N. Vlachou
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos E. Litinas
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
14
|
Smith AK, Khayat E, Lockhart C, Klimov DK. Do Cholesterol and Sphingomyelin Change the Mechanism of Aβ 25-35 Peptide Binding to Zwitterionic Bilayer? J Chem Inf Model 2019; 59:5207-5217. [PMID: 31738555 DOI: 10.1021/acs.jcim.9b00763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using replica exchange with solute tempering all-atom molecular dynamics, we studied the equilibrium binding of Aβ25-35 peptide to the ternary bilayer composed of an equimolar mixture of dimyristoylphosphatidylcholine (DMPC), N-palmitoylsphingomyelin (PSM), and cholesterol. Binding of the same peptide to the pure DMPC bilayer served as a control. Due to significant C-terminal hydrophobic moment, binding to the ternary and DMPC bilayers promotes helical structure in the peptide. For both bilayers a polarized binding profile is observed, in which the N-terminus anchors to the bilayer surface, whereas the C-terminus alternates between unbound and inserted states. Both ternary and DMPC bilayers feature two Aβ25-35 bound states, surface bound, S, and inserted, I, separated by modest free energy barriers. Experimental data are in agreement with our results but indicate that cholesterol impact is Aβ fragment dependent. For Aβ25-35, we predict that its binding mechanism is independent of the inclusion of PSM and cholesterol into the bilayer.
Collapse
Affiliation(s)
- Amy K Smith
- School of Systems Biology , George Mason University , Manassas , Virginia 20110 , United States
| | - Elias Khayat
- School of Systems Biology , George Mason University , Manassas , Virginia 20110 , United States
| | - Christopher Lockhart
- School of Systems Biology , George Mason University , Manassas , Virginia 20110 , United States
| | - Dmitri K Klimov
- School of Systems Biology , George Mason University , Manassas , Virginia 20110 , United States
| |
Collapse
|
15
|
Wu HC, Hu QL, Zhang SJ, Wang YM, Jin ZK, Lv LF, Zhang S, Liu ZL, Wu HL, Cheng OM. Neuroprotective effects of genistein on SH-SY5Y cells overexpressing A53T mutant α-synuclein. Neural Regen Res 2018; 13:1375-1383. [PMID: 30106049 PMCID: PMC6108222 DOI: 10.4103/1673-5374.235250] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2018] [Indexed: 12/25/2022] Open
Abstract
Genistein, a potent antioxidant compound, protects dopaminergic neurons in a mouse model of Parkinson's disease. However, the mechanism underlying this action remains unknown. This study investigated human SH-SY5Y cells overexpressing the A53T mutant of α-synuclein. Four groups of cells were assayed: a control group (without any treatment), a genistein group (incubated with 20 μM genistein), a rotenone group (treated with 50 μM rotenone), and a rotenone + genistein group (incubated with 20 μM genistein and then treated with 50 μM rotenone). A lactate dehydrogenase release test confirmed the protective effect of genistein, and genistein remarkably reversed mitochondrial oxidative injury caused by rotenone. Western blot assays showed that BCL-2 and Beclin 1 levels were markedly higher in the genistein group than in the rotenone group. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling revealed that genistein inhibited rotenone-induced apoptosis in SH-SY5Y cells. Compared with the control group, the expression of NFE2L2 and HMOX1 was significantly increased in the genistein + rotenone group. However, after treatment with estrogen receptor and NFE2L2 channel blockers (ICI-182780 and ML385, respectively), genistein could not elevate NFE2L2 and HMOX1 expression. ICI-182780 effectively prevented genistein-mediated phosphorylation of NFE2L2 and remarkably suppressed phosphorylation of AKT, a protein downstream of the estrogen receptor. These findings confirm that genistein has neuroprotective effects in a cell model of Parkinson's disease. Genistein can reduce oxidative stress damage and cell apoptosis by activating estrogen receptors and NFE2L2 channels.
Collapse
Affiliation(s)
- Huan-Cheng Wu
- Graduate School, Tianjin Medical University, Tianjin, China
- Tianjin Beichen Hospital, Tianjin, China
| | | | | | | | | | - Ling-Fu Lv
- Tianjin Beichen Hospital, Tianjin, China
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force, Tianjin, China
| | - Zhen-Lin Liu
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force, Tianjin, China
| | - Hong-Lian Wu
- Department of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Ou-Mei Cheng
- Department of Clinical Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Natural Korean Medicine Dang-Gui: Biosynthesis, Effective Extraction and Formulations of Major Active Pyranocoumarins, Their Molecular Action Mechanism in Cancer, and Other Biological Activities. Molecules 2017; 22:molecules22122170. [PMID: 29215592 PMCID: PMC6149795 DOI: 10.3390/molecules22122170] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/23/2022] Open
Abstract
Angelica gigas Nakai (AGN) is a crucial oriental medicinal herb that grows especially in Korea and the Far-East countries. It contains chemically active compounds like pyranocoumarins, polyacetylenes and essential oils, which might be useful for treatment of several chronic diseases. It has been used for centuries as a traditional medicine in Southeast Asia, but in Western countries is used as a functional food and a major ingredient of several herbal products. The genus Angelica is also known as ‘female ginseng’ due to its critical therapeutic role in female afflictions, such as gynecological problems. However, it is well-documented that the AGN pyranocoumarins may play vital beneficial roles against cancer, neurodisorders, inflammation, osteoporosis, amnesia, allergies, depression, fungi, diabetes, ischemia, dermatitis, reactive oxygen species (ROS) and androgen. Though numerous studies revealed the role of AGN pyranocoumarins as therapeutic agents, none of the reviews have published their molecular mechanism of action. To the best of our knowledge, this would be the first review that aims to appraise the biosynthesis of AGN’s major active pyranocoumarins, discuss effective extraction and formulation methods, and detail the molecular action mechanism of decursin (D), decursinol angelate (DA) and decursinol (DOH) in chronic diseases, which would further help extension of research in this area.
Collapse
|
17
|
Li X, Wang H, Wen G, Li L, Gao Y, Zhuang Z, Zhou M, Mao L, Fan Y. Neuroprotection by quercetin via mitochondrial function adaptation in traumatic brain injury: PGC-1α pathway as a potential mechanism. J Cell Mol Med 2017; 22:883-891. [PMID: 29205806 PMCID: PMC5783850 DOI: 10.1111/jcmm.13313] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 06/09/2017] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to investigate the neuroprotective effects of quercetin in mouse models of traumatic brain injury (TBI) and the potential role of the PGC‐1α pathway in putative neuroprotection. Wild‐type mice were randomly assigned to four groups: the sham group, the TBI group, the TBI+vehicle group and the TBI+quercetin group. Quercetin, a dietary flavonoid used as a food supplement, significantly reduced TBI‐induced neuronal apoptosis and ameliorated mitochondrial lesions. It significantly accelerated the translocation of PGC‐1α protein from the cytoplasm to the nucleus. In addition, quercetin restored the level of cytochrome c, malondialdehyde and superoxide dismutase in mitochondria. Therefore, quercetin administration can potentially attenuate brain injury in a TBI model by increasing the activities of mitochondrial biogenesis via the mediation of the PGC‐1α pathway.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery, Jinling Hospital, Medical School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Guodao Wen
- Department of Neurosurgery, Jinling Hospital, Medical School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Liwen Li
- Department of Neurosurgery, Jinling Hospital, Medical School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yongyue Gao
- Department of Neurosurgery, Jinling Hospital, Medical School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zong Zhuang
- Department of Neurosurgery, Jinling Hospital, Medical School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, Medical School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Lei Mao
- Department of Neurosurgery, Jinling Hospital, Medical School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Youwu Fan
- Department of Neurosurgery, Jinling Hospital, Medical School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
18
|
Li L, Yang Y, Zheng J, Cai G, Lee Y, Du J. Decursin attenuates the amyloid-β-induced inflammatory response in PC12 cells via MAPK and nuclear factor-κB pathway. Phytother Res 2017; 32:251-258. [DOI: 10.1002/ptr.5962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/03/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Li Li
- Dongguan Scientific Research Center; Guangdong Medical University; Dongguan China
| | - Yiqiu Yang
- Dongguan Scientific Research Center; Guangdong Medical University; Dongguan China
| | - Jingbin Zheng
- Dongguan Scientific Research Center; Guangdong Medical University; Dongguan China
| | - Guodi Cai
- Dongguan Scientific Research Center; Guangdong Medical University; Dongguan China
| | - Yongwoo Lee
- Department of Smart Food and Drugs, Graduate School; Inje University; Gimhae Republic of Korea
| | - Jikun Du
- Department of Chemical and Biomolecular Engineering; Korea Advanced Institute of Science and Technology; Daejeon Republic of Korea
| |
Collapse
|
19
|
Decursin and decursinol angelate: molecular mechanism and therapeutic potential in inflammatory diseases. Inflamm Res 2017; 67:209-218. [PMID: 29134229 DOI: 10.1007/s00011-017-1114-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 01/17/2023] Open
Abstract
Epidemiological studies have shown that inflammation plays a critical role in the development and progression of various chronic diseases, including cancers, neurological diseases, hepatic fibrosis, diabetic retinopathy, and vascular diseases. Decursin and decursinol angelate (DA) are pyranocoumarin compounds obtained from the roots of Angelica gigas. Several studies have described the anti-inflammatory effects of decursin and DA. Decursin and DA have shown potential anti-inflammatory activity by modulating growth factors such as vascular endothelial growth factor, transcription factors such as signal transducer and activator of transcription 3 and nuclear factor kappa-light-chain-enhancer of activated B cells, cellular enzymes including matrix metalloproteinases cyclooxygenase, and protein kinases such as extracellular receptor kinase, phosphatidylinositol-3-kinase, and protein kinase C. These compounds have the ability to induce apoptosis by activating pro-apoptotic proteins and the caspase cascade, and reduced the expression of anti-apoptotic proteins such as B-cell lymphoma 2 and B-cell lymphoma-extra-large. Interaction with multiple molecular targets and cytotoxic effects, these two compounds are favorable candidates for treating various chronic inflammatory diseases such as cancers (prostate, breast, leukemia, cervical, and myeloma), rheumatoid arthritis, diabetic retinopathy, hepatic fibrosis, osteoclastogenesis, allergy, and Alzheimer's disease. We have summarized the preliminary studies regarding the biological effects of decursin and DA. In this review, we will also highlight the functions of coumarin compounds that can be translated to a clinical practice for the treatment and prevention of various inflammatory ailments.
Collapse
|
20
|
Kandel N, Zheng T, Huo Q, Tatulian SA. Membrane Binding and Pore Formation by a Cytotoxic Fragment of Amyloid β Peptide. J Phys Chem B 2017; 121:10293-10305. [PMID: 29039658 DOI: 10.1021/acs.jpcb.7b07002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid β (Aβ) peptide contributes to Alzheimer's disease by a yet unidentified mechanism. In the brain tissue, Aβ occurs in various forms, including an undecapeptide Aβ25-35, which exerts a neurotoxic effect through the mitochondrial dysfunction and/or Ca2+-permeable pore formation in cell membranes. This work was aimed at the biophysical characterization of membrane binding and pore formation by Aβ25-35. Interaction of Aβ25-35 with anionic and zwitterionic membranes was analyzed by microelectrophoresis. In pore formation experiments, Aβ25-35 was incubated in aqueous buffer to form oligomers and added to Quin-2-loaded vesicles. Gradual increase in Quin-2 fluorescence was interpreted in terms of membrane pore formation by the peptide, Ca2+ influx, and binding to intravesicular Quin-2. The kinetics and magnitude of this process were used to evaluate the rate constant of pore formation, peptide-peptide association constants, and the oligomeric state of the pores. Decrease in membrane anionic charge and high ionic strength conditions significantly suppressed membrane binding and pore formation, indicating the importance of electrostatic interactions in these events. Circular dichroism spectroscopy showed that Aβ25-35 forms the most efficient pores in β-sheet conformation. The data are consistent with an oligo-oligomeric pore model composed of up to eight peptide units, each containing 6-8 monomers.
Collapse
Affiliation(s)
| | | | | | - Suren A Tatulian
- Department of Physics, University of Central Florida , Physical Sciences Bldg., Room 456, 4111 Libra Drive, Orlando, Florida 32816, United States
| |
Collapse
|
21
|
Neuroprotective and Cognitive Enhancement Potentials of Angelica gigas Nakai Root: A Review. Sci Pharm 2017; 85:scipharm85020021. [PMID: 28452965 PMCID: PMC5489925 DOI: 10.3390/scipharm85020021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022] Open
Abstract
Angelica gigas Nakai is an important medicinal plant with health promoting properties that is used to treat many disorders. In traditional herbal medicine, the root of this plant is used to promote blood flow, to treat anemia, and is used as sedative or tonic agent. The root contains various bioactive metabolites; in particular, decursin and decursinol (pyranocoumarin type components) have been reported to possess various pharmacological properties. Recently, several in vitro and in vivo studies have reported that the crude extracts and isolated components from the root of A. gigas exhibited neuroprotective and cognitive enhancement effects. Neuronal damage or death is the most important factor for many neurodegenerative diseases. In addition, recent studies have clearly demonstrated the possible mechanisms behind the neuroprotective action of extracts/compounds from the root of A. gigas. In the present review, we summarized the neuroprotective and cognitive enhancement effects of extracts and individual compounds from A. gigas root.
Collapse
|