1
|
Ma C, Han L, Zhao W, Chen F, Huang R, Pang CH, Zhu Z, Pan G. Targeting AhR suppresses hepatocyte ferroptosis in MASH by regulating the Pten/Akt/β catenin axis. Biochem Pharmacol 2025; 232:116711. [PMID: 39672276 DOI: 10.1016/j.bcp.2024.116711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Aryl hydrocarbon Receptor (AhR), an essential host regulator, has been observed to be significantly upregulated in patients with Metabolic dysfunction-associated steatohepatitis (MASH). However, the underlying mechanism remains unclear. The specific AhR antagonist CH223191 and siRNAs were employed to investigated the role of AhR and its potential as a therapeutic target for MASH in mice and hepatocytes model. Significant upregulation of hepatic AhR was found in our MASH model and across three public datasets. CH223191 (5 mg/kg) treatment effectively ameliorated lipid deposition, serum ALT/AST level, inflammatory cytokines and hepatocyte senescence. Moreover, inhibiting AhR reduced aberrant iron overload, MDA and ROS levels, and suppressed iron transporter DMT1 and iron storage protein ferritin. Furthermore, CH223191 treatment resulted in the restoration of β-catenin and Pten while reducing the phosphorylation of Akt. Suppression of Pten or β-catenin by specific antagonists significantly abolished the hepatoprotective effects of CH223191, leading to increased DMT1 and ferritin and subsequent hepatic ferroptosis in mice. In conclusions, these findings suggested a novel regulatory role of AhR plays in ferroptosis and iron overload through the Pten/Akt/βcatenin pathway, which makes AhR a promising therapeutic target for the treatment of MASH.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxuan Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Feihong Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Cheng Heng Pang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK.
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
2
|
Role of mTOR1 signaling in the antidepressant effects of ketamine and the potential of mTORC1 activators as novel antidepressants. Neuropharmacology 2023; 223:109325. [PMID: 36334763 DOI: 10.1016/j.neuropharm.2022.109325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Conventional antidepressant medications act on monoaminergic systems and have important limitations, including a therapeutic delay of weeks to months and low rates of efficacy. Recently, clinical findings have indicated that ketamine, a dissociative anesthetic that blocks N-methyl-d-aspartate receptor channel activity, causes rapid and long-lasting antidepressant effects. Although the exact mechanisms underlying the antidepressant effects of ketamine are not fully known, preclinical studies have demonstrated a key role for mechanistic target of rapamycin complex 1 (mTORC1) signaling and a subsequent increase in synapse formation in the medial prefrontal cortex. In this review, we discuss the role of mTORC1 and its subsequent signaling cascade in the antidepressant effects of ketamine and other compounds with glutamatergic mechanisms of action. We also present the possibility that mTORC1 signaling itself is a drug discovery target.
Collapse
|
3
|
Rapaka D, Bitra VR, Challa SR, Adiukwu PC. mTOR signaling as a molecular target for the alleviation of Alzheimer's disease pathogenesis. Neurochem Int 2022; 155:105311. [PMID: 35218870 DOI: 10.1016/j.neuint.2022.105311] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/12/2022] [Accepted: 02/20/2022] [Indexed: 10/19/2022]
Abstract
Mechanistic/mammalian target of rapamycin (mTOR) belongs to the phosphatidylinositol kinase-related kinase (PIKK) family. mTOR signaling is required for the commencement of essential cell functions including autophagy. mTOR primarily governs cell growth in response to favourable nutrients and other growth stimuli. However, it also influences aging and other aspects of nutrient-related physiology such as protein synthesis, ribosome biogenesis, and cell proliferation in adults with very limited growth. The major processes for survival such as synaptic plasticity, memory storage and neuronal recovery involve a significant mTOR activity. mTOR dysregulation is becoming a prevalent motif in a variety of human diseases, including cancer, neurological disorders, and other metabolic syndromes. The use of rapamycin to prolong life in different animal models may be attributable to the multiple roles played by mTOR signaling in various processes involved in ageing, protein translation, autophagy, stem cell pool turnover, inflammation, and cellular senescence. mTOR activity was found to be altered in AD brains and rodent models, supporting the notion that aberrant mTOR activity is one of the key events contributing to the onset and progression of AD hallmarks This review assesses the molecular association between the mTOR signaling pathway and pathogenesis of Alzheimer's disease. The research data supporting this theme are also reviewed.
Collapse
Affiliation(s)
- Deepthi Rapaka
- A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, 530003, India.
| | | | - Siva Reddy Challa
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, 61614, USA.
| | - Paul C Adiukwu
- School of Pharmacy, University of Botswana, Gaborone, 0022, Botswana.
| |
Collapse
|
4
|
Gureev AP, Popov VN, Starkov AA. Crosstalk between the mTOR and Nrf2/ARE signaling pathways as a target in the improvement of long-term potentiation. Exp Neurol 2020; 328:113285. [PMID: 32165256 DOI: 10.1016/j.expneurol.2020.113285] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/22/2020] [Accepted: 03/08/2020] [Indexed: 12/15/2022]
Abstract
In recent years, a significant progress was made in understanding molecular mechanisms of long-term memory. Long-term memory formation requires strengthening of neuronal connections (LTP, long-term potentiation) associated with structural rearrangement of neurons. The key role in the synthesis of proteins essential for these rearrangements belong to mTOR (mammalian target of rapamycin) complexes and signaling pathways involved in mTOR regulation. Suppression of mTOR activity may impair synaptic plasticity and long-term memory, while mTOR activation inhibits autophagy, thereby potentiating amyloidosis and development of Alzheimer's disease (AD) accompanied by irreversible memory loss. Because of this, suppression/inhibition of mTOR might have unpredictable consequences on memory. The Nrf2/ARE signaling pathway affects almost all mitochondrial processes. The activation of this pathway improves memory and exhibits therapeutic effect in AD. In this review, we discuss the crosstalk between the Nrf2/ARE signaling and mTOR in the maintenance of synaptic plasticity. Nrf2 pathway can be activated by pharmacological agents and by changes in mitochondria functioning accompanying various neuronal dysfunctions.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia; Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Anatoly A Starkov
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Baniasadi M, Manaheji H, Maghsoudi N, Danyali S, Zakeri Z, Maghsoudi A, Zaringhalam J. Microglial-induced apoptosis is potentially responsible for hyperalgesia variations during CFA-induced inflammation. Inflammopharmacology 2019; 28:475-485. [DOI: 10.1007/s10787-019-00623-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022]
|
6
|
Song ZJ, Yang SJ, Han L, Wang B, Zhu G. Postnatal calpeptin treatment causes hippocampal neurodevelopmental defects in neonatal rats. Neural Regen Res 2019; 14:834-840. [PMID: 30688269 PMCID: PMC6375038 DOI: 10.4103/1673-5374.249231] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Our previous studies showed that the early use of calpain inhibitors reduces calpain activity in multiple brain regions, and that postnatal treatment with calpeptin may lead to cerebellar motor dysfunction. However, it remains unclear whether postnatal calpeptin application affects hippocampus-related behaviors. In this study, Sprague-Dawley rats were purchased from the Animal Center of Anhui Medical University of China. For the experiments in the adult stage, rats were intraperitoneally injected with calpeptin, 2 mg/kg, once a day, on postnatal days 7-14. Then on postnatal day 60, the Morris water maze test was used to evaluate spatial learning and memory abilities. The open field test was carried out to assess anxiety-like activities. Phalloidin staining was performed to observe synaptic morphology in the hippocampus. Immunohistochemistry was used to count the number of NeuN-positive cells in the hippocampal CA1 region. DiI was applied to label dendritic spines. Calpeptin administration impaired spatial memory, caused anxiety-like behavior in adulthood, reduced the number and area of apical dendritic spines, and decreased actin polymerization in the hippocampus, but did not affect the number of NeuN-positive cells in the hippocampal CA1 region. For the neonatal experiments, neonatal rats were intraperitoneally injected with calpeptin, 2 mg/kg, on postnatal days 7 and 8. Western blot assay was performed to analyze the protein levels of Akt, Erk, p-Akt, p-Erk1/2, Erk1/2, SCOP, PTEN, mTOR, p-mTOR, CREB and p-CREB in the hippocampus. SCOP expression was increased, and the phosphorylation levels of Akt, mTOR and CREB were reduced in the hippocampus. These findings show that calpeptin administration after birth affects synaptic development in neonatal rats by inhibiting the Akt/mTOR signaling pathway, thereby perturbing hippocampal function. Therefore, calpeptin administration after birth is a risk factor for neurodevelopmental defects.
Collapse
Affiliation(s)
- Zhu-Jin Song
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - San-Juan Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Bin Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| |
Collapse
|
7
|
Yong J, Yan L, Wang J, Xiao H, Zeng Q. Effects of compound 21, a non‑peptide angiotensin II type 2 receptor agonist, on general anesthesia‑induced cerebral injury in neonatal rats. Mol Med Rep 2018; 18:5337-5344. [PMID: 30365086 PMCID: PMC6236271 DOI: 10.3892/mmr.2018.9602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/22/2018] [Indexed: 01/22/2023] Open
Abstract
General anesthesia has a great impact on neurodevelopment. However, the mechanisms underlying this effect and therapeutic methods to address it remain limited. The present study aimed to investigate the effects of compound (C)21, a non-peptide angiotensin II type 2 receptor agonist, on general anesthesia-induced cerebral injury in neonatal rats. Neonatal Sprague Dawley rats (postnatal day 7) were randomly divided into three groups (n=6 per group): The control, isoflurane and C21+ isoflurane (C21) group. General anesthesia was induced through inhalation of 1.3% isoflurane. Apoptosis and synaptic structure were analyzed. The levels of peroxisome proliferator-activated receptor (PPAR)-α were detected using an enzyme-linked immunosorbent assay. BCL2, apoptosis regulator (Bcl-2) expression was also measured. Compared with the control group, the cerebral cortex, hippocampus, amygdala and hypothalamus in the isoflurane group had significantly more apoptotic cells (P<0.05). The nuclei of the control group were round and transparent, while shrunken nuclei and condensed chromatin were visible in the isoflurane group. A reduction in synapse number was observed in the isoflurane group compared with the control. By contrast, nuclei shrinkage and the decrease in synaptic number was improved in the C21 group. PPAR-α and Bcl-2 expression, at the mRNA and protein levels, was significantly reduced in the isoflurane group compared with the control (P<0.05). C21 treatment reduced the decrease in PPAR-α and Bcl-2 in the cerebral cortex, hippocampus, amygdala and hypothalamus (P<0.05). Collectively, it was demonstrated that C21 prevented apoptosis and synaptic loss induced by general anesthesia in neonatal rats by enhancing the expression of PPAR-α and Bcl-2.
Collapse
Affiliation(s)
- Jun Yong
- Department of Anesthesiology, The Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
| | - Li Yan
- Department of Anesthesiology, The Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
| | - Jing Wang
- Department of Anesthesiology, The Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
| | - Hongmei Xiao
- Department of Anesthesiology, The Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
| | - Qingfan Zeng
- Department of Anesthesiology, The Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
| |
Collapse
|
8
|
Pulido R. PTEN Inhibition in Human Disease Therapy. Molecules 2018; 23:molecules23020285. [PMID: 29385737 PMCID: PMC6017825 DOI: 10.3390/molecules23020285] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor PTEN is a major homeostatic regulator, by virtue of its lipid phosphatase activity against phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], which downregulates the PI3K/AKT/mTOR prosurvival signaling, as well as by its protein phosphatase activity towards specific protein targets. PTEN catalytic activity is crucial to control cell growth under physiologic and pathologic situations, and it impacts not only in preventing tumor cell survival and proliferation, but also in restraining several cellular regeneration processes, such as those associated with nerve injury recovery, cardiac ischemia, or wound healing. In these conditions, inhibition of PTEN catalysis is being explored as a potentially beneficial therapeutic intervention. Here, an overview of human diseases and conditions in which PTEN inhibition could be beneficial is presented, together with an update on the current status of specific small molecule inhibitors of PTEN enzymatic activity, their use in experimental models, and their limitations as research or therapeutic drugs.
Collapse
Affiliation(s)
- Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
9
|
Tan L, Chen X, Wang W, Zhang J, Li S, Zhao Y, Wang J, Luo A. Pharmacological inhibition of PTEN attenuates cognitive deficits caused by neonatal repeated exposures to isoflurane via inhibition of NR2B-mediated tau phosphorylation in rats. Neuropharmacology 2017; 114:135-145. [PMID: 27836791 DOI: 10.1016/j.neuropharm.2016.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/30/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
Abstract
Evidence has shown that children exposed to repeated anesthesia in early childhood display long-term cognitive disabilities. However, the underlying mechanisms remain largely unclear. Our previous study has indicated the involvement of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in isoflurane-induced decrease of self-renewal capacity in hippocampal neural precursor cells. Additionally, it is demonstrated by others that PTEN inhibition could protect against cognitive impairment via reduction of tau phosphorylation in the alzheimer's disease model. Therefore, in the present in vivo study, we aimed to examine the effects of PTEN inhibition on the cognitive dysfunction and tau hyperphosphorylation caused by neonatal repeated exposures to isoflurane. Our results showed that the neonatal repeated exposures to isoflurane resulted in the activation of PTEN in the hippocampus. The treatment of PTEN inhibitor BPV (pic) restored PSD-95 synthesis, and attenuated tau phosphorylation as well as the cognitive dysfunction caused by the repeated isoflurane exposures. In addition, BPV (pic) treatment reversed the activation of NR2B-containing NMDARs induced by repeated isoflurane exposures, while in turn, the antagonism of NR2B subunit with ifenprodil alleviated tau phosphorylation, indicating a possible role of NR2B as the downstream of PTEN in mediating tau phosphorylation in the neonatal rats repeatedly exposed to isoflurane. In conclusion, our results reveal a novel role of PTEN in mediating tau phosphorylation and cognitive deficits caused by neonatal repeated exposures to isoflurane, implying that targeting on PTEN may be a potential therapeutic approach for the anesthetic-related cognitive decline in the developing brain.
Collapse
Affiliation(s)
- Lei Tan
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Wei Wang
- Department of Anesthesiology, First Hospital of Xian Jiaotong University, Xi'an 710061, China
| | - Jianfang Zhang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jintao Wang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Chen X, Du YM, Xu F, Liu D, Wang YL. Propofol Prevents Hippocampal Neuronal Loss and Memory Impairment in Cerebral Ischemia Injury Through Promoting PTEN Degradation. J Mol Neurosci 2016; 60:63-70. [DOI: 10.1007/s12031-016-0791-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 06/28/2016] [Indexed: 01/07/2023]
|
11
|
Zhong L, Luo F, Zhao W, Feng Y, Wu L, Lin J, Liu T, Wang S, You X, Zhang W. Propofol exposure during late stages of pregnancy impairs learning and memory in rat offspring via the BDNF-TrkB signalling pathway. J Cell Mol Med 2016; 20:1920-31. [PMID: 27297627 PMCID: PMC5020635 DOI: 10.1111/jcmm.12884] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/09/2016] [Indexed: 12/20/2022] Open
Abstract
The brain‐derived neurotrophic factor (BDNF)‐tyrosine kinase B (TrkB) (BDNF‐TrkB) signalling pathway plays a crucial role in regulating learning and memory. Synaptophysin provides the structural basis for synaptic plasticity and depends on BDNF processing and subsequent TrkB signalling. Our previous studies demonstrated that maternal exposure to propofol during late stages of pregnancy impaired learning and memory in rat offspring. The purpose of this study is to investigate whether the BDNF‐TrkB signalling pathway is involved in propofol‐induced learning and memory impairments. Propofol was intravenously infused into pregnant rats for 4 hrs on gestational day 18 (E18). Thirty days after birth, learning and memory of offspring was assessed by the Morris water maze (MWM) test. After the MWM test, BDNF and TrkB transcript and protein levels were measured in rat offspring hippocampus tissues using real‐time PCR (RT‐PCR) and immunohistochemistry (IHC), respectively. The levels of phosphorylated‐TrkB (phospho‐TrkB) and synaptophysin were measured by western blot. It was discovered that maternal exposure to propofol on day E18 impaired spatial learning and memory of rat offspring, decreased mRNA and protein levels of BDNF and TrkB, and decreased the levels of both phospho‐TrkB and synaptophysin in the hippocampus. Furthermore, the TrkB agonist 7,8‐dihydroxyflavone (7,8‐DHF) reversed all of the observed changes. Treatment with 7,8‐DHF had no significant effects on the offspring that were not exposed to propofol. The results herein indicate that maternal exposure to propofol during the late stages of pregnancy impairs spatial learning and memory of offspring by disturbing the BDNF‐TrkB signalling pathway. The TrkB agonist 7,8‐DHF might be a potential therapy for learning and memory impairments induced by maternal propofol exposure.
Collapse
Affiliation(s)
- Liang Zhong
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Foquan Luo
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China.
| | - Weilu Zhao
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Yunlin Feng
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Liuqin Wu
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Jiamei Lin
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Tianyin Liu
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Shengqiang Wang
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Xuexue You
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| |
Collapse
|
12
|
Piracetam prevents memory deficit induced by postnatal propofol exposure in mice. Eur J Pharmacol 2016; 779:59-65. [DOI: 10.1016/j.ejphar.2016.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 02/22/2016] [Accepted: 03/04/2016] [Indexed: 11/18/2022]
|
13
|
Propofol postsynaptically suppresses stellate neuron excitability in the entorhinal cortex by influencing the HCN and TREK-2 channels. Neurosci Lett 2016; 619:54-9. [DOI: 10.1016/j.neulet.2016.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 11/22/2022]
|