1
|
Huang T, Zhang Y, Niu Y, Xiao Y, Ge Y, Gao J. The Cytidine N-Acetyltransferase NAT10 Promotes Thalamus Hemorrhage-Induced Central Poststroke Pain by Stabilizing Fn14 Expression in Thalamic Neurons. Mol Neurobiol 2025; 62:3276-3292. [PMID: 39271624 PMCID: PMC11790786 DOI: 10.1007/s12035-024-04454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
The recognition of RNA N4-acetylcytidine (ac4C) modification as a significant type of gene regulation is growing; nevertheless, whether ac4C modification or the N-acetyltransferase 10 protein (NAT10, the only ac4C "writer" that is presently known) participates in thalamus hemorrhage (TH)-induced central poststroke pain (CPSP) is unknown. Here, we observed NAT10 was primarily located in the neuronal nuclei of the thalamus of mice, with Fn14 and p65. An increase of NAT10 mRNA and protein expression levels in the ipsilateral thalamus was observed from days 1 to 14 after TH. Inhibition of NAT10 by several different approaches attenuated Fn14 and p65 upregulation of TH mice, as well as tissue injury in the thalamus on the ipsilateral side, and the development and maintenance of contralateral nociceptive hypersensitivities. NAT10 overexpression increased Fn14 and p65 expression and elicited nociceptive hypersensitivities in naïve mice. Our findings suggest that ac4C modification and NAT10 participate in TH-induced CPSP by activating the NF-κB pathway through upregulating Fn14 in thalamic neurons. NAT10 could serve as a promising new target for CPSP treatment.
Collapse
Affiliation(s)
- Tianfeng Huang
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
| | - Yang Zhang
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
| | - Yan Niu
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
| | - Yinggang Xiao
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
| | - Yali Ge
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
| | - Ju Gao
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China.
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China.
| |
Collapse
|
2
|
Ozer EA, Keskin A, Berrak YH, Cankara F, Can F, Gursoy-Ozdemir Y, Keskin O, Gursoy A, Yapici-Eser H. Shared interactions of six neurotropic viruses with 38 human proteins: a computational and literature-based exploration of viral interactions and hijacking of human proteins in neuropsychiatric disorders. DISCOVER MENTAL HEALTH 2025; 5:18. [PMID: 39987419 PMCID: PMC11846830 DOI: 10.1007/s44192-025-00128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/09/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Viral infections may disrupt the structural and functional integrity of the nervous system, leading to acute conditions such as encephalitis, and neuropsychiatric conditions as mood disorders, schizophrenia, and neurodegenerative diseases. Investigating viral interactions of human proteins may reveal mechanisms underlying these effects and offer insights for therapeutic interventions. This study explores molecular interactions of virus and human proteins that may be related to neuropsychiatric disorders. METHODS Herpes Simplex Virus-1 (HSV-1), Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Influenza A virus (IAV) (H1N1, H5N1), and Human Immunodeficiency Virus (HIV1&2) were selected as key viruses. Protein structures for each virus were accessed from the Protein Data Bank and analyzed using the HMI-Pred web server to detect interface mimicry between viral and human proteins. The PANTHER classification system was used to categorize viral-human protein interactions based on function and cellular localization. RESULTS Energetically favorable viral-human protein interactions were identified for HSV-1 (467), CMV (514), EBV (495), H1N1 (3331), H5N1 (3533), and HIV 1&2 (62425). Besides immune and apoptosis-related pathways, key neurodegenerative pathways, including those associated with Parkinson's and Huntington's diseases, were frequently interacted. A total of 38 human proteins, including calmodulin 2, Ras-related botulinum toxin substrate 1 (Rac1), PDGF-β, and vimentin, were found to interact with all six viruses. CONCLUSION The study indicates a substantial number of energetically favorable interactions between human proteins and selected viral proteins, underscoring the complexity and breadth of viral strategies to hijack host cellular mechanisms. Further in vivo and in vitro validation is required to understand the implications of these interactions.
Collapse
Affiliation(s)
| | - Aleyna Keskin
- School of Medicine, Koç University, Istanbul, Turkey
| | | | - Fatma Cankara
- Graduate School of Sciences and Engineering, Computational Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Fusun Can
- Department of Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Yasemin Gursoy-Ozdemir
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Science and Engineering, College of Engineering, Koç University, Istanbul, Turkey.
| | - Hale Yapici-Eser
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
3
|
Yang Y, Song R, Gao Y, Yu H, Wang S. Regulatory mechanisms and therapeutic potential of JAB1 in neurological development and disorders. Mol Med 2023; 29:80. [PMID: 37365502 DOI: 10.1186/s10020-023-00675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
c-Jun activation domain binding protein-1 (JAB1) is a multifunctional regulator that plays vital roles in diverse cellular processes. It regulates AP-1 transcriptional activity and also acts as the fifth component of the COP9 signalosome complex. While JAB1 is considered an oncoprotein that triggers tumor development, recent studies have shown that it also functions in neurological development and disorders. In this review, we summarize the general features of the JAB1 gene and protein, and present recent updates on the regulation of JAB1 expression. Moreover, we also highlight the functional roles and regulatory mechanisms of JAB1 in neurodevelopmental processes such as neuronal differentiation, synaptic morphogenesis, myelination, and hair cell development and in the pathogenesis of some neurological disorders such as Alzheimer's disease, multiple sclerosis, neuropathic pain, and peripheral nerve injury. Furthermore, current challenges and prospects are discussed, including updates on drug development targeting JAB1.
Collapse
Affiliation(s)
- Yu Yang
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Ruying Song
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Yiming Gao
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China.
| | - Shuai Wang
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
4
|
Han G, Li X, Wen CH, Wu S, He L, Tan C, Nivar J, Bekker A, Davidson S, Tao YX. FUS Contributes to Nerve Injury-Induced Nociceptive Hypersensitivity by Activating NF-κB Pathway in Primary Sensory Neurons. J Neurosci 2023; 43:1267-1278. [PMID: 36627209 PMCID: PMC9962786 DOI: 10.1523/jneurosci.2082-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Dysregulation of pain-associated genes in the dorsal root ganglion (DRG) is considered to be a molecular basis of neuropathic pain genesis. Fused in sarcoma (FUS), a DNA/RNA-binding protein, is a critical regulator of gene expression. However, whether it contributes to neuropathic pain is unknown. This study showed that peripheral nerve injury caused by the fourth lumbar (L4) spinal nerve ligation (SNL) or chronic constriction injury (CCI) of the sciatic nerve produced a marked increase in the expression of FUS protein in injured DRG neurons. Blocking this increase through microinjection of the adeno-associated virus (AAV) 5-expressing Fus shRNA into the ipsilateral L4 DRG mitigated the SNL-induced nociceptive hypersensitivities in both male and female mice. This microinjection also alleviated the SNL-induced increases in the levels of phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and glial fibrillary acidic protein (GFAP) in the ipsilateral L4 dorsal horn. Furthermore, mimicking this increase through microinjection of AAV5 expressing full-length Fus mRNA into unilateral L3/4 DRGs produced the elevations in the levels of p-ERK1/2 and GFAP in the dorsal horn, enhanced responses to mechanical, heat and cold stimuli, and induced the spontaneous pain on the ipsilateral side of both male and female mice in the absence of SNL. Mechanistically, the increased FUS activated the NF-κB signaling pathway by promoting the translocation of p65 into the nucleus and phosphorylation of p65 in the nucleus from injured DRG neurons. Our results indicate that DRG FUS contributes to neuropathic pain likely through the activation of NF-κB in primary sensory neurons.SIGNIFICANCE STATEMENT In the present study, we reported that fused in sarcoma (FUS), a DNA/RNA-binding protein, is upregulated in injured dorsal root ganglion (DRG) following peripheral nerve injury. This upregulation is responsible for nerve injury-induced translocation of p65 into the nucleus and phosphorylation of p65 in the nucleus from injured DRG neurons. Because blocking this upregulation alleviates nerve injury-induced nociceptive hypersensitivity, DRG FUS participates in neuropathic pain likely through the activation of NF-κB in primary sensory neurons. FUS may be a potential target for neuropathic pain management.
Collapse
Affiliation(s)
- Guang Han
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Xiang Li
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Chun-Hsien Wen
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Long He
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Cynthia Tan
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - John Nivar
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Steve Davidson
- Department of Anesthesiology, Pain Research Center, and Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
- Department of Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
- Departments of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| |
Collapse
|
5
|
Pharmacological Evidence of the Important Roles of CCR1 and CCR3 and Their Endogenous Ligands CCL2/7/8 in Hypersensitivity Based on a Murine Model of Neuropathic Pain. Cells 2022; 12:cells12010098. [PMID: 36611891 PMCID: PMC9818689 DOI: 10.3390/cells12010098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Neuropathic pain treatment remains a challenging issue because the therapies currently used in the clinic are not sufficiently effective. Moreover, the mechanism of neuropathy is still not entirely understood; however, much evidence indicates that chemokines are important factors in the initial and late phases of neuropathic pain. To date, the roles of CCR1, CCR3 and their endogenous ligands have not been extensively studied; therefore, they have become the subject of our research. In the present comprehensive behavioral and biochemical study, we detected significant time-dependent and long-lasting increases in the mRNA levels of CCR1 and/or CCR3 ligands, such as CCL2/3/4/5/6/7/8/9, in the murine spinal cord after chronic constriction injury of the sciatic nerve, and these increases were accompanied by changes in the levels of microglial/macrophage, astrocyte and neutrophil cell markers. ELISA results suggested that endogenous ligands of CCR1 and CCR3 are involved in the development (CCL2/3/5/7/8/9) and persistence (CCL2/7/8) of neuropathic pain. Moreover, intrathecal injection of CCL2/3/5/7/8/9 confirmed their possible strong influence on mechanical and thermal hypersensitivity development. Importantly, inhibition of CCL2/7/8 production and CCR1 and CCR3 blockade by selective/dual antagonists effectively reduced neuropathic pain-like behavior. The obtained data suggest that CCL2/7/8/CCR1 and CCL7/8/CCR3 signaling are important in the modulation of neuropathic pain in mice and that these chemokines and their receptors may be interesting targets for future investigations.
Collapse
|
6
|
Maguire AD, Bethea JR, Kerr BJ. TNFα in MS and Its Animal Models: Implications for Chronic Pain in the Disease. Front Neurol 2021; 12:780876. [PMID: 34938263 PMCID: PMC8686517 DOI: 10.3389/fneur.2021.780876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple Sclerosis (MS) is a debilitating autoimmune disease often accompanied by severe chronic pain. The most common type of pain in MS, called neuropathic pain, arises from disease processes affecting the peripheral and central nervous systems. It is incredibly difficult to study these processes in patients, so animal models such as experimental autoimmune encephalomyelitis (EAE) mice are used to dissect the complex mechanisms of neuropathic pain in MS. The pleiotropic cytokine tumor necrosis factor α (TNFα) is a critical factor mediating neuropathic pain identified by these animal studies. The TNF signaling pathway is complex, and can lead to cell death, inflammation, or survival. In complex diseases such as MS, signaling through the TNFR1 receptor tends to be pro-inflammation and death, whereas signaling through the TNFR2 receptor is pro-homeostatic. However, most TNFα-targeted therapies indiscriminately block both arms of the pathway, and thus are not therapeutic in MS. This review explores pain in MS, inflammatory TNF signaling, the link between the two, and how it could be exploited to develop more effective TNFα-targeting pain therapies.
Collapse
Affiliation(s)
- Aislinn D Maguire
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Zhang X, Xu F, Wang L, Li J, Zhang J, Huang L. The role of dorsal root ganglia alpha-7 nicotinic acetylcholine receptor in complete Freund's adjuvant-induced chronic inflammatory pain. Inflammopharmacology 2021; 29:1487-1501. [PMID: 34514543 DOI: 10.1007/s10787-021-00873-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Alpha-7 nicotinic acetylcholine receptor (α7 nAChR) was reported to have a critical role in the regulation of pain sensitivity and neuroinflammation. However, the expression level of α7 nAChR in dorsal root ganglion (DRG) and the underlying neuroinflammatory mechanisms associated with hyperalgesia are still unknown. METHODS In the present study, the expression and mechanism of α7 nAChR in chronic inflammatory pain was investigated using a complete Freund's adjuvant (CFA)-induced chronic inflammatory pain model. Subsequently, a series of assays including immunohistochemistry, western blotting, and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. RESULTS α7 nAChR was mostly colocalized with NeuN in DRG and upregulated after CFA injection. Microinjection of α7 nAChR siRNA into ipsilateral L4/5 DRGs aggravated the CFA-induced pain hypersensitivity. Intrathecal α7 nAChR agonist GTS-21 attenuated the development of CFA-induced mechanical and temperature-related pain hypersensitivities. In neuronal the SH-SY5Y cell line, the knockdown of α7 nAChRs triggered the upregulation of TRAF6 and NF-κB under CFA-induced inflammatory conditions, while agitation of α7 nAChR suppressed the TRAF6/NF-κB activation. α7 nAChR siRNA also exacerbated the secretion of pro-inflammatory mediators from LPS-induced SH-SY5Y cells. Conversely, α7 nAChR-specific agonist GTS-21 diminished the release of interleukin-1beta (IL-1β), IL-6, IL-8, and tumor necrosis factor-α (TNFα) in SH-SY5Y cells under inflammatory conditions. Mechanistically, the modulation of pain sensitivity and neuroinflammatory action of α7 nAChR may be mediated by the TRAF6/NF-κB signaling pathway. CONCLUSIONS The findings of this study suggest that α7 nAChR may be potentially utilized as a therapeutic target for therapeutics of chronic inflammatory pain.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Fangxia Xu
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Lijuan Wang
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Jianhai Zhang
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China.
| | - Lina Huang
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China.
| |
Collapse
|
8
|
Li J, Tian M, Hua T, Wang H, Yang M, Li W, Zhang X, Yuan H. Combination of autophagy and NFE2L2/NRF2 activation as a treatment approach for neuropathic pain. Autophagy 2021; 17:4062-4082. [PMID: 33834930 PMCID: PMC8726676 DOI: 10.1080/15548627.2021.1900498] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Macroautophagy/autophagy, an evolutionarily conserved process, plays an important role in the regulation of immune inflammation and nervous system homeostasis. However, the exact role and mechanism of autophagy in pain is still unclear. Here, we showed that impaired autophagy flux mainly occurred in astrocytes during the maintenance of neuropathic pain. No matter the stage of neuropathic pain induction or maintenance, activation of autophagy relieved the level of pain, whereas inhibition of autophagy aggravated pain. Moreover, the levels of neuroinflammation and reactive oxygen species (ROS) were increased or decreased following autophagy inhibition or activation. Further study showed that inhibition of autophagy slowed the induction, but increased the maintenance of neuroinflammatory responses, which could be achieved by promoting the binding of TRAF6 (TNF receptor-associated factor 6) to K63 ubiquitinated protein, and increasing the levels of p-MAPK8/JNK (mitogen-activated protein kinase 8) and nuclear factor of kappa light polypeptide gene enhancer in B cells (NFKB/NF-κB). Impaired autophagy also reduced the protective effect of astrocytes on neurons against ROS stress because of the decrease in the level of glutathione released by astrocytes, which could be improved by activating the NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2) pathway. We also demonstrated that simultaneous activation of autophagy and the NFE2L2 pathway further relieved pain, compared to activating autophagy alone. Our study provides an underlying mechanism by which autophagy participates in the regulation of neuropathic pain, and a combination of autophagy and NFE2L2 activation may be a new treatment approach for neuropathic pain. Abbreviation: 3-MA: 3-methyladenine; 8-OHdG: 8-hydroxydeoxy-guanosine; ACTB: actin, beta; AMPAR: alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor; ATG: autophagy-related; CAMK2/CaMKII: calcium/calmodulin-dependent protein kinase II; CCL7: chemokine (C-C motif) ligand 7; CGAS: cyclic GMP-AMP synthase; CQ: chloroquine; GABA: gamma-aminobutyrate; GCLC: glutamate-cysteine ligase, catalytic subunit; GFAP: glial fibrillary acidic protein; GSH: glutathione; HMOX1/HO-1: heme oxygenase 1; KEAP1: kelch-like ECH-associated protein 1; MAP1LC3/LC3-II: microtubule-associated protein 1 light chain 3 beta (phosphatidylethanolamine-conjugated form); MAPK: mitogen-activated protein kinase; MAPK1/ERK: mitogen-activated protein kinase 1; MMP2: matrix metallopeptidase 2; MAPK8/JNK: mitogen-activated protein kinase 8; MAPK14/p38: mitogen-activated protein kinase 14; NFE2L2/NRF2: nuclear factor, erythroid derived 2, like 2; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; ROS: reactive oxygen species; SLC12A5: solute carrier family 12, member 5; SNL: spinal nerve ligation; TLR4: toll-like receptor 4; TRAF6: TNF receptor-associated factor; TRP: transient receptor potential.
Collapse
Affiliation(s)
- Jian Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Mouli Tian
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Haowei Wang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Mei Yang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Wenqian Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Xiaoping Zhang
- Department of Interventional & Vascular Surgery, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| |
Collapse
|
9
|
Huang T, Fu G, Gao J, Zhang Y, Cai W, Wu S, Jia S, Xia S, Bachmann T, Bekker A, Tao YX. Fgr contributes to hemorrhage-induced thalamic pain by activating NF-κB/ERK1/2 pathways. JCI Insight 2020; 5:139987. [PMID: 33055425 PMCID: PMC7605540 DOI: 10.1172/jci.insight.139987] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022] Open
Abstract
Thalamic pain, a type of central poststroke pain, frequently occurs following ischemia/hemorrhage in the thalamus. Current treatment of this disorder is often ineffective, at least in part due to largely unknown mechanisms that underlie thalamic pain genesis. Here, we report that hemorrhage caused by microinjection of type IV collagenase or autologous whole blood into unilateral ventral posterior lateral nucleus and ventral posterior medial nucleus of the thalamus increased the expression of Fgr, a member of the Src family nonreceptor tyrosine kinases, at both mRNA and protein levels in thalamic microglia. Pharmacological inhibition or genetic knockdown of thalamic Fgr attenuated the hemorrhage-induced thalamic injury on the ipsilateral side and the development and maintenance of mechanical, heat, and cold pain hypersensitivities on the contralateral side. Mechanistically, the increased Fgr participated in hemorrhage-induced microglial activation and subsequent production of TNF-α likely through activation of both NF-κB and ERK1/2 pathways in thalamic microglia. Our findings suggest that Fgr is a key player in thalamic pain and a potential target for the therapeutic management of this disorder.
Collapse
Affiliation(s)
| | | | - Ju Gao
- Department of Anesthesiology
| | | | | | | | | | | | | | | | - Yuan-Xiang Tao
- Department of Anesthesiology
- Department of Pharmacology, Physiology & Neuroscience; and
- Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
10
|
Miao J, Zhou X, Ji T, Chen G. NF-κB p65-dependent transcriptional regulation of histone deacetylase 2 contributes to the chronic constriction injury-induced neuropathic pain via the microRNA-183/TXNIP/NLRP3 axis. J Neuroinflammation 2020; 17:225. [PMID: 32723328 PMCID: PMC7389436 DOI: 10.1186/s12974-020-01901-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/15/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Neuropathic pain is related to the sustained activation of neuroglial cells and the production of proinflammatory cytokines in the spinal dorsal horn. However, the clinical efficacy of currently available treatments is very limited. The transcription factor nuclear factor κB (NF-κB) is a ubiquitously expressed protein family and considered to be crucial in autoimmunity. Thus, our study aimed to examine the influence of NF-κB p65 in chronic constriction injury (CCI)-induced neuropathic pain as well as its underlying mechanism. METHODS A rat model of neuropathic pain was established by CCI induction followed by isolation of microglial cells. The binding of NF-κB p65 to HDAC2, of miR-183 to TXNIP, and of TXNIP to NLRP3 was investigated. Expression of miR-183, NF-κB p65, HDAC2, TXNIP, and NLRP3 was determined with their functions in CCI rats and microglial cells analyzed by gain- and loss-of-function experiments. RESULTS NF-κB p65 and HDAC2 were upregulated while miR-183 was downregulated in the dorsal horn of the CCI rat spinal cord. NF-κB p65 was bound to the HDAC2 promoter and then increased its expression. HDAC2 reduced miR-183 expression by deacetylation of histone H4. Additionally, miR-183 negatively regulated TXNIP. Mechanistically, NF-κB p65 downregulated the miR-183 expression via the upregulation of HDAC2 and further induced inflammatory response by activating the TXNIP-NLRP3 inflammasome axis, thus aggravating the neuropathic pain in CCI rats and microglial cells. CONCLUSION These results revealed a novel transcriptional mechanism of interplay between NF-κB and HDAC2 focusing on neuropathic pain via the miR-183/TXNIP/NLRP3 axis.
Collapse
Affiliation(s)
- Jiamin Miao
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun East Road, Jianggan District, Hangzhou, 310012, Zhejiang Province, China.
| | - Xuelong Zhou
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, 02115, USA
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun East Road, Jianggan District, Hangzhou, 310012, Zhejiang Province, China.
| |
Collapse
|
11
|
Toll-like receptor 7 contributes to neuropathic pain by activating NF-κB in primary sensory neurons. Brain Behav Immun 2020; 87:840-851. [PMID: 32205121 PMCID: PMC7316623 DOI: 10.1016/j.bbi.2020.03.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/01/2023] Open
Abstract
Toll like receptor 7 (TLR7) is expressed in neurons of the dorsal root ganglion (DRG), but whether it contributes to neuropathic pain is elusive. We found that peripheral nerve injury caused by ligation of the fourth lumbar (L4) spinal nerve (SNL) or chronic constriction injury of sciatic nerve led to a significant increase in the expression of TLR7 at mRNA and protein levels in mouse injured DRG. Blocking this increase through microinjection of the adeno-associated virus (AAV) 5 expressing TLR7 shRNA into the ipsilateral L4 DRG alleviated the SNL-induced mechanical, thermal and cold pain hypersensitivities in both male and female mice. This microinjection also attenuated the SNL-induced increases in the levels of phosphorylated extracellular signal-regulated kinase ½ (p-ERK1/2) and glial fibrillary acidic protein (GFAP) in L4 dorsal horn on the ipsilateral side during both development and maintenance periods. Conversely, mimicking this increase through microinjection of AAV5 expressing full-length TLR7 into unilateral L3/4 DRGs led to elevations in the amounts of p-ERK1/2 and GFAP in the dorsal horn, augmented responses to mechanical, thermal and cold stimuli, and induced the spontaneous pain on the ipsilateral side in the absence of SNL. Mechanistically, the increased TLR7 activated the NF-κB signaling pathway through promoting the translocation of p65 into the nucleus and phosphorylation of p65 in the nucleus from the injured DRG neurons. Our findings suggest that DRG TLR7 contributes to neuropathic pain by activating NF-κB in primary sensory neurons. TLR7 may be a potential target for therapeutic treatment of this disorder.
Collapse
|
12
|
Zhao E, Bai L, Li S, Li L, Dou Z, Huang Y, Li Y, Lv Y. Dexmedetomidine Alleviates CCI-Induced Neuropathic Pain via Inhibiting HMGB1-Mediated Astrocyte Activation and the TLR4/NF-κB Signaling Pathway in Rats. Neurotox Res 2020; 38:723-732. [PMID: 32607919 DOI: 10.1007/s12640-020-00245-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/21/2020] [Accepted: 06/17/2020] [Indexed: 01/16/2023]
Abstract
To investigate the effects of dexmedetomidine on chronic constriction injury (CCI)-induced neuropathic pain and to further explore its mechanism. A CCI rat model was established and treatment with dexmedetomidine. The paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) were monitored at different time points, and the effects of hematoxylin-eosin staining on the sciatic nerve morphology of rats were observed. Immunohistochemical and immunofluorescence analyses were used to detect the expression of high mobility group box-1 (HMGB1) protein and glial fibrillary acidic protein (GFAP), and protein fluorescence intensity of GFAP in spinal cord tissue, respectively. Moreover, the expression of HMGB1 and Toll-like receptor-4/nuclear factor kappa-B (TLR4/NF-κB) pathway-related proteins were detected by western blot assay. To verify whether dexmedetomidine alleviates CCI-induced neuropathic pain by inhibiting HMGB1-mediated astrocyte activation and the TLR4/NF-κB signaling pathway, the rats were further treated with an HMGB1 activator or antagonist. Dexmedetomidine was found to improve the pathological changes of the sciatic nerve and alleviate pain in the CCI rats. The expression of HMGB1, GFAP, TLR4, TRAF6, MyD88, and p-P65 were greatly downregulated in the spinal cord tissues of the CCI rats. In addition, a further study showed that an HMGB1 activator can reverse the inhibition of neuropathic pain behaviors of dexmedetomidine. Overexpression of HMGB1 downregulated the PWMT and PWTL and enhanced the astrocyte activity and the TLR4/NF-κB signaling pathway in CCI rats. These results indicated that dexmedetomidine can alleviate neuropathic pain in CCI rats by inhibiting HMGB1-mediated astrocyte activation and the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Erxian Zhao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China
| | - Liying Bai
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China
| | - Shurong Li
- Center for Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100000, China
| | - Li Li
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China
| | - Zhongci Dou
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China
| | - Yunli Huang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China
| | - Yan Li
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China
| | - Yunqi Lv
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan Province, China.
| |
Collapse
|
13
|
Zhao Y, Xin Y, Chu H. MC4R Is Involved in Neuropathic Pain by Regulating JNK Signaling Pathway After Chronic Constriction Injury. Front Neurosci 2019; 13:919. [PMID: 31551683 PMCID: PMC6746920 DOI: 10.3389/fnins.2019.00919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/16/2019] [Indexed: 12/23/2022] Open
Abstract
Background Neuropathic pain can develop after nerve injury, when deleterious changes occur in injured neurons and glia cells. Melanocortin 4 receptor (MC4R) is involved in the regulation of pain due to its high expressions in brain. Moreover, MC4R could mediate the c-Jun N-terminal kinase (JNK) signaling pathway, but whether the MC4R-regulated JNK signaling pathway participated in neuropathic pain after chronic constriction injury (CCI) is still unclear. Methods A total of 128 Sprague-Dawley rats were allocated into four experiment groups: the SHAM group, CCI + NaCl group, CCI + HS group, and CCI + SP + HS group. For the CCI + NaCl group, the sciatic nerves were ligated. For the SHAM group, an identical manner to the CCI without ligation was performed. For CCI + HS and CCI + SP + HS groups, rats were injected with MC4R inhibitor (HS014) and HS014 plus JNK inhibitor (SP600125), respectively, from days 3 to 14 after CCI. Paw withdrawal latency (PWL) and paw withdrawal threshold (PWT) were used to assess the nociceptive behavior. ELISA was used to detect the levels of inflammatory cytokines. qRT-PCR and Western blots (WB) were utilized to examine the mRNA and protein expressions of JNK signaling pathway-related genes. Meanwhile, the expression levels of MC4R and p-JNK were further evaluated by immunohistochemistry (IHC) and immunofluorescence (IF) experiments. Finally, in order to confirm the in vivo results, astrocytes were isolated and transfected with MC4R-overexpression plasmid. Furthermore, the protein expressions of JNK signaling pathway-related genes were tested by WB. Results It was showed that the values of PWL and PWT were significantly increased in CCI + HS group and CCI + SP + HS group compared with CCI + NaCl group. The increased interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) secretion in CCI + NaCl group was lowered by HS and SP + HS. MC4R, p-JNK, ATF3, and c-Jun levels were up-regulated with CCI surgery, but down-regulated with HS and SP + HS treatments. Moreover, the IHC and IF results further revealed that MC4R and p-JNK expressions in CCI + NaCl group were remarkably higher than those in HS group and HS + SP group. In vitro data also indicated that HS, SP, and SP + HS could down-regulate the expressions of MC4R, p-JNK, ATF3, and c-Jun in M1830 astrocytes. Conclusion Our findings indicated that MC4R is involved in neuropathic pain by regulating JNK signaling pathway after CCI.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Xin
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, China
| | - Haichen Chu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Fn14 Participates in Neuropathic Pain Through NF-κB Pathway in Primary Sensory Neurons. Mol Neurobiol 2019; 56:7085-7096. [PMID: 30976982 DOI: 10.1007/s12035-019-1545-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor-inducible-14 (Fn14), a receptor for tumor necrosis-like weak inducer of apoptosis, is expressed in the neurons of dorsal root ganglion (DRG). Its mRNA is increased in the injured DRG following peripheral nerve injury. Whether this increase contributes to neuropathic pain is unknown. We reported here that peripheral nerve injury caused by spinal nerve ligation (SNL) increased the expression of Fn14 at both protein and mRNA levels in the injured DRG. Blocking this increase attenuated the development of SNL-induced mechanical, thermal, and cold pain hypersensitivities. Conversely, mimicking this increase produced the increases in the levels of phosphorylated extracellular signal-regulated kinase ½ and glial fibrillary acidic protein in ipsilateral dorsal horn and the enhanced responses to mechanical, thermal, and cold stimuli in the absence of SNL. Mechanistically, the increased Fn14 activated the NF-κB pathway through promoting the translocation of p65 into the nucleus of the injured DRG neurons. Our findings suggest that Fn14 may be a potential target for the therapeutic treatment of peripheral neuropathic pain.
Collapse
|
15
|
Role of receptor-interacting protein 1/receptor-interacting protein 3 in inflammation and necrosis following chronic constriction injury of the sciatic nerve. Neuroreport 2019; 29:1373-1378. [PMID: 30192300 PMCID: PMC6181278 DOI: 10.1097/wnr.0000000000001120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nerve damage often leads to nervous system dysfunction and neuropathic pain. The serine-threonine kinases receptor-interacting protein 1 (RIP1) and 3 (RIP3) are associated with inflammation and cell necrosis. This study aimed to explore the role of RIP1 and RIP3 in sciatic nerve chronic constriction injury (CCI) in mice. On a total of thirty mice, sciatic nerve CCI was performed. The paw withdrawal threshold was measured using Von Frey filaments. The mRNA expression and protein levels of inflammatory factors RIP1 and RIP3 in the dorsal root ganglion (DRG), spinal cord (SC) and hippocampus (HIP) were also determined. We found that paw withdrawal threshold was significantly reduced from the second day after the operation, and the levels of tumour necrosis factor-α and interferon-γ in DRG, SC and HIP were significantly increased on the eighth and 14th days in CCI mice. Furthermore, the downstream signalling molecules of RIP1 and RIP3, GTPase dynamin-related protein-1, NLR family pyrin domain containing-3 (NLRP3) and nuclear factor κB-p65 were upregulated. Increased protein levels of programmed cell death protein 1, which indicate cell death of peripheral and central nervous tissue, were induced by CCI of the sciatic nerve. Overall, this study showed that RIP1 and RIP3 were highly expressed in DRG, SC and HIP of the sciatic nerve in CCI mice and may be involved in chronic neuroinflammation and neuronecrosis.
Collapse
|
16
|
Wang ZC, Li LH, Bian C, Yang L, Lv N, Zhang YQ. Involvement of NF-κB and the CX3CR1 Signaling Network in Mechanical Allodynia Induced by Tetanic Sciatic Stimulation. Neurosci Bull 2017; 34:64-73. [PMID: 28612319 DOI: 10.1007/s12264-017-0149-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/17/2017] [Indexed: 01/15/2023] Open
Abstract
Tetanic stimulation of the sciatic nerve (TSS) triggers long-term potentiation in the dorsal horn of the spinal cord and long-lasting pain hypersensitivity. CX3CL1-CX3CR1 signaling is an important pathway in neuronal-microglial activation. Nuclear factor κB (NF-κB) is a key signal transduction molecule that regulates neuroinflammation and neuropathic pain. Here, we set out to determine whether and how NF-κB and CX3CR1 are involved in the mechanism underlying the pathological changes induced by TSS. After unilateral TSS, significant bilateral mechanical allodynia was induced, as assessed by the von Frey test. The expression of phosphorylated NF-κB (pNF-κB) and CX3CR1 was significantly up-regulated in the bilateral dorsal horn. Immunofluorescence staining demonstrated that pNF-κB and NeuN co-existed, implying that the NF-κB pathway is predominantly activated in neurons following TSS. Administration of either the NF-κB inhibitor ammonium pyrrolidine dithiocarbamate or a CX3CR1-neutralizing antibody blocked the development and maintenance of neuropathic pain. In addition, blockade of NF-κB down-regulated the expression of CX3CL1-CX3CR1 signaling, and conversely the CX3CR1-neutralizing antibody also down-regulated pNF-κB. These findings suggest an involvement of NF-κB and the CX3CR1 signaling network in the development and maintenance of TSS-induced mechanical allodynia. Our work suggests the potential clinical application of NF-κB inhibitors or CX3CR1-neutralizing antibodies in treating pathological pain.
Collapse
Affiliation(s)
- Zhe-Chen Wang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Li-Hong Li
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chao Bian
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Liu Yang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Ning Lv
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yu-Qiu Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Wan W, Cao L, Khanabdali R, Kalionis B, Tai X, Xia S. The Emerging Role of HMGB1 in Neuropathic Pain: A Potential Therapeutic Target for Neuroinflammation. J Immunol Res 2016; 2016:6430423. [PMID: 27294160 PMCID: PMC4887637 DOI: 10.1155/2016/6430423] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain (NPP) is intolerable, persistent, and specific type of long-term pain. It is considered to be a direct consequence of pathological changes affecting the somatosensory system and can be debilitating for affected patients. Despite recent progress and growing interest in understanding the pathogenesis of the disease, NPP still presents a major diagnostic and therapeutic challenge. High mobility group box 1 (HMGB1) mediates inflammatory and immune reactions in nervous system and emerging evidence reveals that HMGB1 plays an essential role in neuroinflammation through receptors such as Toll-like receptors (TLR), receptor for advanced glycation end products (RAGE), C-X-X motif chemokines receptor 4 (CXCR4), and N-methyl-D-aspartate (NMDA) receptor. In this review, we present evidence from studies that address the role of HMGB1 in NPP. First, we review studies aimed at determining the role of HMGB1 in NPP and discuss the possible mechanisms underlying HMGB1-mediated NPP progression where receptors for HMGB1 are involved. Then we review studies that address HMGB1 as a potential therapeutic target for NPP.
Collapse
Affiliation(s)
- Wenbin Wan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lan Cao
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology and Institutes of Brain Science, School of Basic Medical Science, Fudan University, Shanghai 200032, China
| | - Ramin Khanabdali
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre and Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre and Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | - Xiantao Tai
- School of Acupuncture, Massage and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Shijin Xia
- Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|