1
|
Zheng Z, Lin L, Lin H, Zhou J, Wang Z, Wang Y, Chen J, Lai C, Li R, Shen Z, Zhong M, Xie C, Chen Y, Zhang X, Guo Z, Dong R, He S, Chen F. Acetylcholine from tuft cells promotes M2 macrophages polarization in Hirschsprung-associated enterocolitis. Front Immunol 2025; 16:1559966. [PMID: 40416975 PMCID: PMC12098611 DOI: 10.3389/fimmu.2025.1559966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/08/2025] [Indexed: 05/27/2025] Open
Abstract
Background Hirschsprung-associated enterocolitis (HAEC) is one of the most severe complications in patients with Hirschsprung's disease (HSCR). Previous research has indicated that acetylcholine (ACH) plays an anti-inflammatory role during inflammation by acting on the α7 nicotinic acetylcholine receptor(α7nAchR) to promote the secretion of anti-inflammatory factors. However, the specific role of ACH in HAEC remains unclear. This experiment aims to explore the sources of ACH in HSCR and its anti-inflammatory mechanisms, thereby identifying new directions for the prevention and treatment of HAEC. Methods We analyzed single-cell transcriptome data from HSCR to identify cells that secrete ACH and observed their distribution using immunofluorescence. In Ednrb-/- mice, F4/80, iNOS, ARG-1 and CD206 were used to identify and locate M1 and M2 macrophages in different intestinal segments. Western blot, reverse transcription-quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay were used to test the levels of IκBα, tumor necrosis factor-α, interleukin-10, and the macrophage activation pathway proteins JAK2 and STAT3 in different intestinal segments of Ednrb-/- mice. Organoid and cell culture techniques were used to verify the anti-inflammatory mechanism of ACH in vitro models. Results scRNA-seq analysis revealed that tuft cells expressed the CHAT protein. In HSCR, aganglionic segments exhibited heightened cholinergic activity compared with dilated ganglionic segments. In HAEC, inflammation was mainly concentrated in the dilated ganglionic segment and was associated with an increase in M1 macrophages, whereas the aganglionic segment showed less inflammation and was associated with an increase in M2 macrophages. Furthermore, in vitro experiments showed that intestinal organoids containing tuft cells promoted an increase in M2 macrophage markers, and ACH promoted M2 macrophage polarization. Conclusions Differences in inflammation among various intestinal segments in HAEC may be linked to ACH secreted by tuft cells. Drugs targeting tuft cells have the potential to become important components of HAEC treatment in the future.
Collapse
Affiliation(s)
- Ziyi Zheng
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lin Lin
- Institute of Population Medicine, School of Public Health, Fujian Medical University, University Town, Fuzhou, China
| | - Huifang Lin
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jie Zhou
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhe Wang
- Institute of Population Medicine, School of Public Health, Fujian Medical University, University Town, Fuzhou, China
| | - Yang Wang
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianxin Chen
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Caimin Lai
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Renfu Li
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhiyong Shen
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ming Zhong
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Cheng Xie
- Fuzhou Children’s Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Yinjian Chen
- Fujian Children’s Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Xuechao Zhang
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhongjie Guo
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rui Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
- Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | - Shiwei He
- Institute of Population Medicine, School of Public Health, Fujian Medical University, University Town, Fuzhou, China
| | - Feng Chen
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
2
|
Budianto IR, Kusmardi K, Maulana AM, Arumugam S, Afrin R, Soetikno V. Paneth-like cells disruption and intestinal dysbiosis in the development of enterocolitis in an iatrogenic rectosigmoid hypoganglionosis rat model. Front Surg 2024; 11:1407948. [PMID: 39315293 PMCID: PMC11417098 DOI: 10.3389/fsurg.2024.1407948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Background Hypoganglionosis resembles Hirschsprung disease (HSCR) which is characterized by severe constipation. Enterocolitis due to hypoganglionosis or Hirschsprung-associated enterocolitis (HAEC) is a life-threatening complication of both diseases. This study investigated the role of Paneth-like cells (PLCs) and gut microbiota in the development of enterocolitis in an iatrogenic rectosigmoid hypoganglionosis rat model. Methods The rectosigmoid serosa of male Sprague-Dawley rats were exposed to 0.1% benzalkonium chloride (BAC). The rats were then sacrificed after 1, 3, 5, 8, and 12 weeks. A sham group was sacrificed on Week 12. With hematoxylin-eosin staining, the ganglionic cells were quantified, the degree of enterocolitis was analyzed, and the PLCs was identified. Intestinal barrier function was assessed for the anti-peripherin, occludin, and acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) ratio. qRT-PCR was used as reference for the evaluation of antimicrobial peptide (AMP) of PLCs using cryptdins, secretory Phospholipase A2, and lysozyme levels. 16S rRNA high-throughput sequencing on fecal samples was performed to analyze the changes in the intestinal microbiota diversity in each group. Results After 1 week of intervention, the ganglion cells were fewer in all sacrificial 0.1% BAC groups at varying times than those in the sham group. Occludin and peripherin were decreased, while the AChE/BChE ratio was increased. At Week 5 postintervention, the number of α-defensins-positive PLCs increased in the sigmoid colon tissues from BAC-treated rats. Conversely, PLCs-produced AMP decreased from Week 5 to Week 12. The sham group demonstrated increased Lactobacillus and decreased Bacteroides, while the 0.1% BAC group exhibited reciprocal changes, indicating dysbiosis. Enterocolitis occurred from Week 1 postintervention. Conclusion Application with BAC influences the disruption of PLCs in Week 5 postintervention, and dysbiosis exacerbate the occurrence of enterocolitis. Further research on Paneth cells involvement in HAEC development is warranted.
Collapse
Affiliation(s)
- Iskandar Rahardjo Budianto
- Department of Surgery, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Kusmardi Kusmardi
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Andi Muh. Maulana
- Department of Anatomy, Faculty of Medicine, Universitas Muhammadiyah Purwokerto, Purwokerto, Indonesia
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Somasundaram Arumugam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata, India
| | - Rejina Afrin
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| | - Vivian Soetikno
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
3
|
Lan C, Wu Y, Liu Y, Wang N, Su M, Qin D, Zhong W, Zhao X, Zhu Y, He Q, Xia H, Zhang Y. Establishment and identification of an animal model of Hirschsprung disease in suckling mice. Pediatr Res 2023; 94:1935-1941. [PMID: 37460708 PMCID: PMC10665188 DOI: 10.1038/s41390-023-02728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Hirschsprung disease (HSCR) is a congenital intestinal malformation. Previous HSCR animal model needs invasive operation on adult animal. The aim of this study is to establish an early-onset animal model which is consistent with the clinical manifestation of HSCR patients. METHODS The neonatal mice were randomly divided into the benzalkonium chloride (BAC) group, treated with BAC via enema, and the control group, treated with saline. Weight changes, excretion time of carmine, CT scan, hematoxylin-eosin staining and immunofluorescence staining were used to evaluate the effect of the model. Differentially expressed genes (DEGs) in the HSCR mice were analyzed by using DAVID 6.8 database and compared with DEGs from HSCR patients. RESULTS The weight of mice was lower and the excretion time of carmine was longer in the BAC group. Moreover, distal colon stenosis and proximal colon enlargement appeared in the BAC group. Neurons in the distal colon decreased significantly after 4 weeks of BAC treatment and almost disappeared completely after 12 weeks. Transcriptome profiling of the mouse model and HSCR patients is similar in terms of altered gene expression. CONCLUSIONS An economical and reliable HSCR animal model which has similar clinical characteristics to HSCR patients was successfully established. IMPACT The animal model of Hirschsprung disease was first established in BALB/c mice. This model is an animal model of early-onset HSCR that is easy to operate and consistent with clinical manifestations. Transcriptome profiling of the mouse model and HSCR patients is similar in terms of altered gene expression.
Collapse
Affiliation(s)
- Chaoting Lan
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, No. 9 Jinsui Road, Zhujiang New Town, Tianhe District, 510623, Guangzhou, Guangdong, China
| | - Yuxin Wu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, No. 9 Jinsui Road, Zhujiang New Town, Tianhe District, 510623, Guangzhou, Guangdong, China
- The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, 510630, Guangzhou, Guangdong, China
| | - Yanqing Liu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, No. 9 Jinsui Road, Zhujiang New Town, Tianhe District, 510623, Guangzhou, Guangdong, China
| | - Ning Wang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, No. 9 Jinsui Road, Zhujiang New Town, Tianhe District, 510623, Guangzhou, Guangdong, China
- Guangzhou Medical University, No.1 Xinzao Road, Xinzao Town, Panyu District, 510182, Guangzhou, Guangdong, China
| | - Meiling Su
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, No. 9 Jinsui Road, Zhujiang New Town, Tianhe District, 510623, Guangzhou, Guangdong, China
| | - Dingjiang Qin
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, No. 9 Jinsui Road, Zhujiang New Town, Tianhe District, 510623, Guangzhou, Guangdong, China
- Guangzhou Medical University, No.1 Xinzao Road, Xinzao Town, Panyu District, 510182, Guangzhou, Guangdong, China
| | - Weiyong Zhong
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, No. 9 Jinsui Road, Zhujiang New Town, Tianhe District, 510623, Guangzhou, Guangdong, China
- Guangzhou Medical University, No.1 Xinzao Road, Xinzao Town, Panyu District, 510182, Guangzhou, Guangdong, China
| | - Xinying Zhao
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, No. 9 Jinsui Road, Zhujiang New Town, Tianhe District, 510623, Guangzhou, Guangdong, China
| | - Yun Zhu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, No. 9 Jinsui Road, Zhujiang New Town, Tianhe District, 510623, Guangzhou, Guangdong, China
| | - Qiuming He
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, No. 9 Jinsui Road, Zhujiang New Town, Tianhe District, 510623, Guangzhou, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, No. 9 Jinsui Road, Zhujiang New Town, Tianhe District, 510623, Guangzhou, Guangdong, China.
- The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, 510630, Guangzhou, Guangdong, China.
| | - Yan Zhang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, No. 9 Jinsui Road, Zhujiang New Town, Tianhe District, 510623, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Budianto IR, Firmansyah A, Moenadjat Y, Jusuf AA, Soetikno V. In vivo model of Hirschsprung-associated enterocolitis using benzalkonium chloride. MEDICAL JOURNAL OF INDONESIA 2021. [DOI: 10.13181/mji.oa.215339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Hirschsprung-associated enterocolitis (HAEC) is a life-threatening complication of Hirschsprung’s disease. Studies using animal models on the pathogenesis of HAEC are limited. Thus, this study aimed to establish a rat model of HAEC using topical application of 0.1% benzalkonium chloride (BAC) in the sigmoid colon.
METHODS 55 male Sprague Dawley rats aged 10−12 weeks old were separated into 11 groups. The control group (n = 5) was euthanized on day-7, and the other 10 groups (n = 5 in each group) treated with 0.1% BAC in the sigmoid colon for 15 min to induce Hirschsprung’s disease were euthanized on day-7, -10, -12, -14, -17, -19, -21, -23, -25, and -28. The sigmoid colon was excised, fixed in formalin, and sectioned for histological examinations with hematoxylin and eosin staining. The degree of HAEC was compared within all groups.
RESULTS Rats that were sacrificed on day-7 to -12 showed the 1st degree or early HAEC, which was most likely caused by BAC application. The 2nd degree of HAEC occurred in rats that were sacrificed on day-14 that showed a macrophage infiltration in the sigmoid colon, thus fulfilled the initial criteria for HAEC (p = 0.0025 versus control). The degree of enterocolitis increased with time, and the highest degree was found in rats that were sacrificed on day-28 (p<0.001 versus control).
CONCLUSIONS Topical application of 0.1% BAC for 15 min was successfully produced HAEC model in rats, which was occurred on day-14 after the application. This model provides a useful resource for further research on the pathogenesis of HAEC.
Collapse
|
5
|
Tian DH, Qin CH, Xu WY, Pan WK, Zhao YY, Zheng BJ, Chen XL, Liu Y, Gao Y, Yu H. Phenotypic and functional comparison of rat enteric neural crest-derived cells during fetal and early-postnatal stages. Neural Regen Res 2021; 16:2310-2315. [PMID: 33818517 PMCID: PMC8354115 DOI: 10.4103/1673-5374.310701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In our previous study, we showed that with increasing time in culture, the growth characteristics of enteric neural crest-derived cells (ENCCs) change, and that the proliferation, migration and neural differentiation potential of these cells in vitro notably diminish. However, there are no studies on the developmental differences in these characteristics between fetal and early-postnatal stages in vitro or in vivo. In this study, we isolated fetal (embryonic day 14.5) and postnatal (postnatal day 2) ENCCs from the intestines of rats. Fetal ENCCs had greater maximum cross-sectional area of the neurospheres, stronger migration ability, and reduced apoptosis, compared with postnatal ENCCs. However, fetal and postnatal ENCCs had a similar differentiation ability. Fetal and postnatal ENCCs both survived after transplant into a rat model of Hirschsprung's disease. In these rats with Hirschsprung's disease, the number of ganglionic cells in the myenteric plexus was higher and the distal intestinal pressure change was greater in animals treated with fetal ENCCs compared with those treated with postnatal ENCCs. These findings suggest that, compared with postnatal ENCCs, fetal ENCCs exhibit higher survival and proliferation and migration abilities, and are therefore a more appropriate seed cell for the treatment of Hirschsprung's disease. This study was approved by the Animal Ethics Committee of the Second Affiliated Hospital of Xi'an Jiaotong University (approval No. 2016086) on March 3, 2016.
Collapse
Affiliation(s)
- Dong-Hao Tian
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Chuan-Hui Qin
- Department of Anorectal, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, Hubei Province, China
| | - Wen-Yao Xu
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Wei-Kang Pan
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yu-Ying Zhao
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Bai-Jun Zheng
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xin-Lin Chen
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yong Liu
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ya Gao
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hui Yu
- Department of Pediatric Surgery, the Second Affiliated Hospital; Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
6
|
Zhao Y, Ge X, Yu H, Kuil LE, Alves MM, Tian D, Huang Q, Chen X, Hofstra RMW, Gao Y. Inhibition of ROCK signaling pathway accelerates enteric neural crest cell-based therapy after transplantation in a rat hypoganglionic model. Neurogastroenterol Motil 2020; 32:e13895. [PMID: 32515097 DOI: 10.1111/nmo.13895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is a congenital gastrointestinal disorder, characterized by enteric ganglia absence in part or entire of the colon, due to abnormal colonization and migration of enteric neural crest cells (ENCCs) during development. Currently, besides surgery which is the main therapy for HSCR, the potential of stem cell-based transplantation was investigated as an alternative option. Although promising, it has limitations, including poor survival, differentiation, and migration of the grafted cells. We hypothesized that modulation of extracellular factors during transplantation could promote ENCCs proliferation and migration, leading to increased transplantation efficiency. Considering that the RhoA/ROCK pathway is highly involved in cytoskeletal dynamics and neurite growth, our study explored the effect of inhibition of this pathway to improve the success of ENCCs transplantation. METHODS Enteric neural crest cells were isolated from rat embryos and labeled with a GFP-tag. Cell viability, apoptosis, differentiation, and migration assays were performed with and without RhoA/ROCK inhibition. Labeled ENCCs were transplanted into the muscle layer of an induced hypoganglionic rat model followed by intraperitoneal injections of ROCK inhibitor. The transplanted segments were collected 3 weeks after for histological analysis. KEY RESULTS Our results showed that inhibition of ROCK increased viable cell number, differentiation, and migration of ENCCs in vitro. Moreover, transplantation of labeled ENCCs into the hypoganglionic model showed enhanced distribution of grafted ENCCs, upon treatment with ROCK inhibitor. CONCLUSIONS AND INFERENCES ROCK inhibitors influence ENCCs growth and migration in vitro and in vivo, and should be considered to improve the efficiency of ENCCs transplantation.
Collapse
Affiliation(s)
- Yuying Zhao
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Xin Ge
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Yu
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Laura E Kuil
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maria M Alves
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Donghao Tian
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiang Huang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ya Gao
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Bhave S, Arciero E, Baker C, Ho WL, Stavely R, Goldstein AM, Hotta R. Enteric neuronal cell therapy reverses architectural changes in a novel diphtheria toxin-mediated model of colonic aganglionosis. Sci Rep 2019; 9:18756. [PMID: 31822721 PMCID: PMC6904570 DOI: 10.1038/s41598-019-55128-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/19/2019] [Indexed: 01/14/2023] Open
Abstract
Hirschsprung disease (HSCR) is characterized by absence of the enteric nervous system (ENS) in the distal bowel. Despite removal of the aganglionic segment, gastrointestinal (GI) problems persist. Cell therapy offers potential treatment but use of genetic models is limited by their poor survival. We have developed a novel model of aganglionosis in which enteric neural crest-derived cells (ENCDCs) express diphtheria toxin (DT) receptor. Local DT injection into the colon wall results in focal, specific, and sustained ENS ablation without altering GI transit or colonic contractility, allowing improved survival over other aganglionosis models. Focal ENS ablation leads to increased smooth muscle and mucosal thickness, and localized inflammation. Transplantation of ENCDCs into this region leads to engraftment, migration, and differentiation of enteric neurons and glial cells, with restoration of normal architecture of the colonic epithelium and muscle, reduction in inflammation, and improved survival.
Collapse
Affiliation(s)
- Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily Arciero
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Corey Baker
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wing Lam Ho
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Yu H, Cao NJ, Pan WK, Su L, Zhao YY, Tian DH, Xu WY, Gao Y, Zheng BJ. Correlation of spatio-temporal characteristics of intestinal inflammation with IL-17 in a rat model of hypoganglionosis. Biochem Biophys Res Commun 2018; 506:956-961. [PMID: 30401564 DOI: 10.1016/j.bbrc.2018.10.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 10/21/2018] [Indexed: 12/26/2022]
Abstract
Interleukin 17 expression is increased in children with Hirschsprung disease, which is characterized by intestinal inflammation. This study designed to exploit the characteristics of intestinal inflammation and examine the correlation of interleukin 17 in this process of hypoganglionosis model established by benzalkonium chloride treatment. Colon sections from female rats were treated with benzalkonium chloride to induce hypoganglionosis or with saline alone as a sham control. C-reactive protein and tumor necrosis factor-ɑ were used as markers of inflammation. Expression of C-reactive protein, tumor necrosis factor-ɑ, and interleukin 17 was assessed in colon tissue and blood serum on days 7, 14 and 21 after treatment. The correlation between C-reactive protein, tumor necrosis factor-ɑ, and interleukin 17 expression was estimated using the Spearman's rank-correlation coefficient. C-reactive protein, tumor necrosis factor-ɑ, and interleukin 17 were strongly expressed in submucosa and mucosa layers and serum from treated animals. The expression of C-reactive protein, tumor necrosis factor-ɑ, and interleukin 17 maintained the highest level at Day 21. Only C-reactive protein and tumor necrosis factor-ɑ expression was increased in control animals and only on day 7. Spearman's rank correlation coefficient was significant in C-reactive protein, tumor necrosis factor-ɑ, and interleukin 17 at Day 7, 14 and 21. Concomitant upregulation of C-reactive protein, tumor necrosis factor-ɑ, and interleukin 17 and significant positive correlations between C-reactive protein, tumor necrosis factor-ɑ, and interleukin 17 may imply that interleukin 17 is involved in spatio-temporal inflammation induced by benzalkonium chloride.
Collapse
Affiliation(s)
- Hui Yu
- Department of Pediatric Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157, Xi Wu Road, Xi'an, 710004, Shaanxi, China
| | - Ning-Jia Cao
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital, No 256, You Yi Xi Street, Xi'an, 710068, China
| | - Wei-Kang Pan
- Department of Pediatric Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157, Xi Wu Road, Xi'an, 710004, Shaanxi, China
| | - Li Su
- Department of Minimally Invasive Surgery, The People's Hospital of the Ningxia Hui Autonomous Region, No 301, Zheng Yuan Bei Street, Yin Chuan, 750021, Ningxia, China
| | - Yu-Ying Zhao
- Department of Pediatric Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157, Xi Wu Road, Xi'an, 710004, Shaanxi, China
| | - Dong-Hao Tian
- Department of Pediatric Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157, Xi Wu Road, Xi'an, 710004, Shaanxi, China
| | - Wen-Yao Xu
- Department of Pediatric Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157, Xi Wu Road, Xi'an, 710004, Shaanxi, China
| | - Ya Gao
- Department of Pediatric Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157, Xi Wu Road, Xi'an, 710004, Shaanxi, China.
| | - Bai-Jun Zheng
- Department of Pediatric Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157, Xi Wu Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
9
|
Yu H, Zheng BJ, Pan WK, Wang HJ, Xie C, Zhao YY, Chen XL, Liu Y, Gao Y. Combination of exogenous cell transplantation and 5-HT 4 receptor agonism induce endogenous enteric neural crest-derived cells in a rat hypoganglionosis model. Exp Cell Res 2016; 351:36-42. [PMID: 28034674 DOI: 10.1016/j.yexcr.2016.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/23/2016] [Accepted: 12/25/2016] [Indexed: 01/06/2023]
Abstract
Enteric neural crest-derived cells (ENCCs) can migrate into endogenous ganglia and differentiate into progeny cells, and have even partially rescued bowel function; however, poor reliability and limited functional recovery after ENCC transplantation have yet to be addressed. Here, we investigated the induction of endogenous ENCCs by combining exogenous ENCC transplantation with a 5-HT4 receptor agonist mosapride in a rat model of hypoganglionosis, established by benzalkonium chloride treatment. ENCCs, isolated from the gut of newborn rats, were labeled with a lentiviral eGFP reporter. ENCCs and rats were treated with the 5-HT4 receptor agonist/antagonist. The labeled ENCCs were then transplanted into the muscular layer of benzalkonium chloride-treated colons. At given days post-intervention, colonic tissue samples were removed for histological analysis. ENCCs and neurons were detected by eGFP expression and immunoreactivity to p75NTR and peripherin, respectively. eGFP-positive ENCCs and neurons could survive and maintain levels of fluorescence after transplantation. With longer times post-intervention, the number of peripherin-positive cells gradually increased in all groups. Significantly more peripherin-positive cells were found following ENCCs plus mosapride treatment, compared with the other groups. These results show that exogenous ENCCs combined with the 5-HT4 receptor agonist effectively induced endogenous ENCCs proliferation and differentiation in a rat hypoganglionosis model.
Collapse
Affiliation(s)
- Hui Yu
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, No 157, Xi Wu Road, Xi'an 710004, Shaanxi, China; Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, No 96, Yan Ta Xi Road, Xi'an 710061, Shaanxi, China
| | - Bai-Jun Zheng
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, No 157, Xi Wu Road, Xi'an 710004, Shaanxi, China
| | - Wei-Kang Pan
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, No 157, Xi Wu Road, Xi'an 710004, Shaanxi, China
| | - Huai-Jie Wang
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, No 157, Xi Wu Road, Xi'an 710004, Shaanxi, China
| | - Chong Xie
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, No 157, Xi Wu Road, Xi'an 710004, Shaanxi, China
| | - Yu-Ying Zhao
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, No 157, Xi Wu Road, Xi'an 710004, Shaanxi, China
| | - Xin-Lin Chen
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, No 96, Yan Ta Xi Road, Xi'an 710061, Shaanxi, China
| | - Yong Liu
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, No 96, Yan Ta Xi Road, Xi'an 710061, Shaanxi, China
| | - Ya Gao
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, No 157, Xi Wu Road, Xi'an 710004, Shaanxi, China.
| |
Collapse
|