1
|
Yi X, Wei R, Huang S, Wei P, Li H, Li Z, Aschner M, Jiang Y, Ou S, Li S. The effect of resveratrol on lead-induced oxidative damage and apoptosis in HT-22 cells. Food Chem Toxicol 2025; 197:115274. [PMID: 39864579 DOI: 10.1016/j.fct.2025.115274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
OBJECTIVE The purpose of this work was to investigate whether resveratrol affects lead-induced oxidative damage in HT-22 cells, characterizing mechanisms and strategies for preventing and treating lead-induced neurotoxicity. METHODS Various lead and resveratrol concentrations were applied to HT-22 cells over different time periods. First, we established the lead treatment (12.5, 50 and 200 μmol/L) and resveratrol (40 μmol/L) intervention model for the study. MTT was used to analyze HT-22 cell survival rate. The rates of cell death, mitochondrial membrane potential, lipid peroxidation, and reactive oxygen species (ROS) generation were all measured by flow cytometry. Cellular oxidant (MDA) and antioxidant (SOD, GSH-Px) levels were measured with test kits. Western blotting was used to assess the expression of proteins related to autophagy and apoptosis. RESULTS Lead reduced HT-22 cell viability in a concentration/time-dependent manner. In addition, lead (200 μmol/L) decreased the protein expression of BCL2, while increasing PARP and BAX expression and apoptotic rate. Moreover, the lead-exposed group had significantly higher levels of ROS, lipid-ROS, and MDA than the control group. This was accompanied by increased MDA levels and decreased SOD, GSH-Px, and MMP levels in the lead-exposed cells. Furthermore, lead lowered SIRT1 protein expression, while increasing the levels of autophagy-related proteins, including P62, ATG5, Beclin-1 and LC3 Ⅱ/Ⅰ. Resveratrol (40 μmol/L), an agonist of SIRT1, restored the effects of lead (200 μmol/L) to levelsindistinguishable from controls. CONCLUSION Resveratrol inhibited mitochondrial damage and restored the lead-induced block of autophagic flux and oxidative stress by activating SIRT1, thereby alleviating lead-induced damage in HT-22 cells.
Collapse
Affiliation(s)
- Xiang Yi
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; School of Public Health, Xiangnan University, Chenzhou, 423000, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Ruokun Wei
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shaoni Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Peiqi Wei
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - HuiShuai Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Zhenning Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shiyan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
2
|
Tang X, Cao J, Cai J, Mo X, Wei Y, He K, Ye Z, Liang YJ, Zhao L, Qin L, Li Y, Qin J, Zhang Z. Effect of Interaction of ATG7 and Plasma Metal Concentrations on Cognitive Impairment in Rural China. J Mol Neurosci 2025; 75:27. [PMID: 39988622 DOI: 10.1007/s12031-025-02322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
The objective of this study is to explore the association of plasma metal concentrations with impaired cognitive function in different genotypes of ATG7 using multiple models. A cross-sectional survey was conducted in rural China among 994 individuals aged 30 years or older. Cognitive function was assessed using the Mini-Mental State Examination (MMSE). Genetic analysis focused on two single-nucleotide polymorphisms (SNPs) in the autophagy-related gene ATG7 (rs2606757 and rs8154). Plasma concentrations of metals were quantified using inductively coupled plasma mass spectrometry. Restricted cubic splines were used to explore the association between serum metal concentration and the occurrence of mild cognitive impairment in individuals with various genotypes. Bayesian Kernel Machine Regression (BKMR) models were used to explore the interactions between individual metals. In a restricted cubic spline model, there is a nonlinear relationship between plasma concentration of Cd and the occurrence of cognitive impairment in individuals carrying the AA (P of Nonlinear = 0.008) and AT (P of Nonlinear = 0.007) genotypes at the rs2606757. However, in people carrying the TT genotype at the rs2606757 locus, the concentration of metals in plasma was not significantly associated with cognitive impairment (P of Nonlinear = 0.534). The results of the BKMR model are consistent with those of the restricted cubic spline model. The TT genotype at rs2606757 in ATG7 appears to confer greater cognitive resilience against Cd-induced cognitive damage. These findings highlight the importance of considering gene-environment interactions in the context of cognitive impairment and suggest potential avenues for preventing cognitive decline in individuals exposed to Cd. Further research is needed to elucidate the precise mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Xu Tang
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China
- Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Jiejing Cao
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China
- Liuzhou People's Hospital, Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Jiansheng Cai
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoting Mo
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China
| | - Yanfei Wei
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China
| | - Kailian He
- School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Zeyan Ye
- School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yu Jian Liang
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China
| | - Linhai Zhao
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China
| | - Lidong Qin
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China
| | - You Li
- School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Jian Qin
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China
| | - Zhiyong Zhang
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China.
- School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guangxi Zhuang Autonomous Region, Guilin, China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guangxi Zhuang Autonomous Region, Guilin, China.
| |
Collapse
|
3
|
Ghaith WZ, Wadie W, El-Yamany MF. Crosstalk between SIRT1/Nrf2 signaling and NLRP3 inflammasome/pyroptosis as a mechanistic approach for the neuroprotective effect of linagliptin in Parkinson's disease. Int Immunopharmacol 2025; 145:113716. [PMID: 39642562 DOI: 10.1016/j.intimp.2024.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
In recent years, special attention has been paid to highlighting the antiparkinsonian effect of linagliptin. However, the mechanism of its action has not yet been well investigated. The present study aimed to verify the neuroprotective effect of linagliptin in the rotenone model of Parkinson's disease (PD) and further explore its potential molecular mechanisms. Rats were intoxicated with rotenone (2 mg/kg/day; sc) and treated with linagliptin (10 mg/kg/day; po) for 14 consecutive days. The present finding showed that linagliptin ameliorated the histopathological changes of rotenone on substantia nigra and striata. Linagliptin decreased α-synuclein immunoreactivity along with an increase in tyrosine hydroxylase immunoreactivity and striatal dopamine content. This was reflected in the marked improvement of the behavior and motor deficits in rotenone-intoxicated rats. On the molecular level, linagliptin upregulated sirtuin 1 (SIRT1)/ nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, reduced ionized calcium-binding adaptor molecule 1 (Iba1) protein expression, restored glutathione (GSH) content, and elevated heme oxygenase-1 (HO-1) level in rats with rotenone intoxication. Moreover, linagliptin inhibited NOD-like receptor protein 3 (NLRP3)/caspase-1/interleukin-1β (IL-1β) cascade with subsequent reduction in gasdermin D (GSDMD) expression. Therefore, the present study reveals the ability of linagliptin, through the activation of SIRT1/Nrf2 signaling, to suppress NLRP3 inflammasome-mediated pyroptosis and protect against rotenone-induced parkinsonism.
Collapse
Affiliation(s)
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Egypt.
| |
Collapse
|
4
|
Aschner M, Skalny AV, Lu R, Martins AC, Tsatsakis A, Miroshnikov SA, Santamaria A, Tinkov AA. Molecular mechanisms of zinc oxide nanoparticles neurotoxicity. Chem Biol Interact 2024; 403:111245. [PMID: 39278458 DOI: 10.1016/j.cbi.2024.111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Zinc oxide nanoparticles (ZnONPs) are widely used in industry and biomedicine. A growing body of evidence demonstrates that ZnONPs exposure may possess toxic effects to a variety of tissues, including brain. Therefore, the objective of the present review was to summarize existing evidence on neurotoxic effects of ZnONPs and discuss the underlying molecular mechanisms. The existing laboratory data demonstrate that both in laboratory rodents and other animals ZnONPs exposure results in a significant accumulation of Zn in brain and nervous tissues, especially following long-term exposure. As a result, overexposure to ZnONPs causes oxidative stress and cell death, both in neurons and glial cells, by induction of apoptosis, necrosis and ferroptosis. In addition, ZnONPs may induce neuroinflammation through the activation of nuclear factor kappa B (NF-κB), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and lipoxygenase (LOX) signaling pathways. ZnONPs exposure is associated with altered cholinergic, dopaminergic, serotoninergic, as well as glutamatergic and γ-aminobutyric acid (GABA)-ergic neurotransmission, thus contributing to impaired neuronal signal transduction. Cytoskeletal alterations, as well as impaired autophagy and mitophagy also contribute to ZnONPs-induced brain damage. It has been posited that some of the adverse effects of ZnONPs in brain are mediated by altered microRNA expression and dysregulation of gut-brain axis. Furthermore, in vivo studies have demonstrated that ZnONPs exposure induced anxiety, motor and cognitive deficits, as well as adverse neurodevelopmental outcome. At the same time, the relevance of ZnONPs-induced neurotoxicity and its contribution to pathogenesis of neurological diseases in humans are still unclear. Further studies aimed at estimation of hazards of ZnONPs to human brain health and the underlying molecular mechanisms are warranted.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13, Heraklion, Greece
| | - Sergey A Miroshnikov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia
| | - Abel Santamaria
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico; Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia; Laboratory of Molecular Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia.
| |
Collapse
|
5
|
Yang X, Zheng R, Zhang H, Ou Z, Wan S, Lin D, Yan J, Jin M, Tan J. Optineurin regulates motor and learning behaviors by affecting dopaminergic neuron survival in mice. Exp Neurol 2024; 383:115007. [PMID: 39428042 DOI: 10.1016/j.expneurol.2024.115007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Optineurin (OPTN) is an autophagy receptor that participates in the degradation of damaged mitochondria, protein aggregates, and invading pathogens. OPTN is closely related to various types of neurodegenerative diseases. However, the role of OPTN in the central nervous system is unclear. Here, we found that OPTN dysregulation in the compact part of substantia nigra (SNc) led to motor and learning deficits in animal models. Knockdown of OPTN increased total and phosphorylated α-synuclein levels which induced microglial activation and dopaminergic neuronal loss in the SNc. Overexpression of OPTN can't reverse the motor and learning phenotypes. Mechanistic analysis revealed that upregulation of OPTN increased α-synuclein phosphorylation independent of its autophagy receptor activity, which further resulted in microglial activation and dopaminergic neuronal loss similar to OPTN downregulation. Our study uncovers the crucial role of OPTN in maintaining dopaminergic neuron survival and motor and learning functions which are disrupted in PD patients.
Collapse
Affiliation(s)
- Xianfei Yang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Ruoling Zheng
- Shantou Longhu People's Hospital, Shantou 515041, China
| | - Hongyao Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Zixian Ou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Sha Wan
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin 541199, China
| | - Dongfeng Lin
- Shantou University Mental Health Center, Shantou University, Shantou 515063, China
| | - Jianguo Yan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Department of Physiology, College of Basic Medicine, Guilin Medical University, Guilin 541199, China
| | - Mingyue Jin
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Department of Physiology, College of Basic Medicine, Guilin Medical University, Guilin 541199, China; Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China.
| |
Collapse
|
6
|
Shen R, Zhao W, Li X, Liu J, Yang A, Kou X. Emodin derivatives as promising multi-aspect intervention agents for amyloid aggregation: molecular docking/dynamics simulation, bioactivities evaluation, and cytoprotection. Mol Divers 2024; 28:3085-3099. [PMID: 37737959 DOI: 10.1007/s11030-023-10733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with complex pathogenesis. Despite the pathogenesis is unknown, the misfolding and accumulation of β-amyloid (Aβ) peptide play the important role in the occurrence and development of AD. Hence, multi-aspect intervention of the misfolded Aβ peptides aggregation is a promising therapy for AD. In previous work, we obtained the emodin derivatives (a-d) with multifunctional anti-AD activities, including metal ions chelation, cholinesterase inhibition, and hydroxyl/superoxide anion radical elimination. In this work, we predicted the interaction of emodin derivatives (a-d) with Aβ by combining molecular docking simulation and molecular dynamics simulation, and evaluated the ability to intervene with the self-, Cu2+- and AChE-induced Aβ aggregation via in vitro methods. The results indicated that a-d could act as the potent multi-aspect intervention agents for Aβ aggregation. In addition, a-d could effectively eliminate peroxyl radical, had virtually no neurotoxicity, and protect cells from oxidative and Aβ-induced damage. The prediction results of ADMET properties showed that a-d had suitable pharmacokinetic characteristics. It suggested that a-d could act as the promising multi-targeted directed ligands (MTDLs) for AD. These results may provide meaningful information for the development of the potential MTDLs for AD which are modified from natural-origin scaffolds.
Collapse
Affiliation(s)
- Rui Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Wenshuang Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Xiangyu Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Juanjuan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| | - Xiaodi Kou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
7
|
Liu X, Liu Y, Liu J, Zhang H, Shan C, Guo Y, Gong X, Cui M, Li X, Tang M. Correlation between the gut microbiome and neurodegenerative diseases: a review of metagenomics evidence. Neural Regen Res 2024; 19:833-845. [PMID: 37843219 PMCID: PMC10664138 DOI: 10.4103/1673-5374.382223] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 06/17/2023] [Indexed: 10/17/2023] Open
Abstract
A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis. As a contributing factor, microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota's diverse microorganisms, and for both neuroimmune and neuroendocrine systems. Here, we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases, with an emphasis on multi-omics studies and the gut virome. The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated. Finally, we discuss the role of diet, prebiotics, probiotics, postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yinglu Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mengmeng Cui
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Xiubin Li
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
8
|
Chen Q, Liu Y, Bi L, Jin L, Peng R. Understanding the mechanistic roles of microplastics combined with heavy metals in regulating ferroptosis: Adding new paradigms regarding the links with diseases. ENVIRONMENTAL RESEARCH 2024; 242:117732. [PMID: 37996004 DOI: 10.1016/j.envres.2023.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
As a new type of pollutant, microplastics (MPs) commonly exist in today's ecosystems, causing damage to the ecological environment and the health of biological organisms, including human beings. MPs can function as carriers of heavy metals (HMs) to aggravate the enrichment of HMs in important organs of organisms, posing a great threat to health. Ferroptosis, a novel process for the regulation of nonapoptotic cell death, has been shown to be closely related to the occurrence and processes of MPs and HMs in diseases. In recent years, some HMs, such as cadmium (Cd), iron (Fe), arsenic (As) and copper (Cu), have been proven to induce ferroptosis. MPs can function as carriers of HMs to aggravate damage to the body. This damage involves oxidative stress, mitochondrial dysfunction, lipid peroxidation (LPO), inflammation, endoplasmic reticulum stress (ERS) and so on. Therefore, ferroptosis has great potential as a therapeutic target for diseases induced by MPs combined with HMs. This paper systematically reviews the potential effects and regulatory mechanisms of MPs and HMs in the process of ferroptosis, focusing on the mitochondrial damage, Fe accumulation, LPO, ERS and inflammation caused by MPs and HMs that affect the regulatory mechanism of ferroptosis, providing new insights for research on regulating drugs and for the development of ferroptosis-targeting therapy for Alzheimer's disease, Parkinson's disease, cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
9
|
Arab HH, Eid AH, Alsufyani SE, Ashour AM, El-Sheikh AAK, Darwish HW, Sabry FM. Targeting Autophagy, Apoptosis, and Oxidative Perturbations with Dapagliflozin Mitigates Cadmium-Induced Cognitive Dysfunction in Rats. Biomedicines 2023; 11:3000. [PMID: 38002000 PMCID: PMC10669515 DOI: 10.3390/biomedicines11113000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Cognitive decline and Alzheimer-like neuropathology are common manifestations of cadmium toxicity. Thanks to its antioxidant/anti-apoptotic features, dapagliflozin has demonstrated promising neuroprotective actions. However, its effect on cadmium-induced neurotoxicity is lacking. The present work aimed to examine whether dapagliflozin could protect rats from cadmium-evoked cognitive decline. In this study, the behavioral disturbances and hippocampal biomolecular alterations were studied after receiving dapagliflozin. Herein, cadmium-induced memory/learning decline was rescued in the Morris water maze, novel object recognition task, and Y-shaped maze by dapagliflozin. Meanwhile, the hippocampal histopathological abnormalities were mitigated. The molecular mechanisms revealed that dapagliflozin lowered hippocampal expression of p-tau and Aβ42 neurotoxic proteins while augmenting acetylcholine. The cognitive enhancement was triggered by hippocampal autophagy stimulation, as indicated by decreased SQSTM-1/p62 and Beclin 1 upregulation. Meanwhile, a decrease in p-mTOR/total mTOR and an increase in p-AMPK/total AMPK ratio were observed in response to dapagliflozin, reflecting AMPK/mTOR cascade stimulation. Dapagliflozin, on the other hand, dampened the pro-apoptotic processes in the hippocampus by downregulating Bax, upregulating Bcl-2, and inactivating GSK-3β. The hippocampal oxidative insult was mitigated by dapagliflozin as seen by lipid peroxide lowering, antioxidants augmentation, and SIRT1/Nrf2/HO-1 pathway activation. In conclusion, dapagliflozin's promising neuroprotection was triggered by its pro-autophagic, anti-apoptotic, and antioxidant properties.
Collapse
Affiliation(s)
- Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ahmed H. Eid
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt; (A.H.E.); (F.M.S.)
| | - Shuruq E. Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ahmed M. Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia;
| | - Azza A. K. El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh 11451, Saudi Arabia;
| | - Fatma M. Sabry
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt; (A.H.E.); (F.M.S.)
| |
Collapse
|
10
|
Arab HH, Eid AH, Yahia R, Alsufyani SE, Ashour AM, El-Sheikh AAK, Darwish HW, Saad MA, Al-Shorbagy MY, Masoud MA. Targeting Autophagy, Apoptosis, and SIRT1/Nrf2 Axis with Topiramate Underlies Its Neuroprotective Effect against Cadmium-Evoked Cognitive Deficits in Rats. Pharmaceuticals (Basel) 2023; 16:1214. [PMID: 37765022 PMCID: PMC10535870 DOI: 10.3390/ph16091214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
Cadmium is an environmental toxicant that instigates cognitive deficits with excessive glutamate excitatory neuroactivity in the brain. Topiramate, a glutamate receptor antagonist, has displayed favorable neuroprotection against epilepsy, cerebral ischemia, and Huntington's disease; however, its effect on cadmium neurotoxicity remains to be investigated. In this study, topiramate was tested for its potential to combat the cognitive deficits induced by cadmium in rats with an emphasis on hippocampal oxidative insult, apoptosis, and autophagy. After topiramate intake (50 mg/kg/day; p.o.) for 8 weeks, behavioral disturbances and molecular changes in the hippocampal area were explored. Herein, Morris water maze, Y-maze, and novel object recognition test revealed that topiramate rescued cadmium-induced memory/learning deficits. Moreover, topiramate significantly lowered hippocampal histopathological damage scores. Mechanistically, topiramate significantly replenished hippocampal GLP-1 and dampened Aβ42 and p-tau neurotoxic cues. Notably, it significantly diminished hippocampal glutamate content and enhanced acetylcholine and GABA neurotransmitters. The behavioral recovery was prompted by hippocampal suppression of the pro-oxidant events with notable activation of SIRT1/Nrf2/HO-1 axis. Moreover, topiramate inactivated GSK-3β and dampened the hippocampal apoptotic changes. In tandem, stimulation of hippocampal pro-autophagy events, including Beclin 1 upregulation, was triggered by topiramate that also activated AMPK/mTOR pathway. Together, the pro-autophagic, antioxidant, and anti-apoptotic features of topiramate contributed to its neuroprotective properties in rats intoxicated with cadmium. Therefore, it may be useful to mitigate cadmium-induced cognitive deficits.
Collapse
Affiliation(s)
- Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (H.H.A.); (S.E.A.)
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ahmed H. Eid
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt; (A.H.E.); (R.Y.); (M.A.M.)
| | - Rania Yahia
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt; (A.H.E.); (R.Y.); (M.A.M.)
| | - Shuruq E. Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (H.H.A.); (S.E.A.)
| | - Ahmed M. Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia;
| | - Azza A. K. El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh 11451, Saudi Arabia;
| | - Muhammed A. Saad
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Muhammad Y. Al-Shorbagy
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Marwa A. Masoud
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt; (A.H.E.); (R.Y.); (M.A.M.)
| |
Collapse
|
11
|
Bellettini-Santos T, Batista-Silva H, Marcolongo-Pereira C, Quintela-Castro FCDA, Barcelos RM, Chiepe KCMB, Rossoni JV, Passamani-Ambrosio R, da Silva BS, Chiarelli-Neto O, Garcez ML. Move Your Body toward Healthy Aging: Potential Neuroprotective Mechanisms of Irisin in Alzheimer's Disease. Int J Mol Sci 2023; 24:12440. [PMID: 37569815 PMCID: PMC10420140 DOI: 10.3390/ijms241512440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults, having a significant global burden and increasing prevalence. Current treatments for AD only provide symptomatic relief and do not cure the disease. Physical activity has been extensively studied as a potential preventive measure against cognitive decline and AD. Recent research has identified a hormone called irisin, which is produced during exercise, that has shown promising effects on cognitive function. Irisin acts on the brain by promoting neuroprotection by enhancing the growth and survival of neurons. It also plays a role in metabolism, energy regulation, and glucose homeostasis. Furthermore, irisin has been found to modulate autophagy, which is a cellular process involved in the clearance of protein aggregates, which are a hallmark of AD. Additionally, irisin has been shown to protect against cell death, apoptosis, oxidative stress, and neuroinflammation, all of which are implicated in AD pathogenesis. However, further research is needed to fully understand the mechanisms and therapeutic potential of irisin in AD. Despite the current gaps in knowledge, irisin holds promise as a potential therapeutic target for slowing cognitive decline and improving quality of life in AD patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Michelle Lima Garcez
- Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Espírito Santo 29703-858, Brazil; (T.B.-S.); (H.B.-S.); (C.M.-P.); (F.C.d.A.Q.-C.); (R.M.B.); (K.C.M.B.C.); (J.V.R.J.); (R.P.-A.); (B.S.d.S.); (O.C.-N.)
| |
Collapse
|
12
|
Arab HH, Eid AH, Alsufyani SE, Ashour AM, El-Sheikh AAK, Darwish HW, Georgy GS. Neuroprotective Impact of Linagliptin against Cadmium-Induced Cognitive Impairment and Neuropathological Aberrations: Targeting SIRT1/Nrf2 Axis, Apoptosis, and Autophagy. Pharmaceuticals (Basel) 2023; 16:1065. [PMID: 37630980 PMCID: PMC10459587 DOI: 10.3390/ph16081065] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Cadmium is an environmental contaminant associated with marked neurotoxicity and cognitive impairment. Linagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, has demonstrated promising neuroprotection against cerebral ischemia and diabetic dementia. However, there has been no study of its effect on cadmium-induced cognitive deficits. In the present work, linagliptin's prospective neuroprotective effects against cadmium-evoked cognitive decline were examined in vivo in rats. The molecular pathways related to oxidative stress, apoptosis, and autophagy were investigated. Histology, immunohistochemistry, ELISA, and biochemical assays were performed on brain hippocampi after receiving linagliptin (5 mg/kg/day). The current findings revealed that cadmium-induced learning and memory impairment were improved by linagliptin as seen in the Morris water maze, Y-maze, and novel object recognition test. Moreover, linagliptin lowered hippocampal neurodegeneration as seen in histopathology. At the molecular level, linagliptin curtailed hippocampal DPP-4 and augmented GLP-1 levels, triggering dampening of the hippocampal neurotoxic signals Aβ42 and p-tau in rats. Meanwhile, it enhanced hippocampal acetylcholine and GABA and diminished the glutamate spike. The behavioral recovery was associated with dampening of the hippocampal pro-oxidant response alongside SIRT1/Nrf2/HO-1 axis stimulation. Meanwhile, linagliptin counteracted hippocampal apoptosis markers and inhibited the pro-apoptotic kinase GSK-3β. In tandem, linagliptin activated hippocampal autophagy by lowering SQSTM-1/p62 accumulation, upregulating Beclin 1, and stimulating AMPK/mTOR pathway. In conclusion, linagliptin's antioxidant, antiapoptotic, and pro-autophagic properties advocated its promising neuroprotective impact. Thus, linagliptin may serve as a management approach against cadmium-induced cognitive deficits.
Collapse
Affiliation(s)
- Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ahmed H. Eid
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt; (A.H.E.); (G.S.G.)
| | - Shuruq E. Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ahmed M. Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia;
| | - Azza A. K. El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh 11451, Saudi Arabia;
| | - Gehan S. Georgy
- Department of Pharmacology, Egyptian Drug Authority (EDA)—Formerly NODCAR, Giza 12654, Egypt; (A.H.E.); (G.S.G.)
| |
Collapse
|
13
|
Li Q, Feng Y, Wang R, Liu R, Ba Y, Huang H. Recent insights into autophagy and metals/nanoparticles exposure. Toxicol Res 2023; 39:355-372. [PMID: 37398566 PMCID: PMC10313637 DOI: 10.1007/s43188-023-00184-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 07/04/2023] Open
Abstract
Some anthropogenic pollutants, such as heavy metals and nanoparticles (NPs), are widely distributed and a major threat to environmental safety and public health. In particular, lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), and mercury (Hg) have systemic toxicity even at extremely low concentrations, so they are listed as priority metals in relation to their significant public health burden. Aluminum (Al) is also toxic to multiple organs and is linked to Alzheimer's disease. As the utilization of many metal nanoparticles (MNPs) gradually gain traction in industrial and medical applications, they are increasingly being investigated to address potential toxicity by impairing certain biological barriers. The dominant toxic mechanism of these metals and MNPs is the induction of oxidative stress, which subsequently triggers lipid peroxidation, protein modification, and DNA damage. Notably, a growing body of research has revealed the linkage between dysregulated autophagy and some diseases, including neurodegenerative diseases and cancers. Among them, some metals or metal mixtures can act as environmental stimuli and disturb basal autophagic activity, which has an underlying adverse health effect. Some studies also revealed that specific autophagy inhibitors or activators could modify the abnormal autophagic flux attributed to continuous exposure to metals. In this review, we have gathered recent data about the contribution of the autophagy/mitophagy mediated toxic effects and focused on the involvement of some key regulatory factors of autophagic signaling during exposure to selected metals, metal mixtures, as well as MNPs in the real world. Besides this, we summarized the potential significance of interactions between autophagy and excessive reactive oxygen species (ROS)-mediated oxidative damage in the regulation of cell survival response to metals/NPs. A critical view is given on the application of autophagy activators/inhibitors to modulate the systematic toxicity of various metals/MNPs.
Collapse
Affiliation(s)
- Qiong Li
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yajing Feng
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Ruike Wang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Rundong Liu
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yue Ba
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Hui Huang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| |
Collapse
|
14
|
Yu Q, Zhang R, Li T, Yang L, Zhou Z, Hou L, Wu W, Zhao R, Chen X, Yao Y, Huang S, Chen L. Mitochondrial Hydrogen Peroxide Activates PTEN and Inactivates Akt Leading to Autophagy Inhibition-Dependent Cell Death in Neuronal Models of Parkinson's Disease. Mol Neurobiol 2023; 60:3345-3364. [PMID: 36853430 PMCID: PMC10924433 DOI: 10.1007/s12035-023-03286-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023]
Abstract
Defective autophagy relates to the pathogenesis of Parkinson's disease (PD), a typical neurodegenerative disease. Our recent study has demonstrated that PD toxins (6-OHDA, MPP+, or rotenone) induce neuronal apoptosis by impeding the AMPK/Akt-mTOR signaling. Here, we show that treatment with 6-OHDA, MPP+, or rotenone triggered decreases of ATG5/LC3-II and autophagosome formation with a concomitant increase of p62 in PC12, SH-SY5Y cells, and primary neurons, suggesting inhibition of autophagy. Interestingly, overexpression of wild-type ATG5 attenuated the inhibitory effect of PD toxins on autophagy, reducing neuronal apoptosis. The effects of PD toxins on autophagy and apoptosis were found to be associated with activation of PTEN and inactivation of Akt. Overexpression of dominant negative PTEN, constitutively active Akt and/or pretreatment with rapamycin rescued the cells from PD toxins-induced downregulation of ATG5/LC3-II and upregulation of p62, as well as consequential autophagosome diminishment and apoptosis in the cells. The effects of PD toxins on autophagy and apoptosis linked to excessive intracellular and mitochondrial hydrogen peroxide (H2O2) production, as evidenced by using a H2O2-scavenging enzyme catalase, a mitochondrial superoxide indicator MitoSOX and a mitochondria-selective superoxide scavenger Mito-TEMPO. Furthermore, we observed that treatment with PD toxins reduced the protein level of Parkin in the cells. Knockdown of Parkin alleviated the effects of PD toxins on H2O2 production, PTEN/Akt activity, autophagy, and apoptosis in the cells, whereas overexpression of wild-type Parkin exacerbated these effects of PD toxins, implying the involvement of Parkin in the PD toxins-induced oxidative stress. Taken together, the results indicate that PD toxins can elicit mitochondrial H2O2, which can activate PTEN and inactivate Akt leading to autophagy inhibition-dependent neuronal apoptosis, and Parkin plays a critical role in this process. Our findings suggest that co-manipulation of the PTEN/Akt/autophagy signaling by antioxidants may be exploited for the prevention of neuronal loss in PD.
Collapse
Affiliation(s)
- Qianyun Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
- Department of Biological Sciences, College of Science and Technology, Xinyang University, Xinyang, 464000, People's Republic of China
| | - Ruijie Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
- College of Life Sciences, Anhui Medical University, Anhui, 230032, People's Republic of China
| | - Tianjing Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Liu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Zhihan Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Long Hou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Wen Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Rui Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Xiaoling Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Yajie Yao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA.
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
15
|
Zeng Q, Liu J, Yan Y, Zhang G, Wang P, Zhang H, Liu X, Zhang L, Wang X. Modified 5-aminolevulinic acid photodynamic therapy suppresses cutaneous squamous cell carcinoma through blocking Akt/mTOR-mediated autophagic flux. Front Pharmacol 2023; 14:1114678. [PMID: 37007013 PMCID: PMC10063783 DOI: 10.3389/fphar.2023.1114678] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Background: We previously found that modified 5-aminolevulinic acid photodynamic therapy (M-PDT) is painless and effective in cutaneous squamous cell carcinoma (cSCC) treatment, however, the regulatory mechanism of M-PDT in cSCC is still unclear.Objective: To clarify the effect and relevant regulatory mechanism of M-PDT in cSCC.Methods: The cSCC apoptosis was examined by flow cytometry, TUNEL staining and Cleaved-caspase-3 immunofluorescence, respectively. The autophagy-related characterization was detected by monodansylcadaverine (MDC) staining, transmission electron microscopy (TEM), GFP-LC3B autophagic vacuoles localization and mRFP-EGFP tandem fluorescence-tagged LC3B construct, respectively. The expression of autophagy-related proteins and Akt/mTOR signaling molecules were examined by Western blot. ROS generation was measured by DCFH-DA probe.Results: We found that M-PDT induced cSCC apoptosis in a dose-dependent manner, and this result was related to autophagic flux blockage. The phenomenon is confirmed by the results that M-PDT could induce autophagosomes accumulation and upregulate LC3-II and p62 expression. M-PDT elevated co-localization of RFP and GFP tandem-tagged LC3B puncta in cSCC cell, reflecting autophagic flux blockage, and this was confirmed by transmission electron microscopy. Furthermore, we noticed that M-PDT induced accumulated autophagosomes-dependent apoptosis via targeting ROS-mediated Akt/mTOR signaling. Suppression of Akt potentiated M-PDT-induced upregulation of LC3-II and p62 levels, whereas Akt activation and ROS inhibition rendered resistance to these events. In addition, we observed that lysosomal dysfunction was involved in M-PDT-triggered accumulated autophagosomes-dependent cSCC apoptosis.Conclusion: Our data demonstrates that M-PDT inhibits cSCC through blocking Akt/mTOR-mediated autophagic flux.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiuli Wang
- *Correspondence: Linglin Zhang, ; Xiuli Wang,
| |
Collapse
|
16
|
Wang LL, Zhu XJ, Fang YY, Li Y, Zhao YS, Gan CL, Luo JJ, Ou SY, Aschner M, Jiang YM. Sodium Para-Aminosalicylic Acid Modulates Autophagy to Lessen Lead-Induced Neurodegeneration in Rat Cortex. Neurotox Res 2023; 41:1-15. [PMID: 36598679 DOI: 10.1007/s12640-022-00615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 01/05/2023]
Abstract
Lead (Pb) is a common heavy metal contaminant in the environment, and it may perturb autophagy and cause neurodegeneration. Although sodium para-aminosalicylic (PAS-Na) has been shown to protect the brain from lead-induced toxicity, the mechanisms associated with its efficacy have yet to be fully understood. In this study, we evaluated the efficacy of PAS-Na in attenuating the neurotoxic effects of lead, as well as the specific mechanisms that mediate such protection. Lead exposure resulted in weight loss and injury to the liver and kidney, and PAS-Na had a protective effect against this damage. Both short-term and subchronic lead exposure impaired learning ability, and this effect was reversed by PAS-Na intervention. Lead exposure also perturbed autophagic processes through the modulation of autophagy-related factors. Short-term lead exposure downregulated LC3 and beclin1 and upregulated the expression of p62; subchronic lead exposure upregulated the expression of LC3, beclin1, and P62. It follows that PAS-Na had an antagonistic effect on the activation of the above autophagy-related factors. Overall, our novel findings suggest that PAS-Na can protect the rat cortex from lead-induced toxicity by regulating autophagic processes. (1) Short-term lead exposure inhibits autophagy, whereas subchronic lead exposure promotes autophagy. (2) PAS-NA ameliorated the abnormal process of lead-induced autophagy, which had a protective effect on the cerebral cortex.
Collapse
Affiliation(s)
- Lei-Lei Wang
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Xiao-Juan Zhu
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.,The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuan-Yuan Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yan Li
- Guangxi Zhuang Autonomous Region Institute for the Prevention and Treatment of Occupational Disease, Nanning, 530021, China
| | - Yue-Song Zhao
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Cui-Liu Gan
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Jing-Jing Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shi-Yan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China. .,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| | - Michael Aschner
- Guangxi Zhuang Autonomous Region Institute for the Prevention and Treatment of Occupational Disease, Nanning, 530021, China.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China. .,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
17
|
Tang J, Li Y, Liu X, Yu G, Zheng F, Guo Z, Zhang Y, Shao W, Wu S, Li H. Cobalt induces neurodegenerative damages through impairing autophagic flux by activating hypoxia-inducible factor-1α triggered ROS overproduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159432. [PMID: 36243078 DOI: 10.1016/j.scitotenv.2022.159432] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Cobalt is an environmental toxicant, and excessive bodily exposure can damage the nervous system. Particularly, our previous study reported that low-dose cobalt (significantly less than the safety threshold) is still able to induce neurodegenerative changes. However, the underlying molecular mechanism is still insufficient revealed. Herein, we further investigate the molecular mechanism between cobalt-induced neurodegeneration and autophagy, as well as explore the interplay between hypoxia-inducible factor-1α (HIF-1α), reactive oxygen species (ROS), and autophagy in cobalt-exposed mice and human neuroglioma cells. We first reveal cobalt as an environmental toxicant to severely induce β amyloid (Aβ) deposition, tau hyperphosphorylation, and dysregulated autophagy in the hippocampus and cortex of mice. In particular, we further identify that cobalt-induced neurotoxicity is triggered by the impairment of autophagic flux in vitro experiments. Moreover, the mechanistic study reveals that cobalt exposure extremely activates HIF-1α expression to facilitate the overproduction of ROS. Then, elevated ROS can target the amino-threonine kinase (AKT)-mammalian target of rapamycin (mTOR)-Unc-51 like autophagy activating kinase 1 (ULK1) signaling pathway to participate in cobalt-induced impairment of autophagic flux. Subsequently, defected autophagy further exacerbates cobalt-induced neurotoxicity for its unable to eliminate the deposition of pathological protein. Therefore, our data provide scientific evidence for cobalt safety evaluation and risk assessment and propose a breakthrough for understanding the regulatory relationship between HIF-1α, ROS, and autophagy in cobalt-induced neurodegeneration.
Collapse
Affiliation(s)
- Jianping Tang
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yanjun Li
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xu Liu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Guangxia Yu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Fuli Zheng
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhenkun Guo
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yating Zhang
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Wenya Shao
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Huangyuan Li
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
18
|
The co-effect of copper and lipid vesicles on Aβ aggregation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184082. [PMID: 36374760 DOI: 10.1016/j.bbamem.2022.184082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Both metal ions and lipid membranes have a wide distribution in amyloid plaques and play significant roles in AD pathogenesis. Although influences of different metal ions or lipid vesicles on the aggregation of Aβ peptides have been extensively studied, their combined effects are less understood. In this study, we reported a unique effect of copper ion on Aβ aggregation in the presence of lipid vesicles, different from other divalent metal ions. Cu2+ in a super stoichiometric amount leads to the rapid formation of β-sheet rich structure, containing abundant low molecular weight (LMW) oligomers. We demonstrated that oligomerization of Aβ40 induced by Cu2+ binding was an essential prerequisite for the rapid conformation transition. Overall, the finding provided a new view on the complex triple system of Aβ, copper ion and lipid vesicles, which might help understanding of Aβ pathologies.
Collapse
|
19
|
Wei M, Bao G, Li S, Yang Z, Cheng C, Le W. PM2.5 exposure triggers cell death through lysosomal membrane permeabilization and leads to ferroptosis insensitivity via the autophagy dysfunction/p62-KEAP1-NRF2 activation in neuronal cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114333. [PMID: 36446170 DOI: 10.1016/j.ecoenv.2022.114333] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
PM2.5 exposure can be associated with the onset of neurodegenerative diseases, with oxidative stress-induced cellular homeostasis disruption and cell death as one of the main mechanisms. However, the exact cellular and molecular processes are still rarely investigated. Autophagy and KEAP1-NRF2 (Kelch-like ECH-Associating protein 1-nuclear factor erythroid 2 related factor 2) signaling pathway are two main cellular defense systems for maintaining cellular homeostasis and resisting oxidative stress. In this study, we primarily investigated the role of autophagy and KEAP1-NRF2 in regulating cell death resulting from PM2.5 exposure in mouse neuroblastoma N2a cells. Our results showed that PM2.5 exposure disrupted autophagic flux by impairing lysosomal function, including lysosomal alkalinization, increased lysosome membrane permeabilization (LMP), and Cathepsin B release. Furthermore, dysregulated autophagy enhances NRF2 activity in a p62-dependent manner, which then initiates the expression of a series of antioxidant genes and increases cellular insensitivity to ferroptosis. Meanwhile, autophagy dysfunction impairs the intracellular degradation of ferroptosis related proteins such as GPX4 and ferritin. As these proteins accumulate, cells also become less sensitive to ferroptosis. LMP-associated cell death may be the main mechanism of PM2.5-induced N2a cytotoxicity. Our results may provide insights into the mechanisms of PM2.5-induced neurotoxicity and predict effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Min Wei
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China.
| | - Guangming Bao
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Song Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Zhaofei Yang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Cheng Cheng
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China; Institute of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China.
| |
Collapse
|
20
|
Islam F, Shohag S, Akhter S, Islam MR, Sultana S, Mitra S, Chandran D, Khandaker MU, Ashraf GM, Idris AM, Emran TB, Cavalu S. Exposure of metal toxicity in Alzheimer's disease: An extensive review. Front Pharmacol 2022; 13:903099. [PMID: 36105221 PMCID: PMC9465172 DOI: 10.3389/fphar.2022.903099] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Metals serve important roles in the human body, including the maintenance of cell structure and the regulation of gene expression, the antioxidant response, and neurotransmission. High metal uptake in the nervous system is harmful because it can cause oxidative stress, disrupt mitochondrial function, and impair the activity of various enzymes. Metal accumulation can cause lifelong deterioration, including severe neurological problems. There is a strong association between accidental metal exposure and various neurodegenerative disorders, including Alzheimer's disease (AD), the most common form of dementia that causes degeneration in the aged. Chronic exposure to various metals is a well-known environmental risk factor that has become more widespread due to the rapid pace at which human activities are releasing large amounts of metals into the environment. Consequently, humans are exposed to both biometals and heavy metals, affecting metal homeostasis at molecular and biological levels. This review highlights how these metals affect brain physiology and immunity and their roles in creating harmful proteins such as β-amyloid and tau in AD. In addition, we address findings that confirm the disruption of immune-related pathways as a significant toxicity mechanism through which metals may contribute to AD.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, Bangladesh
| | - Shomaya Akhter
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Subang Jaya, Malaysia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
21
|
Chaperone-Mediated Autophagy in Neurodegenerative Diseases: Molecular Mechanisms and Pharmacological Opportunities. Cells 2022; 11:cells11142250. [PMID: 35883693 PMCID: PMC9323300 DOI: 10.3390/cells11142250] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) is a protein degradation mechanism through lysosomes. By targeting the KFERQ motif of the substrate, CMA is responsible for the degradation of about 30% of cytosolic proteins, including a series of proteins associated with neurodegenerative diseases (NDs). The fact that decreased activity of CMA is observed in NDs, and ND-associated mutant proteins, including alpha-synuclein and Tau, directly impair CMA activity reveals a possible vicious cycle of CMA impairment and pathogenic protein accumulation in ND development. Given the intrinsic connection between CMA dysfunction and ND, enhancement of CMA has been regarded as a strategy to counteract ND. Indeed, genetic and pharmacological approaches to modulate CMA have been shown to promote the degradation of ND-associated proteins and alleviate ND phenotypes in multiple ND models. This review summarizes the current knowledge on the mechanism of CMA with a focus on its relationship with NDs and discusses the therapeutic potential of CMA modulation for ND.
Collapse
|
22
|
Gao SL, Tang YY, Jiang JM, Zou W, Zhang P, Tang XQ. Improvement of autophagic flux mediates the protection of hydrogen sulfide against arecoline-elicited neurotoxicity in PC12 cells. Cell Cycle 2022; 21:1077-1090. [PMID: 35316162 PMCID: PMC9037498 DOI: 10.1080/15384101.2022.2040932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Arecoline, the most abundant alkaloid of the areca nut, induces toxicity to neurons. Hydrogen sulfide (H2S) is an endogenous gas with neuroprotective effects. We recently found that arecoline reduced endogenous H2S content in PC12 cells. In addition, exogenously administration of H2S alleviated the neurotoxicity of arecoline on PC12 cells. Increasing evidence has demonstrated the neuroprotective role of improvement of autophagic flux. Therefore, the aim of the present work is to explore whether improvement of autophagic flux mediates the protection of H2S against arecoline-caused neurotoxicity. Transmission electron microscope (TEM) for observation of ultrastructural morphology. Western blotting was used to detect protein expression of the related markers. Functional analysis contained LDH release assay, Hoechst 33,258 nuclear staining and flow cytometry were used to detect cytotoxicity and apoptosis. In the present work, we found that arecoline disrupted autophagy flux in PC12 cells as evidenced by accumulation of autophagic vacuoles, increase in LC3II/LC3I, and upregulation of p62 expression in PC12 cells. Notably, we found that sodium hydrosulfide (NaHS), the donor of H2S improved arecoline-blocked autophagy flux in PC12 cells. Furthermore, we found that blocking autophagic flux by chloroquine (CQ), the inhibitor of autophagy flux, antagonized the inhibitory role of NaHS in arecoline-induced cytotoxicity apoptosis and endoplasmic reticulum (ER) stress. In conclusion, H2S improves arecoline-caused disruption of autophagic flux to exert its protection against the neurotoxicity of arecoline.
Collapse
Affiliation(s)
- Sheng-Lan Gao
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, GD, China
- Department of Physiology, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, HN, China
- CONTACT Sheng-Lan Gao Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, GD524001, China
| | - Yi-Yun Tang
- Department of Physiology, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, HN, China
| | - Jia-Mei Jiang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, HN, China
| | - Wei Zou
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, HN, China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, HN, China
| | - Xiao-Qing Tang
- Department of Physiology, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, HN, China
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, HN, China
- Xiao-Qing Tang The First Affiliated Hospital, Institute of Neuroscience, Hengyang Medical School, University of South China,Hengyang, HN 421001, China
| |
Collapse
|
23
|
Esculetin and Fucoidan Attenuate Autophagy and Apoptosis Induced by Zinc Oxide Nanoparticles through Modulating Reactive Astrocyte and Proinflammatory Cytokines in the Rat Brain. TOXICS 2022; 10:toxics10040194. [PMID: 35448455 PMCID: PMC9025201 DOI: 10.3390/toxics10040194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022]
Abstract
We examined the protective effects of esculetin and fucoidan against the neurotoxicity of ZnO NPs in rats. Ninety rats were divided into nine groups and pre-treated with esculetin or fucoidan 1 h before ZnO NP administration on a daily basis for 2 weeks. Serum and brain homogenates were examined by enzyme-linked immunosorbent assay (ELISA), and neurons, microglia, and astrocytes in the hippocampal region were examined with immunohistochemical analysis. The serum levels of interleukin-1-beta (IL-1β), 3-nitrotyrosine (3-NT), superoxide dismutase (SOD), and 8-hydroxy-2′-deoxyguanosine (8-OHdG) were altered in the ZnO NP treatment groups. Brain IL-1β and TNF-α levels were elevated after ZnO NP administration, and these effects were inhibited by esculetin and fucoidan. SOD, 8-OHdG, and acetylcholinesterase (AChE) levels in the brain were decreased after ZnO NP administration. The brain levels of beclin-1 and caspase-3 were elevated after ZnO NP treatment, and these effects were significantly ameliorated by esculetin and fucoidan. The number of reactive astrocytes measured by counting glial fibrillary acidic protein (GFAP)-positive cells, but not microglia, increased following ZnO NP treatment, and esculetin and fucoidan ameliorated the changes. Esculetin and fucoidan may be beneficial for preventing ZnO NP-mediated autophagy and apoptosis by the modulation of reactive astrocyte and proinflammatory cytokines in the rat brain.
Collapse
|
24
|
Paduraru E, Iacob D, Rarinca V, Rusu A, Jijie R, Ilie OD, Ciobica A, Nicoara M, Doroftei B. Comprehensive Review Regarding Mercury Poisoning and Its Complex Involvement in Alzheimer's Disease. Int J Mol Sci 2022; 23:1992. [PMID: 35216107 PMCID: PMC8879904 DOI: 10.3390/ijms23041992] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Mercury (Hg) is considered one of the most widespread toxic environmental pollutants, which seems to have multiple effects on organisms even at low concentrations. It has a critical role in many health problems with harmful consequences, with Hg primarily targeting the brain and its components, such as the central nervous system (CNS). Hg exposure was associated with numerous CNS disorders that frequently trigger Alzheimer's disease (AD). Patients with AD have higher concentrations of Hg in blood and brain tissue. This paper aims to emphasize a correlation between Hg and AD based on the known literature in the occupational field. The outcome shows that all these concerning elements could get attributed to Hg. However, recent studies did not investigate the molecular level of Hg exposure in AD. The present review highlights the interactions between Hg and AD in neuronal degenerations, apoptosis, autophagy, oxidative stress (OS), mitochondrial malfunctions, gastrointestinal (GI) microflora, infertility and altering gene expression.
Collapse
Affiliation(s)
- Emanuela Paduraru
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania; (E.P.); (D.I.); (V.R.); (A.R.)
| | - Diana Iacob
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania; (E.P.); (D.I.); (V.R.); (A.R.)
| | - Viorica Rarinca
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania; (E.P.); (D.I.); (V.R.); (A.R.)
| | - Angelica Rusu
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania; (E.P.); (D.I.); (V.R.); (A.R.)
| | - Roxana Jijie
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania;
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania;
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania;
- Center of Biomedical Research, Romanian Academy, No 8, Carol I Avenue, 700506 Iasi, Romania
- Academy of Romanian Scientists, No 54, Independence Street, Sector 5, 050094 Bucharest, Romania
| | - Mircea Nicoara
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania;
| | - Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy Grigore T. Popa, No 16, University Street, 700115 Iasi, Romania;
| |
Collapse
|
25
|
Cheng J, Zhao L, Liu D, Shen R, Bai D. Potentilla anserine L. polysaccharide protects against cadmium-induced neurotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103816. [PMID: 35066145 DOI: 10.1016/j.etap.2022.103816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/28/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Cadmium is a toxic metal that can damage the brain and other organs. This study aimed to explore the protective effects of Potentilla anserine L. polysaccharide (PAP) against CdCl2-induced neurotoxicity in N2a and SH-SY5Y cells and in the cerebral cortex of BALB/c mice. In addition, we aimed to identify the potential mechanisms underlying these protective effects. Relative to CdCl2 treatment alone, pretreatment with PAP prevented the reduction in cell viability evoked by CdCl2, decreased rates of apoptosis, promoted calcium homeostasis, decreased ROS accumulation, increased mitochondrial membrane potential, inhibited cytochrome C and AIF release, and prevented the cleavage of caspase-3 and PARP. In addition, PAP significantly decreased the CdCl2-induced phosphorylation of CaMKII, Akt, and mTOR. In conclusion, PAP represents a potential therapeutic agent for the treatment of Cd-induced neurotoxicity, functioning in part via attenuating the activation of the mitochondrial apoptosis pathway and the Ca2+-CaMKII-dependent Akt/mTOR pathway.
Collapse
Affiliation(s)
- Ju Cheng
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; Institute of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Lixia Zhao
- School of nursing, Gansu University of Chinese Medicine, Lanzhou 730000, China; Laboratory Center for Medical Sciences, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; Institute of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Di Liu
- Keylaboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou 730000, China; Institute of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rong Shen
- Laboratory Center for Medical Sciences, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; Institute of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Decheng Bai
- School of nursing, Gansu University of Chinese Medicine, Lanzhou 730000, China; Institute of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
26
|
Nandi N, Zaidi Z, Tracy C, Krämer H. A phospho-switch at Acinus-Serine 437 controls autophagic responses to Cadmium exposure and neurodegenerative stress. eLife 2022; 11:72169. [PMID: 35037620 PMCID: PMC8794470 DOI: 10.7554/elife.72169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/14/2022] [Indexed: 12/09/2022] Open
Abstract
Neuronal health depends on quality control functions of autophagy, but mechanisms regulating neuronal autophagy are poorly understood. Previously, we showed that in Drosophila starvation-independent quality control autophagy is regulated by acinus (acn) and the Cdk5-dependent phosphorylation of its serine437 (Nandi et al., 2017). Here, we identify the phosphatase that counterbalances this activity and provides for the dynamic nature of acinus-serine437 (acn-S437) phosphorylation. A genetic screen identified six phosphatases that genetically interacted with an acn gain-of-function model. Among these, loss of function of only one, the PPM-type phosphatase Nil (CG6036), enhanced pS437-acn levels. Cdk5-dependent phosphorylation of acn-S437 in nil1 animals elevates neuronal autophagy and reduces the accumulation of polyQ proteins in a Drosophila Huntington’s disease model. Consistent with previous findings that Cd2+ inhibits PPM-type phosphatases, Cd2+ exposure elevated acn-S437 phosphorylation which was necessary for increased neuronal autophagy and protection against Cd2+-induced cytotoxicity. Together, our data establish the acn-S437 phosphoswitch as critical integrator of multiple stress signals regulating neuronal autophagy.
Collapse
Affiliation(s)
- Nilay Nandi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Zuhair Zaidi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Charles Tracy
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Helmut Krämer
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
27
|
El-Sewify IM, Radwan A, Elghazawy NH, Fritzsche W, Azzazy HME. Optical chemosensors for environmental monitoring of toxic metals related to Alzheimer's disease. RSC Adv 2022; 12:32744-32755. [PMID: 36425686 PMCID: PMC9664454 DOI: 10.1039/d2ra05384e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and progresses from mild memory loss to severe decline in thinking, behavioral and social skills, which dramatically impairs a person's ability to function independently. Genetics, some health disorders and lifestyle have all been connected to AD. Also, environmental factors are reported as contributors to this illness. The presence of heavy metals in air, water, food, soil and commercial products has increased tremendously. Accumulation of heavy metals in the body leads to serious malfunctioning of bodily organs, specifically the brain. For AD, a wide range of heavy metals have been reported to contribute to its onset and progression and the manifestation of its hallmarks. In this review, we focus on detection of highly toxic heavy metals such as mercury, cadmium, lead and arsenic in water. The presence of heavy metals in water is very troubling and regular monitoring is warranted. Optical chemosensors were designed and fabricated for determination of ultra-trace quantities of heavy metals in water. They have shown advantages when compared to other sensors, such as selectivity, low-detection limit, fast response time, and wide-range determination under optimal sensing conditions. Therefore, implementing optical chemosensors for monitoring levels of toxic metals in water represents an important contribution in fighting AD. This review briefly summarizes evidence that links toxic metals to onset and progression of Alzheimer's disease. It discusses the structure and fabrication of optical chemosensors, and their use for monitoring toxic metals in water.![]()
Collapse
Affiliation(s)
- Islam M. El-Sewify
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, SSE, Rm #1194, P.O. Box 74, New Cairo 11835, Egypt
| | - Ahmed Radwan
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, SSE, Rm #1194, P.O. Box 74, New Cairo 11835, Egypt
| | - Nehal H. Elghazawy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, SSE, Rm #1194, P.O. Box 74, New Cairo 11835, Egypt
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics, Leibniz Institute for Photonic Technology, Jena 07745, Germany
| | - Hassan M. E. Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, SSE, Rm #1194, P.O. Box 74, New Cairo 11835, Egypt
- Department of Nanobiophotonics, Leibniz Institute for Photonic Technology, Jena 07745, Germany
| |
Collapse
|
28
|
Xu X, Wang J, Zhang Y, Yan Y, Liu Y, Shi X, Zhang Q. Inhibition of DDX6 enhances autophagy and alleviates endoplasmic reticulum stress in Vero cells under PEDV infection. Vet Microbiol 2022; 266:109350. [DOI: 10.1016/j.vetmic.2022.109350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/30/2022]
|
29
|
Nisa FY, Rahman MA, Hossen MA, Khan MF, Khan MAN, Majid M, Sultana F, Haque MA. Role of neurotoxicants in the pathogenesis of Alzheimer's disease: a mechanistic insight. Ann Med 2021; 53:1476-1501. [PMID: 34433343 PMCID: PMC8405119 DOI: 10.1080/07853890.2021.1966088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most conspicuous chronic neurodegenerative syndrome, which has become a significant challenge for the global healthcare system. Multiple studies have corroborated a clear association of neurotoxicants with AD pathogenicity, such as Amyloid beta (Aβ) proteins and neurofibrillary tangles (NFTs), signalling pathway modifications, cellular stress, cognitive dysfunctions, neuronal apoptosis, neuroinflammation, epigenetic modification, and so on. This review, therefore, aimed to address several essential mechanisms and signalling cascades, including Wnt (wingless and int.) signalling pathway, autophagy, mammalian target of rapamycin (mTOR), protein kinase C (PKC) signalling cascades, cellular redox status, energy metabolism, glutamatergic neurotransmissions, immune cell stimulations (e.g. microglia, astrocytes) as well as an amyloid precursor protein (APP), presenilin-1 (PSEN1), presenilin-2 (PSEN2) and other AD-related gene expressions that have been pretentious and modulated by the various neurotoxicants. This review concluded that neurotoxicants play a momentous role in developing AD through modulating various signalling cascades. Nevertheless, comprehension of this risk agent-induced neurotoxicity is far too little. More in-depth epidemiological and systematic investigations are needed to understand the potential mechanisms better to address these neurotoxicants and improve approaches to their risk exposure that aid in AD pathogenesis.Key messagesInevitable cascade mechanisms of how Alzheimer's Disease-related (AD-related) gene expressions are modulated by neurotoxicants have been discussed.Involvement of the neurotoxicants-induced pathways caused an extended risk of AD is explicited.Integration of cell culture, animals and population-based analysis on the clinical severity of AD is addressed.
Collapse
Affiliation(s)
- Fatema Yasmin Nisa
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Atiar Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Amjad Hossen
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Mohammad Forhad Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md. Asif Nadim Khan
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mumtahina Majid
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Farjana Sultana
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Ma Y, Wang J, Xu D, Chen Y, Han X. Chronic MC-LR exposure promoted Aβ and p-tau accumulation via regulating Akt/GSK-3β signal pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148732. [PMID: 34323745 DOI: 10.1016/j.scitotenv.2021.148732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
It has been reported that microcystin-leucine-arginine (MC-LR) can enter into the brain and demonstrate neurotoxicity resulting in learning and memory deficits. While, there is still a lack of clear understanding of the related molecular mechanisms. In this study, we observed β-amyloid (Aβ) accumulation and tau hyperphosphorylation (p-tau) at sites of Ser396 and Thr205 in mouse hippocampus and cortex, Alzheimer's disease (AD) like changes, after chronic exposure to MC-LR at different concentrations (1, 7.5, 15 and 30 μg/L) for 180 days. The hallmarks of AD are characterized by senile plaques and neurofibrillary tangles (NFT), with associated loss of neurons, resulting in cognitive impairment and dementia. Similarly, the production of Aβ and tau hyperphosphorylation was also detected in HT-22 cells treated with MC-LR. In addition, MC-LR promoted increased expressions of BACE1 and PS1, but reduced mRNA expressions of ADAM family members both in vivo and in vitro, promoting the Aβ production. Moreover, we identified Akt/GSK-3β signal pathway mediated the Aβ and p-tau accumulation, bringing about Alzheimer's disease-like changes. Furthermore, microglial cells were activated in those mice exposed to MC-LR. Inflammatory cytokines were also found being activated to release in vitro. In conclusion, this study could provide a clue for MC-LR-induced neurotoxicity, which gave insights into the environmental risks of Alzheimer's disease.
Collapse
Affiliation(s)
- Yuhan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Jing Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Dihui Xu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
31
|
Budinger D, Barral S, Soo AKS, Kurian MA. The role of manganese dysregulation in neurological disease: emerging evidence. Lancet Neurol 2021; 20:956-968. [PMID: 34687639 DOI: 10.1016/s1474-4422(21)00238-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
Abstract
Manganese is an essential trace metal. The dysregulation of manganese seen in a broad spectrum of neurological disorders reflects its importance in brain development and key neurophysiological processes. Historically, the observation of acquired manganism in miners and people who misuse drugs provided early evidence of brain toxicity related to manganese exposure. The identification of inherited manganese transportopathies, which cause neurodevelopmental and neurodegenerative syndromes, further corroborates the neurotoxic potential of this element. Moreover, manganese dyshomoeostasis is also implicated in Parkinson's disease and other neurodegenerative conditions, such as Alzheimer's disease and Huntington's disease. Ongoing and future research will facilitate the development of better targeted therapeutical strategies than are currently available for manganese-associated neurological disorders.
Collapse
Affiliation(s)
- Dimitri Budinger
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Serena Barral
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Audrey K S Soo
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK; Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Manju A Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK; Department of Neurology, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
32
|
Gao X, Yu M, Sun W, Han Y, Yang J, Lu X, Jin C, Wu S, Cai Y. Lanthanum chloride induces autophagy in primary cultured rat cortical neurons through Akt/mTOR and AMPK/mTOR signaling pathways. Food Chem Toxicol 2021; 158:112632. [PMID: 34688703 DOI: 10.1016/j.fct.2021.112632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Autophagy is a lysosome dependent degradation pathway occurring in eukaryotic cells. Autophagy ensures balance and survival mechanism of cells during harmful stress. Excessive or weak autophagy leads to abnormal function and death in some cases. Lanthanum (La), a rare earth element (REE), damages the central nervous system (CNS) and promotes learning and memory dysfunction. However, underlying mechanism has not been fully elucidated. La induces oxidative stress, inhibits Nrf2/ARE and Akt/mTOR signaling pathways, and activates JNK/c-Jun and JNK/Foxo signaling pathways, resulting in abnormal induction of autophagy in rat hippocampus. In addition, La activates PINK1- Parkin signaling pathway and induces mitochondrial autophagy. However, the relationship between La and autophagy in rat neurons at the cellular level has not been explored previously. The aim of this study was to explore adverse effects of La. Primary culture of rat neurons were exposed to 0 mmol/L, 0.025 mmol/L, 0.05 mmol/L and 0.1 mmol/L lanthanum chloride (LaCl3). The results showed that La upregulates p-AMPK, inhibits levels of p-Akt and p-mTOR, increases levels of autophagy related proteins (Beclin1 and LC3B-II), and downregulates expression of p-Bcl-2 and p62. Upstream and downstream intervention agents of autophagy were used to detect autophagy flux to verify accuracy of our results. Electron microscopy results showed significant increase in the number of autophagosomes in LaCl3 exposed groups. These findings imply that LaCl3 inhibits Akt/mTOR signaling pathway and activates AMPK/mTOR signaling pathway, resulting in abnormal autophagy in primary cultured rat cortical neurons. In addition, LaCl3 induces neuronal damage through excessive autophagy.
Collapse
Affiliation(s)
- Xiang Gao
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, People's Republic of China; Department of Biostatistics, School of Public Health, Xuzhou Medical University, No.209 Tongshan Road, Xuzhou, 221000, Jiangsu Province, People's Republic of China.
| | - Miao Yu
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Wenchang Sun
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Yarao Han
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Yuan Cai
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
33
|
Olubodun-Obadun TG, Ishola IO, Adeyemi OO. Potentials of autophagy enhancing natural products in the treatment of Parkinson disease. Drug Metab Pers Ther 2021; 0:dmdi-2021-0128. [PMID: 34391219 DOI: 10.1515/dmdi-2021-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/11/2021] [Indexed: 11/15/2022]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative movement disorder characterized by motor and non-motor symptoms due to loss of striatal dopaminergic neurons and disruption of degradation signaling leading to the formation of Lewy bodies (aggregation of α-synuclein). Presently, there are no disease modifying therapy for PD despite improvement in the understanding of the disease pathogenesis. However, the drugs currently used in PD management provide symptomatic relieve for motor symptoms without significant improvement in non-motor complications, thus, a public health burden on caregivers and healthcare systems. There is therefore the need to discover disease modifying therapy with strong potential to halt the disease progression. Recent trend has shown that the dysfunction of lysosomal-autophagy pathway is highly implicated in PD pathology, hence, making autophagy a key player owing to its involvement in degradation and clearance of misfolded α-synuclein (a major hallmark in PD pathology). In this review, we described the current drugs/strategy in the management of PD including targeting the autophagy pathway as a novel approach that could serve as potential intervention for PD management. The discovery of small molecules or natural products capable of enhancing autophagy mechanism could be a promising strategy for PD treatment.
Collapse
Affiliation(s)
- Taiwo G Olubodun-Obadun
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| |
Collapse
|
34
|
Olubodun-Obadun TG, Ishola IO, Adeyemi OO. Potentials of autophagy enhancing natural products in the treatment of Parkinson disease. Drug Metab Pers Ther 2021; 37:99-110. [PMID: 35737301 DOI: 10.1515/dmpt-2021-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/11/2021] [Indexed: 06/15/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative movement disorder characterized by motor and non-motor symptoms due to loss of striatal dopaminergic neurons and disruption of degradation signaling leading to the formation of Lewy bodies (aggregation of α-synuclein). Presently, there are no disease modifying therapy for PD despite improvement in the understanding of the disease pathogenesis. However, the drugs currently used in PD management provide symptomatic relieve for motor symptoms without significant improvement in non-motor complications, thus, a public health burden on caregivers and healthcare systems. There is therefore the need to discover disease modifying therapy with strong potential to halt the disease progression. Recent trend has shown that the dysfunction of lysosomal-autophagy pathway is highly implicated in PD pathology, hence, making autophagy a key player owing to its involvement in degradation and clearance of misfolded α-synuclein (a major hallmark in PD pathology). In this review, we described the current drugs/strategy in the management of PD including targeting the autophagy pathway as a novel approach that could serve as potential intervention for PD management. The discovery of small molecules or natural products capable of enhancing autophagy mechanism could be a promising strategy for PD treatment.
Collapse
Affiliation(s)
- Taiwo G Olubodun-Obadun
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| |
Collapse
|
35
|
Seralini GE, Jungers G. Endocrine disruptors also function as nervous disruptors and can be renamed endocrine and nervous disruptors (ENDs). Toxicol Rep 2021; 8:1538-1557. [PMID: 34430217 PMCID: PMC8365328 DOI: 10.1016/j.toxrep.2021.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Endocrine disruption (ED) and endocrine disruptors (EDs) emerged as scientific concepts in 1995, after numerous chemical pollutants were found to be responsible for reproductive dysfunction. The World Health Organization established in the United Nations Environment Programme a list of materials, plasticizers, pesticides, and various pollutants synthesized from petrochemistry that impact not only reproduction, but also hormonal functions, directly or indirectly. Cells communicate via either chemical or electrical signals transmitted within the endocrine or nervous systems. To investigate whether hormone disruptors may also interfere directly or indirectly with the development or functioning of the nervous system through either a neuroendocrine or a more general mechanism, we examined the scientific literature to ascertain the effects of EDs on the nervous system, specifically in the categories of neurotoxicity, cognition, and behaviour. To date, we demonstrated that all of the 177 EDs identified internationally by WHO are known to have an impact on the nervous system. Furthermore, the precise mechanisms underlying this neurodisruption have also been established. It was previously believed that EDs primarily function via the thyroid. However, this study presents substantial evidence that approximately 80 % of EDs operate via other mechanisms. It thus outlines a novel concept: EDs are also neurodisruptors (NDs) and can be collectively termed endocrine and nervous disruptors (ENDs). Most of ENDs are derived from petroleum residues, and their various mechanisms of action are similar to those of "spam" in electronic communications technologies. Therefore, ENDs can be considered as an instance of spam in a biological context.
Collapse
Affiliation(s)
- Gilles-Eric Seralini
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| | - Gerald Jungers
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| |
Collapse
|
36
|
Yuan L, Shi X, Tang BZ, Wang WX. Real-time in vitro monitoring of the subcellular toxicity of inorganic Hg and methylmercury in zebrafish cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105859. [PMID: 34004410 DOI: 10.1016/j.aquatox.2021.105859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Mercury (Hg) is a prominent environmental contaminant and can cause various subcellular effects. Elucidating the different subcellular toxicities of inorganic Hg (Hg2+) and methylmercury (MeHg) is critical for understanding their overall cytotoxicity. In this study, we employed aggregation-induced emission (AIE) probes to investigate the toxicity of Hg at the subcellular level using an aquatic embryonic zebrafish fibroblast cell line ZF4 as a model. The dynamic monitoring of lysosomal pH and the mapping of pH distribution during Hg2+ or MeHg exposure were successfully realized for the first time. We found that both Hg2+ and MeHg decreased the mean lysosomal pH, but with contrasting effects and mechanisms. Hg2+ had a greater impact on lysosomal pH than MeHg at a similar intracellular concentration. In addition, Hg2+ in comparison to MeHg exposure led to an increased number of lysosomes, probably because of their different effects on autophagy. We further showed that MeHg (200 nM) exposure had an inverse effect on mitochondrial respiratory function. A high dose (1000 nM) of Hg2+ increased the amount of intracellular lipid droplets by 13%, indicating that lipid droplets may potentially play a role in Hg2+detoxification. Our study suggested that, compared with other parameters, lysosome pH was most sensitive to Hg2+ and MeHg. Therefore, lysosomal pH can be used as a potential biomarker to assess the cellular toxicity of Hg in vitro.
Collapse
Affiliation(s)
- Liuliang Yuan
- Division of Life Science, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China; School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xiujuan Shi
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, HKUST, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, HKUST, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen518057, China.
| |
Collapse
|
37
|
Cheng J, Liu D, Zhao L, Zhao Q, Zhang X, Wang B, Bai D. Potentilla anserine L. polysaccharide inhibits cadmium-induced neurotoxicity by attenuating autophagy. Neurochem Int 2021; 147:105045. [PMID: 33887379 DOI: 10.1016/j.neuint.2021.105045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Cadmium (Cd), a heavy metal with cytotoxicity, can activate autophagy. This study aimed to explore the effects and mechanisms of Potentilla anserine L. polysaccharide (PAP) on autophagy in N2a cells, primary neurons, and the brain of BALB/c mice exposed to Cd. The CCK-8 assay results showed that the cell viability decreased and the number of acidic vesicular organelles, autophagic vacuoles, lysosomes, and dysfunctional mitochondria increased in the cytoplasm of Cd-exposed N2a cells and primary neurons, as revealed by acridine orange staining, monodansylcadaverine staining, and transmission electron microscopy. PAP mitigated Cd-induced neuronal death and characteristic changes in autophagy. The expression of LC3 IILC3 II, Bcl-2, p62, Beclin-1, and PI3K class III was examined by Western blot analysis. Furthermore, the PI3K inhibitor (LY294002 or 3-MA) and/or PAP reversed the Cd-induced upregulated expression of LC3 II, Beclin-1, and PI3K class III, with a synergy between PI3K inhibitor and PAP against Cd-induced autophagy. The findings suggested that PAP partially prevented Cd-induced autophagic cell death in neurons by inhibiting the PI3K class III/Beclin-1 signaling pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Ju Cheng
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Di Liu
- Keylaboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou, 730000, China
| | - Lixia Zhao
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qianqian Zhao
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyun Zhang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Bei Wang
- Laboratory Center for Medical Sciences, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Decheng Bai
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
38
|
Fu SC, Lin JW, Liu JM, Liu SH, Fang KM, Su CC, Hsu RJ, Wu CC, Huang CF, Lee KI, Chen YW. Arsenic induces autophagy-dependent apoptosis via Akt inactivation and AMPK activation signaling pathways leading to neuronal cell death. Neurotoxicology 2021; 85:133-144. [PMID: 34038756 DOI: 10.1016/j.neuro.2021.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Inorganic arsenic (As3+), a well-known worldwide industrial and environmental pollutant, has been linked to neurodegenerative disorders (NDs). Autophagy plays an important role in controlling neuronal cell survival/death. However, limited information is available regarding the toxicological mechanism at the interplay between autophagy and As3+-induced neurotoxicity. The present study found that As3+ exposure induced a concomitant activation of apoptosis and autophagy in Neuro-2a cells, which was accompanied with the increase of phosphatidylserine exposure on outer membrane leaflets and apoptotic cell population, and the activation of caspase-3, -7, and PARP as well as the elevation of protein expressions of LC3-II, Atg-5, and Beclin-1, and the accumulation of autophagosome. Pretreatment of cells with autophagy inhibitor 3-MA, but not that of Z-VAD-FMK (a pan-caspase inhibitor), effectively prevented the As3+-induced autophagic and apoptotic responses, indicating that As3+-triggered autophagy was contributing to neuronal cell apoptosis. Furthermore, As3+ exposure evoked the dephosphorylation of Akt. Pretreatment with SC79, an Akt activator, could significantly attenuated As3+-induced Akt inactivation as well as autophagic and apoptotic events. Expectedly, inhibition of Akt signaling with LY294002 obviously enhanced As3+-triggered autophagy and apoptosis. Exposure to As3+ also dramatically increased the phosphorylation level of AMPKα. Pretreatment of AMPK inhibitor (Compound C) could markedly abrogate the As3+-induced phosphorylated AMPKα expression, and autophagy and apoptosis activation. Taken together, these results indicated that As3+ exerted its cytotoxicity in neuronal cells via the Akt inactivation/AMPK activation downstream-regulated autophagy-dependent apoptosis pathways, which ultimately lead to cell death. Our findings suggest that the regulation of Akt/AMPK signals may be a promising intervention to against As3+-induced neurotoxicity and NDs.
Collapse
Affiliation(s)
- Shih-Chang Fu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, 330, Taiwan
| | - Jhe-Wei Lin
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Jui-Ming Liu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, 330, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County, 500, Taiwan; School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ren-Jun Hsu
- Department of Pathology and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, Taiwan; Biobank Management Center of Tri-Service General Hospital and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan
| | - Chin-Ching Wu
- Department of Public Health, China Medical University, Taichung, 404, Taiwan
| | - Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 404, Taiwan; Department of Nursing, College of Medical and Health Science, Asia University, Taichung, 413, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, 427, Taiwan.
| | - Ya-Wen Chen
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
39
|
Xu C, Chen S, Xu M, Chen X, Wang X, Zhang H, Dong X, Zhang R, Chen X, Gao W, Huang S, Chen L. Cadmium Impairs Autophagy Leading to Apoptosis by Ca 2+-Dependent Activation of JNK Signaling Pathway in Neuronal Cells. Neurochem Res 2021; 46:2033-2045. [PMID: 34021889 DOI: 10.1007/s11064-021-03341-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 01/04/2023]
Abstract
Autophagy, a process for self-degradation of intracellular components and dysfunctional organelles, is closely related with neurodegenerative diseases. It has been shown that cadmium (Cd) induces neurotoxicity partly by impairing autophagy. However, the underlying mechanism is not fully elucidated. In this study, we show that Cd induced expansion of autophagosomes with a concomitant abnormal expression of autophagy-related (Atg) proteins in PC12 cells and primary murine neurons. 3-MA, a classical inhibitor of autophagy, attenuated Cd-induced expansion of autophagosomes and apoptosis in the cells. Further investigation demonstrated that Cd activated JNK pathway contributing to autophagosome expansion-dependent neuronal apoptosis. This is supported by the findings that pharmacological inhibition of JNK with SP600125 or expression of dominant negative c-Jun markedly attenuated Cd-induced expansion of autophagosomes and abnormal expression of Atg proteins, as well as apoptosis in PC12 cells and/or primary neurons. Furthermore, we noticed that chelating intracellular free Ca2+ ([Ca2+]i) with BAPTA/AM profoundly blocked Cd-elicited activation of JNK pathway and consequential expansion of autophagosomes, abnormal expression of Atg proteins, and apoptosis in the neuronal cells. Similar events were also seen following prevention of [Ca2+]i elevation with EGTA or 2-APB, implying a Ca2+-dependent mechanism involved. Taken together, the results indicate that Cd impairs autophagy leading to apoptosis by Ca2+-dependent activation of JNK signaling pathway in neuronal cells. Our findings highlight that manipulation of intracellular Ca2+ level and/or JNK activity to ameliorate autophagy may be a promising intervention against Cd-induced neurotoxicity and neurodegeneration.
Collapse
Affiliation(s)
- Chong Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Sujuan Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Ming Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Xiaoling Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Xiaoxue Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Hai Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Xiaoqing Dong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Ruijie Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Xin Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Wei Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA.
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Chixia District, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
40
|
Zhong M, Kou H, Zhao P, Zheng W, Xu H, Zhang X, Lan W, Guo C, Wang T, Guo F, Wang Z, Gao H. Nasal Delivery of D-Penicillamine Hydrogel Upregulates a Disintegrin and Metalloprotease 10 Expression via Melatonin Receptor 1 in Alzheimer's Disease Models. Front Aging Neurosci 2021; 13:660249. [PMID: 33935689 PMCID: PMC8081912 DOI: 10.3389/fnagi.2021.660249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is a type of neurodegenerative disease that is associated with the accumulation of amyloid plaques. Increasing non-amyloidogenic processing and/or manipulating amyloid precursor protein signaling could reduce AD amyloid pathology and cognitive impairment. D-penicillamine (D-Pen) is a water-soluble metal chelator and can reduce the aggregation of amyloid-β (Aβ) with metals in vitro. However, the potential mechanism of D-Pen for treating neurodegenerative disorders remains unexplored. In here, a novel type of chitosan-based hydrogel to carry D-Pen was designed and the D-Pen-CS/β-glycerophosphate hydrogel were characterized by scanning electron microscopy and HPLC. Behavior tests investigated the learning and memory levels of APP/PS1 mice treated through the D-Pen hydrogel nasal delivery. In vivo and in vitro findings showed that nasal delivery of D-Pen-CS/β-GP hydrogel had properly chelated metal ions that reduced Aβ deposition. Furthermore, D-Pen mainly regulated A disintegrin and metalloprotease 10 (ADAM10) expression via melatonin receptor 1 (MTNR1α) and the downstream PKA/ERK/CREB pathway. The present data demonstrated D-Pen significantly improved the cognitive ability of APP/PS1 mice and reduced Aβ generation through activating ADAM10 and accelerating non-amyloidogenic processing. Hence, these findings indicate the potential of D-Pen as a promising agent for treating AD.
Collapse
Affiliation(s)
- Manli Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hejia Kou
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wei Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, China Medical University, Shenyang, China
| | - He Xu
- Department of Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xiaoyu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wang Lan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, China
| | - Zhanyou Wang
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China
| | - Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
41
|
Triningsih D, Yang JH, Sim KH, Lee C, Lee YJ. Acrylamide and its metabolite induce neurotoxicity via modulation of protein kinase C and AMP-activated protein kinase pathways. Toxicol In Vitro 2021; 72:105105. [PMID: 33545342 DOI: 10.1016/j.tiv.2021.105105] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/25/2022]
Abstract
Acrylamide is known as a neurotoxicant found in commonly consumed food as well as in human body. However, the underlying mechanisms involved in neurotoxicity by acrylamide and its metabolite, glycidamide remain largely unknown. In this study, we have examined the interplay between CYP2E1, AMPK, ERK and PKC in acrylamide-induced neurotoxicity associated with autophagy in PC12 cells. Acrylamide-induced cell death was mediated by CYP2E1 expression and the activation of ERK, PKC-ɑ and PKC-δ, whereas AMPK knockdown exacerbated the acrylamide-induced neurotoxic effects. PKC-ɑ, but not PKC-δ, plays an upstream regulator of ERK and AMPK. Moreover, AMPK activation suppressed ERK, and CYP2E1 and AMPK bilaterally inhibit each other. Furthermore, acrylamide increased autophagy with impaired autophagic flux, evidenced by the increased beclin-1, LC3-II and p62 protein. Acrylamide-induced neuronal death was ameliorated by 3-methyladenine, an autophagy inhibitor, whereas neuronal death was exacerbated by chloroquine, a lysosomal inhibitor. Interestingly, PKC-δ siRNA, but not PKC-ɑ siRNA, dramatically reduced acrylamide-induced beclin-1 and LC3-II levels, whereas AMPK siRNA further increased beclin-1, LC3-II and p62 protein levels. Glycidamide, a major metabolite, mimicked acrylamide only with a higher potency. Taken together, acrylamide- and glycidamide-induced neurotoxicity may involve cytotoxic autophagy, which is mediated by interplay between PKCs and AMPK pathways.
Collapse
Affiliation(s)
- Dahlia Triningsih
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Jae-Ho Yang
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Kyeong Hwa Sim
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Chuhee Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Youn Ju Lee
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea.
| |
Collapse
|
42
|
Rahman MA, Rahman MS, Uddin MJ, Mamum-Or-Rashid ANM, Pang MG, Rhim H. Emerging risk of environmental factors: insight mechanisms of Alzheimer's diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44659-44672. [PMID: 32201908 DOI: 10.1007/s11356-020-08243-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Neurodegenerative disorders are typically sporadic in nature in addition to usually influenced through an extensive range of environmental factors, lifestyle, and genetic elements. Latest observations have hypothesized that exposure of environmental factors may increase the prospective risk of Alzheimer's diseases (AD). However, the role of environmental factors as a possible dangerous issue has extended importance concerned in AD pathology, although actual etiology of the disorder is still not yet clear. Thus, the aim of this review is to highlight the possible correlation between environmental factors and AD, based on the present literature view. Environmental risk factors might play an important role in decelerating or accelerating AD progression. Among well-known environmental risk factors, prolonged exposure to several heavy metals, for example, aluminum, arsenic, cadmium, lead, and mercury; particulate air, and some pesticides as well as metal-containing nanoparticles have been participated to cause AD. These heavy metals have the capacity to enhance amyloid β (Aβ) peptide along with tau phosphorylation, initiating amyloid/senile plaques, as well as neurofibrillary tangle formation; therefore, neuronal cell death has been observed. Furthermore, particulate air, pesticides, and heavy metal exposure have been recommended to lead AD susceptibility and phenotypic diversity though epigenetic mechanisms. Therefore, this review deliberates recent findings detailing the mechanisms for a better understanding the relationship between AD and environmental risk factors along with their mechanisms of action on the brain functions.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
- Department of Biotechnology and Genetic Engineering, Global Biotechnology & Biomedical Research Network (GBBRN), Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh.
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | - A N M Mamum-Or-Rashid
- Anti-Aging Medical Research Center and Glycation Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
43
|
Martins AC, Krum BN, Queirós L, Tinkov AA, Skalny AV, Bowman AB, Aschner M. Manganese in the Diet: Bioaccessibility, Adequate Intake, and Neurotoxicological Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12893-12903. [PMID: 32298096 DOI: 10.1021/acs.jafc.0c00641] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Manganese (Mn) is an essential element that participates in several biological processes. Mn serves as a cofactor for several enzymes, such as glutamine synthetase and oxidoreductases, that have an important role in the defense of the organisms against oxidative stress. The diet is the main source of Mn intake for humans, and adequate daily intake levels for this metal change with age. Moreover, in higher amounts, Mn may be toxic, mainly to the brain. Here, we provide an overview of Mn occurrence in food, addressing its bioaccessibility and discussing the dietary standard and recommended intake of Mn consumption. In addition, we review some mechanisms underlying Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Bárbara Nunes Krum
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Post-Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Libânia Queirós
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Department of Molecular of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexey A Tinkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
- Yaroslavl State University Yaroslavl, 150003, Russia
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg 460000, Russia
| | - Anatoly V Skalny
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
- Yaroslavl State University Yaroslavl, 150003, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| |
Collapse
|
44
|
Martins AC, Gubert P, Villas Boas GR, Paes MM, Santamaría A, Lee E, Tinkov AA, Bowman AB, Aschner M. Manganese-induced neurodegenerative diseases and possible therapeutic approaches. Expert Rev Neurother 2020; 20:1109-1121. [PMID: 32799578 PMCID: PMC7657997 DOI: 10.1080/14737175.2020.1807330] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and prion disease represent important public health concerns. Exposure to high levels of heavy metals such as manganese (Mn) may contribute to their development. AREAS COVERED In this critical review, we address the role of Mn in the etiology of neurodegenerative diseases and discuss emerging treatments of Mn overload, such as chelation therapy. In addition, we discuss natural and synthetic compounds under development as prospective therapeutics. Moreover, bioinformatic approaches to identify new potential targets and therapeutic substances to reverse the neurodegenerative diseases are discussed. EXPERT OPINION Here, the authors highlight the importance of better understanding the molecular mechanisms of toxicity associated with neurodegenerative diseases, and the role of Mn in these diseases. Additional emphasis should be directed to the discovery of new agents to treat Mn-induced diseases, since present day chelator therapies have limited bioavailability. Furthermore, the authors encourage the scientific community to develop research using libraries of compounds to screen those compounds that show efficacy in regulating brain Mn levels. In addition, bioinformatics may provide novel insight for pathways and clinical treatments associated with Mn-induced neurodegeneration, leading to a new direction in Mn toxicological research.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Priscila Gubert
- Department of Biochemistry, Laboratory of Immunopathology Keizo Asami, LIKA, Federal, University of Pernambuco, Recife, Brazil
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | - Gustavo R Villas Boas
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Marina Meirelles Paes
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA
| | - Alexey A. Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Yaroslavl State University, Yaroslavl, Russia
- Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of Sciences, Orenburg, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
45
|
Han Y, Wang N, Kang J, Fang Y. β-Asarone improves learning and memory in Aβ 1-42-induced Alzheimer's disease rats by regulating PINK1-Parkin-mediated mitophagy. Metab Brain Dis 2020; 35:1109-1117. [PMID: 32556928 DOI: 10.1007/s11011-020-00587-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that is characterized by the extracellular accumulation of β-amyloid (Aβ). Many studies have shown a close relationship between autophagy and the formation of Aβ. As AD develops and progresses, mitophagy diminishes insoluble Aβ, and mitochondrial dysfunction seems to be a determining factor in the pathogenesis of AD. In our previous study, we showed that β-asarone pharmacological effects in APP/PS1 transgenic mice, reducing Aβ expression. However, the specific mechanism of this effect remains unclear. In this study, AD model rats induced by intracerebroventricular injection of Aβ1-42 were randomly divided into nine groups, and medical intervention was applied to the animals for 30 days. Subsequently, spatial learning and memory were evaluated by the water maze test. Bcl-2 levels in the hippocampus were determined by western blotting (WB). The protein expression of Aβ1-42, Beclin-1, p62, PINK1, and Parkin was assessed by WB and immunohistochemistry (IHC). The data showed that after β-asarone treatment, the learning and memory of the AD rats were clearly improved compared with those of the model group. Moreover, β-asarone decreased Aβ1-42, Bcl-2, and p62 levels but increased Beclin-1 levels compared with those in the model group. In addition, we treated a group of rats with CsA to inhibit mitophagy. β-Asarone increased PINK1 and Parkin expression compared with that in the model group. The results showed that β-asarone can improve the learning and memory of rats with Aβ1-42-induced AD by effectively promoting PINK1-Parkin-mediated mitophagy. Taken together, these results suggest that β-asarone may have the capacity to become a pharmaceutical agent for the treatment of AD in the future.
Collapse
Affiliation(s)
- Yufeng Han
- Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, Guangzhou, China
| | - Nanbu Wang
- Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, Guangzhou, China
| | - Jian Kang
- Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, Guangzhou, China
| | - Yongqi Fang
- Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, Guangzhou, China.
| |
Collapse
|
46
|
Kabir MT, Uddin MS, Zaman S, Begum Y, Ashraf GM, Bin-Jumah MN, Bungau SG, Mousa SA, Abdel-Daim MM. Molecular Mechanisms of Metal Toxicity in the Pathogenesis of Alzheimer’s Disease. Mol Neurobiol 2020; 58:1-20. [DOI: 10.1007/s12035-020-02096-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022]
|
47
|
Fulgenzi A, Vietti D, Ferrero ME. EDTA Chelation Therapy in the Treatment of Neurodegenerative Diseases: An Update. Biomedicines 2020; 8:biomedicines8080269. [PMID: 32756375 PMCID: PMC7460255 DOI: 10.3390/biomedicines8080269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 01/20/2023] Open
Abstract
We have previously described the role played by toxic-metal burdens in the etiology of neurodegenerative diseases (ND). We herein report an updated evaluation of toxic-metal burdens in human subjects affected or not affected by ND or other chronic diseases. Each subject underwent a chelation test with the chelating agent calcium disodium ethylenediaminetetraacetic acid (CaNA2EDTA or EDTA) to identify the presence of 20 toxic metals in urine samples using inductively coupled plasma mass spectrometry. Our results show the constant presence of toxic metals, such as lead, cadmium, cesium, and aluminum, in all examined subjects but the absence of beryllium and tellurium. Gadolinium was detected in patients undergoing diagnostic magnetic resonance imaging. The presence of toxic metals was always significantly more elevated in ND patients than in healthy controls. Treatment with EDTA chelation therapy removes toxic-metal burdens and improves patient symptoms.
Collapse
|
48
|
Porte Alcon S, Gorojod RM, Kotler ML. Kinetic and protective role of autophagy in manganese-exposed BV-2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118787. [PMID: 32592735 DOI: 10.1016/j.bbamcr.2020.118787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Manganese (Mn) plays an important role in many physiological processes. Nevertheless, Mn accumulation in the brain can cause a parkinsonian-like syndrome known as manganism. Unfortunately, the therapeutic options for this disease are scarce and of limited efficacy. For this reason, a great effort is being made to understand the cellular and molecular mechanisms involved in Mn toxicity in neuronal and glial cells. Even though evidence indicates that Mn activates autophagy in microglia, the consequences of this activation in cell death remain unknown. In this study, we demonstrated a key role of reactive oxygen species in Mn-induced damage in microglial cells. These species generated by Mn2+ induce lysosomal alterations, LMP, cathepsins release and cell death. Besides, we described for the first time the kinetic of Mn2+-induced autophagy in BV-2 microglial cells and its relevance to cell fate. We found that Mn promotes a time-dependent increase in LC3-II and p62 expression levels, suggesting autophagy activation. Possibly, cells trigger autophagy to neutralize the risks associated with lysosomal rupture. In addition, pre-treatment with both Rapamycin and Melatonin enhanced autophagy and retarded Mn2+ cytotoxicity. In summary, our results demonstrated that, despite the damage inflicted on a subset of lysosomes, the autophagic pathway plays a protective role in Mn-induced microglial cell death. We propose that 2 h Mn2+ exposure will not induce disturbances in the autophagic flux. However, as time passes, the accumulated damage inside the cell could trigger a dysfunction of this mechanism. These findings may represent a valuable contribution to future research concerning manganism therapies.
Collapse
Affiliation(s)
- Soledad Porte Alcon
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina.
| | - Roxana Mayra Gorojod
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina.
| | - Mónica Lidia Kotler
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
49
|
Bryan MR, O'Brien MT, Nordham KD, Rose DIR, Foshage AM, Joshi P, Nitin R, Uhouse MA, Di Pardo A, Zhang Z, Maglione V, Aschner M, Bowman AB. Acute manganese treatment restores defective autophagic cargo loading in Huntington's disease cell lines. Hum Mol Genet 2020; 28:3825-3841. [PMID: 31600787 DOI: 10.1093/hmg/ddz209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
The molecular etiology linking the pathogenic mutations in the Huntingtin (Htt) gene with Huntington's disease (HD) is unknown. Prior work suggests a role for Htt in neuronal autophagic function and mutant HTT protein disrupts autophagic cargo loading. Reductions in the bioavailability of the essential metal manganese (Mn) are seen in models of HD. Excess cellular Mn impacts autophagic function, but the target and molecular basis of these changes are unknown. Thus, we sought to determine if changes in cellular Mn status impact autophagic processes in a wild-type or mutant Htt-dependent manner. We report that the HD genotype is associated with reduced Mn-induced autophagy and that acute Mn exposure increases autophagosome induction/formation. To determine if a deficit in bioavailable Mn is mechanistically linked to the autophagy-related HD cellular phenotypes, we examined autophagosomes by electron microscopy. We observed that a 24 h 100 uM Mn restoration treatment protocol attenuated an established HD 'cargo-recognition failure' in the STHdh HD model cells by increasing the percentage of filled autophagosomes. Mn restoration had no effect on HTT aggregate number, but a 72 h co-treatment with chloroquine (CQ) in GFP-72Q-expressing HEK293 cells increased the number of visible aggregates in a dose-dependent manner. As CQ prevents autophagic degradation this indicates that Mn restoration in HD cell models facilitates incorporation of aggregates into autophagosomes. Together, these findings suggest that defective Mn homeostasis in HD models is upstream of the impaired autophagic flux and provide proof-of-principle support for increasing bioavailable Mn in HD to restore autophagic function and promote aggregate clearance.
Collapse
Affiliation(s)
- Miles R Bryan
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | - Michael T O'Brien
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | - Kristen D Nordham
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | - Daniel I R Rose
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | | | - Piyush Joshi
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | - Rachana Nitin
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | - Michael A Uhouse
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry
| | | | - Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Aaron B Bowman
- Department of Pediatrics.,Vanderbilt Brain Institute.,Department of Neurology and Biochemistry.,Department of Cell and Developmental Biology.,Vanderbilt Kennedy Center.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN, 37240, USA.,Purdue University, School of Health Sciences, West Lafayette, IN, 47907, USA
| |
Collapse
|
50
|
Long Z, Chen J, Zhao Y, Zhou W, Yao Q, Wang Y, He G. Dynamic changes of autophagic flux induced by Abeta in the brain of postmortem Alzheimer's disease patients, animal models and cell models. Aging (Albany NY) 2020; 12:10912-10930. [PMID: 32535554 PMCID: PMC7346050 DOI: 10.18632/aging.103305] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/30/2020] [Indexed: 01/01/2023]
Abstract
Autophagy has been reported to play a dual "double-edged sword" role in the occurrence and development of Alzheimer’s disease (AD). To assess the relationship between AD and autophagy, the dynamic changes of autophagic flux in the brain of postmortem AD patients, animal models and cell models were studied. The results showed that autophagosomes (APs) accumulation and expression of lysosomal markers were decreased in the brains of AD patients. In the brain of APP/PS1 double transgenic mice, APs did not accumulate before the formation of SPs but accumulated along with the deposition of SPs, as well as the level of lysosomal markers cathepsin B and Lamp1 protein decreased significantly. In the brains of APP/PS1/LC3 triple - transgenic mice, the number of APs increased with age, but the number of ALs did not increase accordingly. The activation of autophagy is mainly due to the increase in Aβ rather than the overexpression of mutated APP gene. However, both the treatment with exogenous Aβ25-35 and the mutation of the endogenous APP gene blocked the fusion of APs with lysosomes and decreased lysosomal functioning in AD model cells, which may be the main mechanism of autophagy dysregulation in AD.
Collapse
Affiliation(s)
- Zhimin Long
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.,Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Jingfei Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Yueyang Zhao
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Wen Zhou
- Department of Neurorehabilitation, The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qiuhui Yao
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing 400016, China
| | - Guiqiong He
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.,Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|