1
|
Xu Q, Wang L, Song Q, Chen S, Du K, Teng X, Zou C. Distinct Hippocampal Expression Profiles of lncRNAs in Obese Type 2 Diabetes Mice Exhibiting Cognitive Impairment. Neuromolecular Med 2024; 26:42. [PMID: 39470862 DOI: 10.1007/s12017-024-08811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/18/2024] [Indexed: 11/01/2024]
Abstract
Cognitive dysfunction has been accepted as a possible complication of type 2 diabetes (T2D), but few studies revealed the potential roles of Long non‑coding RNAs (lncRNAs) in cognitive dysfunction in T2D. The current research aims to demonstrate the specific expression patterns of lncRNA-mRNA in the hippocampi of T2D db/db mice exhibiting cognitive impairment. In this study, the results from behavioral tests showed that T2D db/db mice displayed short-term and spatial working memory deficits compared to db/m mice. Furthermore, western blot analysis demonstrated that compared with db/m mice, p-GSK3β (ser9) protein levels were markedly elevated in T2D db/db mice (P < 0.01). In addition, though not statistically significant, the ratio of p-Tau (Ser396) to Tau 46, α-Synuclein expression, and p-GSK3α (ser21) expression were also relatively higher in T2D db/db mice than in db/m mice. The microarray profiling revealed that 75 lncRNAs and 26 mRNAs were dysregulated in T2D db/db mice (> 2.0 fold change, P < 0.05). GO analysis demonstrated that the differentially expressed mRNAs participated in immune response, extracellular membrane-bounded organelle, and extracellular region. KEGG analysis revealed that the differentially expressed mRNAs were mainly involved in one carbon pool by folate, glyoxylate and dicarboxylate metabolism, autophagy, glycine, serine and threonine metabolism, and B cell receptor signaling pathway. A lncRNA‑mRNA coexpression network containing 71 lncRNAs and 26 mRNAs was built to investigate the interaction between lncRNA and mRNA. Collectively, these results revealed the differential hippocampal expression profiles of lncRNAs in T2D mice with cognitive dysfunction, and the findings from this study provide new clues for exploring the potential roles of lncRNAs in the pathogenesis of cognitive dysfunction in T2D.
Collapse
Affiliation(s)
- Qianqian Xu
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lihui Wang
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qiong Song
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shuai Chen
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Kechen Du
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiahong Teng
- School of International Education, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Chunlin Zou
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Nanning, Guangxi, China.
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Boyton I, Valenzuela SM, Collins-Praino LE, Care A. Neuronanomedicine for Alzheimer's and Parkinson's disease: Current progress and a guide to improve clinical translation. Brain Behav Immun 2024; 115:631-651. [PMID: 37967664 DOI: 10.1016/j.bbi.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/19/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
Neuronanomedicine is an emerging multidisciplinary field that aims to create innovative nanotechnologies to treat major neurodegenerative disorders, such as Alzheimer's (AD) and Parkinson's disease (PD). A key component of neuronanomedicine are nanoparticles, which can improve drug properties and demonstrate enhanced safety and delivery across the blood-brain barrier, a major improvement on existing therapeutic approaches. In this review, we critically analyze the latest nanoparticle-based strategies to modify underlying disease pathology to slow or halt AD/PD progression. We find that a major roadblock for neuronanomedicine translation to date is a poor understanding of how nanoparticles interact with biological systems (i.e., bio-nano interactions), which is partly due to inconsistent reporting in published works. Accordingly, this review makes a set of specific recommendations to help guide researchers to harness the unique properties of nanoparticles and thus realise breakthrough treatments for AD/PD.
Collapse
Affiliation(s)
- India Boyton
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia
| | - Stella M Valenzuela
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia
| | | | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia.
| |
Collapse
|
3
|
1,8-Cineole Ameliorates Advanced Glycation End Products-Induced Alzheimer's Disease-like Pathology In Vitro and In Vivo. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123913. [PMID: 35745036 PMCID: PMC9229467 DOI: 10.3390/molecules27123913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022]
Abstract
Advanced glycation end products (AGEs) are stable products produced by the reaction of macromolecules such as proteins, lipids or nucleic acids with glucose or other reducing monosaccharides, which can be identified by immunohistochemistry in the senile plaques and neurofibrillary tangles of Alzheimer’s disease (AD) patients. Growing evidence suggests that AGEs are important risk factors for the development and progression of AD. 1,8-cineole (CIN) is a monoterpenoid compound which exists in many plant essential oils and has been proven to have neuroprotective activity, but its specific effect and molecular mechanisms are not clear. In this study, AGEs-induced neuronal injury and intracerebroventricular-AGE animals as the possible models for AD were employed to investigate the effects of CIN on AD pathology as well as the molecular mechanisms involved both in vivo and in vitro. Our study demonstrated that CIN could ameliorate tau phosphorylation by down-regulating the activity of GSK-3β and reducing Aβ production by inhibiting the activity of BACE-1 both in vivo and in vitro. It is suggested that CIN has certain therapeutic value in the treatment of AD.
Collapse
|
4
|
Wan W, Liu G, Li X, Liu Y, Wang Y, Pan H, Hu J. MiR-191-5p alleviates microglial cell injury by targeting Map3k12 (mitogen-activated protein kinase kinase kinase 12) to inhibit the MAPK (mitogen-activated protein kinase) signaling pathway in Alzheimer's disease. Bioengineered 2021; 12:12678-12690. [PMID: 34818971 PMCID: PMC8810200 DOI: 10.1080/21655979.2021.2008638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. Multiple reports have elucidated that microRNAs are promising biomarkers for AD diagnosis and treatment. Herein, the effect of miR-191-5p on microglial cell injury and the underlying mechanism were explored. APP/PS1 transgenic mice were utilized to establish mouse model of AD. Amyloid-β protein 1-42 (Aβ1-42)-treated microglia were applied to establish in vitro cell model of AD. MiR-191-5p expression in hippocampus and microglia was measured by reverse transcription quantitative polymerase chain reaction. The viability and apoptosis of microglia were evaluated by Cell Counting Kit-8 assays and flow cytometry analyses, respectively. The binding relationship between miR-191-5p and its downstream target mitogen-activated protein kinase kinase kinase 12 (Map3k12) was determined by luciferase reporter assays. Pathological degeneration of hippocampus was tested using hematoxylin-eosin staining and Nissl staining. Aβ expression in hippocampus was examined via immunohistochemistry. In this study, miR-191-5p was downregulated in Aβ1-42-stimulated microglia and hippocampal tissues of APP/PS1 mice. MiR-191-5p overexpression facilitated cell viability and inhibited apoptosis rate of Aβ1-42-treated microglia. Mechanically, miR-191-5p targeted Map3k12 3'-untranslated region to downregulate Map3k12 expression. MiR-191-5p inhibited Aβ1-42-induced microglial cell injury and inactivated the MAPK signaling by downregulating Map3k12. Overall, miR-191-5p alleviated Aβ1-42-induced microglia cell injury by targeting Map3k12 to inhibit the MAPK signaling pathway in microglia.
Collapse
Affiliation(s)
- Wenjun Wan
- Department of Rehabilitation Medicine, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ganzhe Liu
- Department of Neurology, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xia Li
- Department of Ultrasound Imaging, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Yu Liu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Ying Wang
- Department of Rehabilitation Medicine, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haisong Pan
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Jun Hu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
5
|
On the Common Journey of Neural Cells through Ischemic Brain Injury and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22189689. [PMID: 34575845 PMCID: PMC8472292 DOI: 10.3390/ijms22189689] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
Ischemic brain injury and Alzheimer's disease (AD) both lead to cell death in the central nervous system (CNS) and thus negatively affect particularly the elderly population. Due to the lack of a definitive cure for brain ischemia and AD, it is advisable to carefully study, compare, and contrast the mechanisms that trigger, and are involved in, both neuropathologies. A deeper understanding of these mechanisms may help ameliorate, or even prevent, the destructive effects of neurodegenerative disorders. In this review, we deal with ischemic damage and AD, with the main emphasis on the common properties of these CNS disorders. Importantly, we discuss the Wnt signaling pathway as a significant factor in the cell fate determination and cell survival in the diseased adult CNS. Finally, we summarize the interesting findings that may improve or complement the current sparse and insufficient treatments for brain ischemia and AD, and we delineate prospective directions in regenerative medicine.
Collapse
|
6
|
Zhang L, Sun H, Chen Y, Wei M, Lee J, Li F, Ling D. Functional nanoassemblies for the diagnosis and therapy of Alzheimer's diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1696. [PMID: 33463089 DOI: 10.1002/wnan.1696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects populations around the world. Many therapeutics have been investigated for AD diagnosis and/or therapy, but the efficacy is largely limited by the poor bioavailability of drugs and by the presence of the blood-brain barrier. Recently, the development of nanomedicines enables efficient drug delivery to the brain, but the complex pathological mechanism of AD prevents them from successful treatment. As a type of advanced nanomedicine, multifunctional nanoassemblies self-assembled from nanoscale imaging or therapeutic agents can simultaneously target multiple pathological factors, showing great potential in the diagnosis and therapy of AD. To help readers better understand this emerging field, in this review, we first introduce the pathological mechanisms and the potential drug candidates of AD, as well as the design strategies of nanoassemblies for improving AD targeting efficiency. Moreover, the progress of dynamic nanoassemblies that can diagnose and/or treat AD in response to the endogenous or exogenous stimuli will be described. Finally, we conclude with our perspectives on the future development in this field. The objective of this review is to outline the latest progress of using nanoassemblies to overcome the complex pathological environment of AD for improved diagnosis and therapy, in hopes of accelerating the future development of intelligent AD nanomedicines. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Heng Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Min Wei
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Jo D, Yoon G, Song J. Role of Exendin-4 in Brain Insulin Resistance, Mitochondrial Function, and Neurite Outgrowth in Neurons under Palmitic Acid-Induced Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10010078. [PMID: 33435277 PMCID: PMC7827489 DOI: 10.3390/antiox10010078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/17/2022] Open
Abstract
Glucagon like peptide 1 (GLP-1) is an incretin hormone produced by the gut and brain, and is currently being used as a therapeutic drug for type 2 diabetes and obesity, suggesting that it regulates abnormal appetite patterns, and ameliorates impaired glucose metabolism. Many researchers have demonstrated that GLP-1 agonists and GLP-1 receptor agonists exert neuroprotective effects against brain damage. Palmitic acid (PA) is a saturated fatty acid, and increases the risk of neuroinflammation, lipotoxicity, impaired glucose metabolism, and cognitive decline. In this study, we investigated whether or not Exentin-4 (Ex-4; GLP-1 agonist) inhibits higher production of reactive oxygen species (ROS) in an SH-SY5Y neuronal cell line under PA-induced apoptosis conditions. Moreover, pre-treatment with Ex-4 in SH-SY5Y neuronal cells prevents neural apoptosis and mitochondrial dysfunction through several cellular signal pathways. In addition, insulin sensitivity in neurons is improved by Ex-4 treatment under PA-induced insulin resistance. Additionally, our imaging data showed that neuronal morphology is improved by EX-4 treatment, in spite of PA-induced neuronal damage. Furthermore, we identified that Ex-4 inhibits neuronal damage and enhanced neural complexity, such as neurite length, secondary branches, and number of neurites from soma in PA-treated SH-SY5Y. We observed that Ex-4 significantly increases neural complexity, dendritic spine morphogenesis, and development in PA treated primary cortical neurons. Hence, we suggest that GLP-1 administration may be a crucial therapeutic solution for improving neuropathology in the obese brain.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea; (D.J.); (G.Y.)
- BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-757, Korea
| | - Gwangho Yoon
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea; (D.J.); (G.Y.)
- BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-757, Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea; (D.J.); (G.Y.)
- BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-757, Korea
- Correspondence: ; Tel.:+82-61-379-2706; Fax: +82-61-375-5834
| |
Collapse
|
8
|
Rahman MA, Rahman MS, Uddin MJ, Mamum-Or-Rashid ANM, Pang MG, Rhim H. Emerging risk of environmental factors: insight mechanisms of Alzheimer's diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44659-44672. [PMID: 32201908 DOI: 10.1007/s11356-020-08243-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Neurodegenerative disorders are typically sporadic in nature in addition to usually influenced through an extensive range of environmental factors, lifestyle, and genetic elements. Latest observations have hypothesized that exposure of environmental factors may increase the prospective risk of Alzheimer's diseases (AD). However, the role of environmental factors as a possible dangerous issue has extended importance concerned in AD pathology, although actual etiology of the disorder is still not yet clear. Thus, the aim of this review is to highlight the possible correlation between environmental factors and AD, based on the present literature view. Environmental risk factors might play an important role in decelerating or accelerating AD progression. Among well-known environmental risk factors, prolonged exposure to several heavy metals, for example, aluminum, arsenic, cadmium, lead, and mercury; particulate air, and some pesticides as well as metal-containing nanoparticles have been participated to cause AD. These heavy metals have the capacity to enhance amyloid β (Aβ) peptide along with tau phosphorylation, initiating amyloid/senile plaques, as well as neurofibrillary tangle formation; therefore, neuronal cell death has been observed. Furthermore, particulate air, pesticides, and heavy metal exposure have been recommended to lead AD susceptibility and phenotypic diversity though epigenetic mechanisms. Therefore, this review deliberates recent findings detailing the mechanisms for a better understanding the relationship between AD and environmental risk factors along with their mechanisms of action on the brain functions.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
- Department of Biotechnology and Genetic Engineering, Global Biotechnology & Biomedical Research Network (GBBRN), Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh.
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | - A N M Mamum-Or-Rashid
- Anti-Aging Medical Research Center and Glycation Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
9
|
Kofoed RH, Betzer C, Ferreira N, Jensen PH. Glycogen synthase kinase 3 β activity is essential for Polo-like kinase 2- and Leucine-rich repeat kinase 2-mediated regulation of α-synuclein. Neurobiol Dis 2019; 136:104720. [PMID: 31881263 DOI: 10.1016/j.nbd.2019.104720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/19/2019] [Accepted: 12/22/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a currently incurable disease and the number of patients is expected to increase due to the extended human lifespan. α-Synuclein is a pathological hallmark of PD and variations and triplications of the gene encoding α-synuclein are strongly correlated with the risk of developing PD. Decreasing α-synuclein is therefore a promising therapeutic strategy for the treatment of PD. We have previously demonstrated that Polo-like kinase 2 (PLK-2) regulates α-synuclein protein levels by modulating the expression of α-synuclein mRNA. In this study, we further expand the knowledge on this pathway and show that it depends on down-stream modulation of Glycogen-synthase kinase 3 β (GSK-3β). We show that PLK-2 inhibition only increases α-synuclein levels in the presence of active GSK-3β in both cell lines and primary neuronal cultures. Furthermore, direct inhibition of GSK-3β decreases α-synuclein protein and mRNA levels in our cell model and overexpression of Leucine-rich repeat kinase 2, known to activate GSK-3β, increases α-synuclein levels. Finally, we show an increase in endogenous α-synuclein in primary neurons when increasing GSK-3β activity. Our findings demonstrate a not previously described role of endogenous GSK-3β activity in the PLK-2 mediated regulation of α-synuclein levels. This finding opens up the possibility of GSK-3β as a novel target for decreasing α-synuclein levels by the use of small molecule compounds, hereby serving as a disease modulating strategy.
Collapse
Affiliation(s)
- Rikke H Kofoed
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 8, DK-8000 Aarhus, Denmark.
| | - Cristine Betzer
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 8, DK-8000 Aarhus, Denmark.
| | - Nelson Ferreira
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 8, DK-8000 Aarhus, Denmark.
| | - Poul Henning Jensen
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 8, DK-8000 Aarhus, Denmark.
| |
Collapse
|
10
|
Olfati N, Shoeibi A, Litvan I. Progress in the treatment of Parkinson-Plus syndromes. Parkinsonism Relat Disord 2019; 59:101-110. [DOI: 10.1016/j.parkreldis.2018.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 01/04/2023]
|
11
|
Duarte A, Santos M, Oliveira C, Moreira P. Brain insulin signalling, glucose metabolism and females' reproductive aging: A dangerous triad in Alzheimer's disease. Neuropharmacology 2018; 136:223-242. [PMID: 29471055 DOI: 10.1016/j.neuropharm.2018.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
|
12
|
Shoeibi A, Olfati N, Litvan I. Preclinical, phase I, and phase II investigational clinical trials for treatment of progressive supranuclear palsy. Expert Opin Investig Drugs 2018; 27:349-361. [PMID: 29602288 DOI: 10.1080/13543784.2018.1460356] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Our understanding of the pathological basis of progressive supranuclear palsy (PSP), as the most common atypical parkinsonian syndrome, has greatly increased in recent years and a number of disease-modifying therapies are under evaluation as a result of these advances. AREAS COVERED In this review, we discuss disease-modifying therapeutic options which are currently under evaluation or have been evaluated in preclinical or clinical trials based on their targeted pathophysiologic process. The pathophysiologic mechanisms are broadly divided into three main categories: genetic mechanisms, abnormal post-translational modifications of tau protein, and transcellular tau spread. EXPERT OPINION Once the best therapeutic approaches are identified, it is likely that some combination of interventions will need to be evaluated, but this will take time. It is critical to treat patients at early stages, and development of the Movement Disorder Society PSP diagnostic criteria is an important step in this direction. In addition, development of biological biomarkers such as tau PET and further refinement of tau ligands may help both diagnose early and measure disease progression. In the meantime, a comprehensive, personalized interdisciplinary approach to this disease is absolutely necessary.
Collapse
Affiliation(s)
- Ali Shoeibi
- a Department of Neurology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Nahid Olfati
- a Department of Neurology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Irene Litvan
- b UC San Diego Department of Neurosciences , Parkinson and Other Movement Disorder Center , La Jolla , CA , USA
| |
Collapse
|
13
|
Li L, Chen S, Wang Y, Yue X, Xu J, Xie W, Qiu P, Liu C, Wang A, Wang H. Role of GSK3β/α-synuclein axis in methamphetamine-induced neurotoxicity in PC12 cells. Toxicol Res (Camb) 2018; 7:221-234. [PMID: 30090577 PMCID: PMC6062219 DOI: 10.1039/c7tx00189d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Methamphetamine (METH) is well-known as a potent psychostimulant of abuse worldwide. METH administration can cause neurotoxicity and neurodegenerative injury, which are similar to the two prevalent neurodegenerative disorders Alzheimer's disease (AD) and Parkinson's disease (PD). Recent results suggested that METH exposure increased the level of α-synuclein (α-syn) that could be a possible cause of neurotoxicity. However, the mechanism of METH-induced neurodegeneration remains unclear. This study was aimed at examining the effects of glycogen synthase kinase3β (GSK3β), α-syn, and tau on METH-induced neurotoxicity. Our results indicated that P-GSK3β (Tyr216), P-Tau (Ser396), α-syn, and P-α-syn (Ser129) levels were increased after METH administration in dose- and time-dependent manners. Upon inhibiting the GSK3β activity with LiCl or GSK3β-siRNA, these protein expressions were significantly decreased. We observed that LiCl protected the cells from METH-caused cytotoxicity by weakening the cell morphological damage and preventing cell apoptosis and death. We also found that P-GSK3β colocalized with P-Tau and α-syn by the immunofluorescence method. Further, METH disrupted the cellular autophagy by upregulation of LC3-II and P62 proteins, and the cellular autophagy was restored by LiCl and GSK3β-siRNA. The expressions of the α-syn-specific degradative enzyme glucocerebrosidase (GCase) with its regulator lysosomal integral membrane protein type-2 (LIMP-2) decreased inversely with the doses of METH treatment. The GCase inhibitor conduritol-β-epoxide (CβE) increased the α-syn levels, and LiCl restored GCase and LIMP-2 expressions disrupted by the METH treatment. In summary, we conclude that GSK3β plays key roles in METH-induced neurotoxicity and neurodegenerative injury by promoting abnormal protein phosphorylation and α-syn accumulation, blocking the autophagy-lysosomal degradation pathway, and finally leading to cell apoptosis and death. GSK3β may be a potential target to prevent METH-induced neurodegeneration.
Collapse
Affiliation(s)
- Lizeng Li
- School of Forensic Medicine , Southern Medical University , Guangzhou 510515 , People's Republic of China . ; ; Tel: +86 2062789101
| | - Si Chen
- School of Forensic Medicine , Southern Medical University , Guangzhou 510515 , People's Republic of China . ; ; Tel: +86 2062789101
| | - Yue Wang
- School of Forensic Medicine , Southern Medical University , Guangzhou 510515 , People's Republic of China . ; ; Tel: +86 2062789101
| | - Xia Yue
- School of Forensic Medicine , Southern Medical University , Guangzhou 510515 , People's Republic of China . ; ; Tel: +86 2062789101
| | - Jingtao Xu
- School of Forensic Medicine , Southern Medical University , Guangzhou 510515 , People's Republic of China . ; ; Tel: +86 2062789101
| | - Weibing Xie
- School of Forensic Medicine , Southern Medical University , Guangzhou 510515 , People's Republic of China . ; ; Tel: +86 2062789101
| | - Pingming Qiu
- School of Forensic Medicine , Southern Medical University , Guangzhou 510515 , People's Republic of China . ; ; Tel: +86 2062789101
| | - Chao Liu
- Guangzhou Forensic Science Institute , Guangzhou 510030 , People's Republic of China
| | - AiFeng Wang
- School of Forensic Medicine , Southern Medical University , Guangzhou 510515 , People's Republic of China . ; ; Tel: +86 2062789101
| | - Huijun Wang
- School of Forensic Medicine , Southern Medical University , Guangzhou 510515 , People's Republic of China . ; ; Tel: +86 2062789101
| |
Collapse
|
14
|
Wu X, Liang Y, Jing X, Lin D, Chen Y, Zhou T, Peng S, Zheng D, Zeng Z, Lei M, Huang K, Tao E. Rifampicin Prevents SH-SY5Y Cells from Rotenone-Induced Apoptosis via the PI3K/Akt/GSK-3β/CREB Signaling Pathway. Neurochem Res 2018; 43:886-893. [PMID: 29435803 DOI: 10.1007/s11064-018-2494-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 12/23/2022]
Abstract
In addition to its original application for treating tuberculosis, rifampicin has multiple potential neuroprotective effects in chronic neurodegenerative diseases including Parkinson's disease (PD) and Alzheimer's disease. Inflammatory reactions and the PI3K/Akt pathway are strongly implicated in dopaminergic neuronal death in PD. This study aims to investigate whether rifampicin protects rotenone-lesioned SH-SY5Y cells via regulating PI3K/Akt/GSK-3β/CREB pathway. Rotenone-treated SH-SY5Y cells were used as the cell model to investigate the neuroprotective effects of rifampicin. Cell viability and apoptosis of SH-SY5Y cells were determined by CCK-8 assay and flow cytometry, respectively. The expression of Akt, p-Akt, GSK-3β, p-GSK-3β, CREB and p-CREB were measured by Western blot. Our results showed that the cell viability and level of phospho-CREB significantly decreased in SH-SY5Y cells exposed to rotenone when compared to the control group. Both the cell viability and the expression of phospho-CREB in cells pretreated with rifampicin were higher than those of cells exposed to rotenone alone. Moreover, pretreatment of SH-SY5Y cells with rifampicin enhanced phosphorylation of Akt and suppressed activity of GSK-3β. The addition of LY294002, a PI3K inhibitor, could suppress phosphorylation of Akt and CREB and activate GSK-3β, resulting in abolishment of neuroprotective effects of rifampicin on cells exposed to rotenone. Rifampicin provides neuroprotection against dopaminergic degeneration, partially via the PI3K/Akt/GSK-3β/CREB signaling pathway. These findings suggest that rifampicin could be an effective and promising neuroprotective candidate for treating PD.
Collapse
Affiliation(s)
- Xia Wu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
- Department of Neurology, Shenzhen Nanshan District Xili People's Hospital, No. 2051 Xili Liuxian Avenue, Shenzhen, 518055, China
| | - Yanran Liang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Xiuna Jing
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Danyu Lin
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Ying Chen
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Tianen Zhou
- Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, China
| | - Sudan Peng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Dezhi Zheng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Zhifen Zeng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Ming Lei
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Kaixun Huang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Enxiang Tao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
15
|
SLOH, a carbazole-based fluorophore, mitigates neuropathology and behavioral impairment in the triple-transgenic mouse model of Alzheimer's disease. Neuropharmacology 2018; 131:351-363. [PMID: 29309769 DOI: 10.1016/j.neuropharm.2018.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/08/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative dysfunction characterized by memory impairment and brings a heavy burden to old people both in developing and developed countries. Amyloid hypothesis reveals that aggregation and deposition of amyloid plaques are the cause of AD neurodegeneration. SLOH, a carbazole-based fluorophore, is reported to inhibit amyloid beta (Aβ) aggregation in vitro. In the current study, we intended to evaluate the protective effect of SLOH in a triple transgenic AD mouse model (3xTg-AD). 3xTg-AD (10-month-old) were treated with SLOH (0.5, 1 and 2 mg kg-1) for one month via intraperitoneal injection. After treatment, cognitive function was assessed by Morris Water Maze (MWM) and Y-maze tasks. In addition, biochemical estimations were used to examine the degree of Aβ deposition, tau hyperphosphorylation and neuroinflammation in the brains of 3xTg-AD mice. An in vitro study was conducted on human neuroblastoma (SH-SY5Y) cells to determine the activity of SLOH on tau and GSK-3β using western blot and immunofluorescence staining. One month treatment with SLOH significantly ameliorated memory impairments in 3xTg-AD mice in MWM and Y-maze tests. Moreover, SLOH treatment mitigated the level of amyloid plaques, tau hyperphosphorylation and neuroinflammation in the mouse brain. SLOH also reduced tau hyperphosphorylation and down-regulated GSK-3β activity in Aβ induced neurotoxic SH-SY5Y cells. The promising results in mitigating amyloid plaques, tau hyperphosphorylation, neuroinflammation and ameliorating cognitive deficits following one-month treatment suggest that SLOH could be a potential multi-target molecule for the AD treatment.
Collapse
|
16
|
Rodriguez-Rodriguez P, Sandebring-Matton A, Merino-Serrais P, Parrado-Fernandez C, Rabano A, Winblad B, Ávila J, Ferrer I, Cedazo-Minguez A. Tau hyperphosphorylation induces oligomeric insulin accumulation and insulin resistance in neurons. Brain 2017; 140:3269-3285. [PMID: 29053786 DOI: 10.1093/brain/awx256] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/11/2017] [Indexed: 11/13/2022] Open
Abstract
Insulin signalling deficiencies and insulin resistance have been directly linked to the progression of neurodegenerative disorders like Alzheimer's disease. However, to date little is known about the underlying molecular mechanisms or insulin state and distribution in the brain under pathological conditions. Here, we report that insulin is accumulated and retained as oligomers in hyperphosphorylated tau-bearing neurons in Alzheimer's disease and in several of the most prevalent human tauopathies. The intraneuronal accumulation of insulin is directly dependent on tau hyperphosphorylation, and follows the tauopathy progression. Furthermore, cells accumulating insulin show signs of insulin resistance and decreased insulin receptor levels. These results suggest that insulin retention in hyperphosphorylated tau-bearing neurons is a causative factor for the insulin resistance observed in tauopathies, and describe a novel neuropathological concept with important therapeutic implications.
Collapse
Affiliation(s)
- Patricia Rodriguez-Rodriguez
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden
| | - Anna Sandebring-Matton
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden
| | - Paula Merino-Serrais
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden
| | - Cristina Parrado-Fernandez
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden
| | - Alberto Rabano
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Spain.,Fundación CIEN, Madrid, Spain
| | - Bengt Winblad
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden
| | - Jesús Ávila
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Spain.,Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Isidre Ferrer
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Spain.,Institut de Neuropatologia, Servei Anatomia Patologica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Angel Cedazo-Minguez
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Stockholm, Sweden
| |
Collapse
|
17
|
Wnuk A, Kajta M. Steroid and Xenobiotic Receptor Signalling in Apoptosis and Autophagy of the Nervous System. Int J Mol Sci 2017; 18:ijms18112394. [PMID: 29137141 PMCID: PMC5713362 DOI: 10.3390/ijms18112394] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
Apoptosis and autophagy are involved in neural development and in the response of the nervous system to a variety of insults. Apoptosis is responsible for cell elimination, whereas autophagy can eliminate the cells or keep them alive, even in conditions lacking trophic factors. Therefore, both processes may function synergistically or antagonistically. Steroid and xenobiotic receptors are regulators of apoptosis and autophagy; however, their actions in various pathologies are complex. In general, the estrogen (ER), progesterone (PR), and mineralocorticoid (MR) receptors mediate anti-apoptotic signalling, whereas the androgen (AR) and glucocorticoid (GR) receptors participate in pro-apoptotic pathways. ER-mediated neuroprotection is attributed to estrogen and selective ER modulators in apoptosis- and autophagy-related neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases, stroke, multiple sclerosis, and retinopathies. PR activation appeared particularly effective in treating traumatic brain and spinal cord injuries and ischemic stroke. Except for in the retina, activated GR is engaged in neuronal cell death, whereas MR signalling appeared to be associated with neuroprotection. In addition to steroid receptors, the aryl hydrocarbon receptor (AHR) mediates the induction and propagation of apoptosis, whereas the peroxisome proliferator-activated receptors (PPARs) inhibit this programmed cell death. Most of the retinoid X receptor-related xenobiotic receptors stimulate apoptotic processes that accompany neural pathologies. Among the possible therapeutic strategies based on targeting apoptosis via steroid and xenobiotic receptors, the most promising are the selective modulators of the ER, AR, AHR, PPARγ agonists, flavonoids, and miRNAs. The prospective therapies to overcome neuronal cell death by targeting autophagy via steroid and xenobiotic receptors are much less recognized.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| | - Małgorzata Kajta
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| |
Collapse
|
18
|
Zhao B, Gao WW, Liu YJ, Jiang M, Liu L, Yuan Q, Hou JB, Xia ZY. The role of glycogen synthase kinase 3 beta in brain injury induced by myocardial ischemia/reperfusion injury in a rat model of diabetes mellitus. Neural Regen Res 2017; 12:1632-1639. [PMID: 29171428 PMCID: PMC5696844 DOI: 10.4103/1673-5374.217337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myocardial ischemia/reperfusion injury can lead to severe brain injury. Glycogen synthase kinase 3 beta is known to be involved in myo-cardial ischemia/reperfusion injury and diabetes mellitus. However, the precise role of glycogen synthase kinase 3 beta in myocardial ischemia/reperfusion injury-induced brain injury is unclear. In this study, we observed the effects of glycogen synthase kinase 3 beta on brain injury induced by myocardial ischemia/reperfusion injury in diabetic rats. Rat models of diabetes mellitus were generated via intraperitoneal injection of streptozotocin. Models of myocardial ischemia/reperfusion injury were generated by occluding the anterior descending branch of the left coronary artery. Post-conditioning comprised three cycles of ischemia/reperfusion. Immunohistochemical staining and western blot assays demonstrated that after 48 hours of reperfusion, the structure of the brain was seriously damaged in the experimental rats compared with normal controls. Expression of Bax, interleukin-6, interleukin-8, terminal deoxynucleotidyl transferase dUTP nick end labeling, and cleaved caspase-3 in the brain was significantly increased, while expression of Bcl-2, interleukin-10, and phospho-glycogen synthase kinase 3 beta was decreased. Diabetes mellitus can aggravate inflammatory reactions and apoptosis. Ischemic post-conditioning with glycogen synthase kinase 3 beta inhibitor lithium chloride can effectively reverse these changes. Our results showed that myocardial ischemic post-conditioning attenuated myocardial ischemia/reperfusion injury-induced brain injury by activating glyco-gen synthase kinase 3 beta. According to these results, glycogen synthase kinase 3 beta appears to be an important factor in brain injury induced by myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wen-Wei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Ya-Jing Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Meng Jiang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Quan Yuan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jia-Bao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
19
|
Song L, Li X, Bai XX, Gao J, Wang CY. Calycosin improves cognitive function in a transgenic mouse model of Alzheimer's disease by activating the protein kinase C pathway. Neural Regen Res 2017; 12:1870-1876. [PMID: 29239334 PMCID: PMC5745842 DOI: 10.4103/1673-5374.219049] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The major pathological changes in Alzheimer's disease are beta amyloid deposits and cognitive impairment. Calycosin is a typical phytoestrogen derived from radix astragali that binds to estrogen receptors to produce estrogen-like effects. Radix astragali Calycosin has been shown to relieve cognitive impairment induced by diabetes mellitus, suggesting calycosin may improve the cognitive function of Alzheimer's disease patients. The protein kinase C pathway is upstream of the mitogen-activated protein kinase pathway and exerts a neuroprotective effect by regulating Alzheimer's disease-related beta amyloid degradation. We hypothesized that calycosin improves the cognitive function of a transgenic mouse model of Alzheimer's disease by activating the protein kinase C pathway. Various doses of calycosin (10, 20 and 40 mg/kg) were intraperitoneally injected into APP/PS1 transgenic mice that model Alzheimer's disease. Calycosin diminished hippocampal beta amyloid, Tau protein, interleukin-1beta, tumor necrosis factor-alpha, acetylcholinesterase and malondialdehyde levels in a dose-dependent manner, and increased acetylcholine and glutathione activities. The administration of a protein kinase C inhibitor, calphostin C, abolished the neuroprotective effects of calycosin including improving cognitive ability, and anti-oxidative and anti-inflammatory effects. Our data demonstrated that calycosin mitigated oxidative stress and inflammatory responses in the hippocampus of Alzheimer's disease model mice by activating the protein kinase C pathway, and thereby improving cognitive function.
Collapse
Affiliation(s)
- Lei Song
- Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiaoping Li
- Department of Pediatrics, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiao-Xue Bai
- Cadre's Ward, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jian Gao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Chun-Yan Wang
- Cadre's Ward, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|