1
|
Shi Y, Wang R, Li Y, Cui Y, He Y, Wang H, Liu Y, Zhang M, Chen Y, Jia M, Chen K, Ruan X, Tian J, Ma T, Chen J. Involvement of TLRs/NF-κB/ESE-1 signaling pathway in T-2 toxin-induced cartilage matrix degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123114. [PMID: 38081376 DOI: 10.1016/j.envpol.2023.123114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
T-2 toxin, a highly toxic type A monotrichothecene mycotoxin, has been found in many different types of cereals and is considered to be one of the most dangerous naturally occurring forms of food contamination. Globally, consuming grain-based food tainted with T-2 toxin poses significant risks to animal and human health. Prior research has indicated that the presence of T-2 toxin may lead to the demise of chondrocytes and the deterioration of the extracellular matrix of cartilage in degenerative bone and joint conditions, such as Kashin-Beck disease. However, the mechanisms by which T-2 toxin exerts its biological toxicity on the degradation of the extracellular matrix in cartilage are not well understood. In the current study, we found original results that demonstrate an upregulation of Toll-Like Receptors (TLR-2, TLR-4) and ESE-1 expression levels in the articular cartilage of a rat model subjected to T-2 toxin exposure. Furthermore, it was revealed that the exposure to T-2 toxin resulted in an increase in the expression of TLR-2, TLR-4, and ESE-1 in human C28/I2 chondrocytes. The findings of this study indicate that the increased expression of TLR-2, TLR-4, and ESE-1 may contribute to the development of degenerative osteoarthritic disease caused by T-2 toxin. Consistent with our hypotheses, we discovered that T-2 toxin increased the expression of MMP-1 and MMP-13 in human C28/I2 chondrocytes. We used a luciferase reporter gene assay to measure the activity of the ESE-1 promoter and transfected cells with plasmids encoding TLR-2 and TLR-4 to investigate their effects on this activity. TLR-2 and TLR-4 can activate ESE-1 transcriptional gene expression, and this expression is mediated through the NF-κB pathway, additional evidence is provided for the participation of the TLRs/NF-κB/ESE-1 signaling pathway in T-2 toxin-induced cartilage matrix degradation. Together, the findings indicated that the TLRs/NF-κB/ESE-1 signaling pathway played an essential part in T-2 toxin-induced cartilage matrix degradation.
Collapse
Affiliation(s)
- Yawen Shi
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Rui Wang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China; Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, China
| | - Yanan Li
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China; School of Energy and Power Engineering, Xi'an Jiaotong University, Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an, Shaanxi, 710049, China
| | - Yixin Cui
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Ying He
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Hui Wang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Yinan Liu
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Meng Zhang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Yonghui Chen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Mingzhao Jia
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Kunpan Chen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Xingran Ruan
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Jing Tian
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Tianyou Ma
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Jinghong Chen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
2
|
Zheng HL, Sun SY, Jin T, Zhang M, Zeng Y, Liu Q, Yang K, Wei R, Pan Z, Lin F. Transcription factor ETS proto-oncogene 1 contributes to neuropathic pain by regulating histone deacetylase 1 in primary afferent neurons. Mol Pain 2023; 19:17448069231152125. [PMID: 36604795 PMCID: PMC9909074 DOI: 10.1177/17448069231152125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Nerve injury can induce aberrant changes in ion channels, enzymes, and cytokines/chemokines in the dorsal root ganglia (DRGs); these changes are due to or at least partly governed by transcription factors that contribute to the genesis of neuropathic pain. However, the involvement of transcription factors in neuropathic pain is poorly understood. In this study, we report that transcription factor (TF) ETS proto-oncogene 1 (ETS1) is required for the initiation and development of neuropathic pain. Sciatic nerve chronic constrictive injury (CCI, a clinical neuropathic pain model) increases ETS1 expression in the injured male mouse DRG. Blocking this upregulation alleviated CCI-induced mechanical allodynia and thermal hyperalgesia, with no apparent effect on locomotor function. Mimicking this upregulation results in the genesis of nociception hypersensitivity; mechanistically, nerve injury-induced ETS1 upregulation promotes the expression of histone deacetylase 1 (HDAC1, a key initiator of pain) via enhancing its binding activity to the HDAC1 promotor, leading to the elevation of spinal central sensitization, as evidenced by increased expression of p-ERK1/2 and GFAP in the dorsal spinal horn. It appears that the ETS1/HDAC1 axis in DRG may have a critical role in the development and maintenance of neuropathic pain, and ETS1 is a potential therapeutic target in neuropathic pain.
Collapse
Affiliation(s)
- Hong-Li Zheng
- Graduate School, Wannan Medical College, Wuhu, China
- Department of Pain, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Shi-Yu Sun
- Department of Pain, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Tong Jin
- Department of Pain, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Ming Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Ying Zeng
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Qiaoqiao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Kehui Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Runa Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Fuqing Lin
- Graduate School, Wannan Medical College, Wuhu, China
- Department of Pain, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Postconditioning with Sevoflurane or Propofol Alleviates Lipopolysaccharide-Induced Neuroinflammation but Exerts Dissimilar Effects on the NR2B Subunit and Cognition. Mol Neurobiol 2021; 58:4251-4267. [PMID: 33970453 DOI: 10.1007/s12035-021-02402-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
Neuroinflammation can cause cognitive deficits, and preexisting neuroinflammation is observed frequently in the clinic after trauma, surgery, and infection. Patients with preexisting neuroinflammation often need further medical treatment under general anesthesia. However, the effects of postconditioning with general anesthetics on preexisting neuroinflammation have not been determined. In this study, adult rats were posttreated with sevoflurane or propofol after intracerebroventricular administration of lipopolysaccharide. The effects of sevoflurane or propofol postconditioning on neuroinflammation-induced recognition memory deficits were detected. Our results found that postconditioning with sevoflurane but not propofol reversed the selective spatial recognition memory impairment induced by neuroinflammation, and these differential effects did not appear to be associated with the similar anti-neuroinflammatory responses of general anesthetics. However, postconditioning with propofol induced a selective long-lasting upregulation of extrasynaptic NR2B-containing N-methyl-D-aspartate receptors in the dorsal hippocampus, which downregulated the cAMP response element-binding signaling pathway and impaired spatial recognition memory. Additionally, the NR2B antagonists memantine and Ro25-6981 reversed this neurotoxicity induced by propofol postconditioning. Taken together, these results indicate that under preexisting neuroinflammation, postconditioning with sevoflurane can provide reliable neuroprotection by attenuating lipopolysaccharide-induced neuroinflammation, apoptosis, and neuronal loss and eventually improving spatial recognition deficits. However, although posttreatment with propofol also has the same anti-neuroinflammatory effects, the neurotoxicity caused by propofol postconditioning following neuroinflammation warrants further consideration.
Collapse
|
4
|
Zheng X, Wang X, Wang T, Zhang H, Wu H, Zhang C, Yu L, Guan Y. Gestational Exposure to Particulate Matter 2.5 (PM 2.5) Leads to Spatial Memory Dysfunction and Neurodevelopmental Impairment in Hippocampus of Mice Offspring. Front Neurosci 2019; 12:1000. [PMID: 30666183 PMCID: PMC6330280 DOI: 10.3389/fnins.2018.01000] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Prenatal exposure to air pollutants has long-term impact on growth retardation of nervous system development and is related to central nervous system diseases in children. However, it is not well-characterized whether gestational exposure to air pollutants affects the development of nervous system in offspring. Here, we investigated the effects of gestational exposure to particulate matter 2.5 (PM2.5) on hippocampus development in mice offspring, through neurobehavioral, ultrastructural, biochemical and molecular investigations. We found that spatial memory in mice offspring from PM2.5 high-dosage group was impaired. Next, hippocampal ultrastructure of the mice offspring in puberty exhibited mitochondrial damage related to PM2.5 exposure. Interestingly, EdU-positive cells in the subgranular zone (SGZ) of offspring from PM2.5 high-dosage group decreased, with NeuN+/EdU+cells reduced significantly. Furthermore, the numbers of NeuN+/TUNEL+, GFAP+/TUNEL+, and Iba1+/TUNEL+ double-labeled cells increased with PM2.5 exposure in a dosage-dependent manner. In addition, gestational exposure to PM2.5 resulted in increased levels of both mRNAs and proteins involved in apoptosis, including caspase-3, -8, -9, p53, and c-Fos, and decreased Bcl-2/Bax ratios in the hippocampus of mice offspring. Moreover, gestational exposure to PM2.5 was dosage-dependently associated with the increased secretions of inflammatory proteins, including NF-κB, TNF-α, and IL-1β. Collectively, our results suggest that gestational exposure to PM2.5 leads to spatial memory dysfunction and neurodevelopmental impairment by exerting effects on apoptotic and neuroinflammatory events, as well as the neurogenesis in hippocampus of mice offspring.
Collapse
Affiliation(s)
- Xinrui Zheng
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Xia Wang
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Tingting Wang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Hongxia Zhang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Hongjuan Wu
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Can Zhang
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Li Yu
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Yingjun Guan
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| |
Collapse
|
5
|
Yu HL, Wang LZ, Zhang LL, Chen BL, Zhang HJ, Li YP, Xiao GD, Chen YZ. ESE1 expression correlates with neuronal apoptosis in the hippocampus after cerebral ischemia/reperfusion injury. Neural Regen Res 2019; 14:841-849. [PMID: 30688270 PMCID: PMC6375036 DOI: 10.4103/1673-5374.249232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epithelial-specific ETS-1 (ESE1), a member of the ETS transcription factor family, is widely expressed in multiple tissues and performs various functions in inflammation. During neuroinflammation, ESE1 promotes neuronal apoptosis; however, the expression and biological functions of ESE1 remain unclear after cerebral ischemia/reperfusion. We performed in vivo and in vitro experiments to explore the role of ESE1 in cerebral ischemic injury. A modified four vessel occlusion method was used in adult Sprague-Dawley rats. At 6, 12, 24, 48, and 72 hours after model induction, the hippocampus was collected for analysis. Western blot assays and immunohistochemistry showed that the expression of ESE1, phosphorylated p65 and active caspase-3 was significantly up-regulated after ischemia. Double immunofluorescence staining indicated that ESE1 and NeuN were mostly co-located in the hippocampus after ischemia. Furthermore, ESE1 was also co-expressed with active caspase-3. PC12 cells were stimulated with cobalt chloride (CoCl2) to establish a chemical hypoxia model. After ESE1 knockdown by siRNA for 6 hours, cell viability was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assays. The levels of ESE1, phosphorylated p65 and active caspase-3 were also remarkably increased in PC12 cells after CoCl2 stimulation. After ESE1 knockdown, PC12 cell viability was increased after hypoxia. siRNA knockdown of ESE1 decreased the level of p-p65 and active caspase-3 after CoCl2 stimulation. These data reveal that ESE1 levels are elevated in the hippocampus after cerebral ischemia/reperfusion injury. This may play a role in neuronal apoptosis via activation of the nuclear factor-κB pathway.
Collapse
Affiliation(s)
- Hai-Long Yu
- Clinical Medical College of Yangzhou University; Department of Neurology, Northern Jiangsu People's Hospital; Institute of Neuroscience, Northern Jiangsu People's Hospital, Yangzhou; Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Liang-Zhu Wang
- Dalian Medical University, Dalian, Liaoning Province, China
| | - Ling-Ling Zhang
- Clinical Medical College of Yangzhou University; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
| | - Bei-Lei Chen
- Clinical Medical College of Yangzhou University; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
| | - Hui-Juan Zhang
- Clinical Medical College of Yangzhou University; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
| | - Yu-Ping Li
- Clinical Medical College of Yangzhou University; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
| | - Guo-Dong Xiao
- Department of Neurology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ying-Zhu Chen
- Clinical Medical College of Yangzhou University; Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
| |
Collapse
|
6
|
You T, Cheng Y, Zhong J, Bi B, Zeng B, Zheng W, Wang H, Xu J. Roflupram, a Phosphodiesterase 4 Inhibitior, Suppresses Inflammasome Activation through Autophagy in Microglial Cells. ACS Chem Neurosci 2017; 8:2381-2392. [PMID: 28605578 DOI: 10.1021/acschemneuro.7b00065] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inhibition of phosphodiesterase 4 (PDE4) suppressed the inflammatory responses in the brain. However, the underlying mechanisms are poorly understood. Roflupram (ROF) is a novel PDE4 inhibitor. In the present study, we found that ROF enhanced the level of microtubule-associated protein 1 light chain 3 II (LC3-II) and decreased p62 in microglial BV-2 cells. Enhanced fluorescent signals were observed in BV-2 cells treated with ROF by Lysotracker red and acridine orange staining. In addition, immunofluorescence indicated a significant increase in punctate LC3. Moreover, β amyloid 25-35 (Aβ25-35) or lipopolysaccharide (LPS) with ATP was used to activate inflammasome. We found that both LPS plus ATP and Aβ25-35 enhanced the conversion of pro-caspase-1 to cleaved-caspase-1 and increased the production of mature IL-1β in BV-2 cells. Interestingly, these effects were blocked by the treatment of ROF. Consistently, knocking down the expression of PDE4B in primary microglial cells led to enhanced level of LC-3 II and decreased activation of inflammasome. What's more, Hoechst staining showed that ROF decreased the apoptosis of neuronal N2a cells in conditioned media from microglia. Our data also showed that ROF dose-dependently enhanced autophagy, reduced the activation of inflammasome and suppressed the production of IL-1β in mice injected with LPS. These effects were reversed by inhibition of microglial autophagy. These results put together demonstrate that ROF inhibits inflammasome activities and reduces the release of IL-1β by inducing autophagy. Therefore, ROF could be used as a potential therapeutic compound for the intervention of inflammation-associated diseases in the brain.
Collapse
Affiliation(s)
- Tingting You
- Department of Neuropharmacology
and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Pharmacology, Guangdong Key Laboratory for R&D of Natural Drug, Guangdong Medical University, Zhanjiang 524023, China
| | - Yufang Cheng
- Department of Neuropharmacology
and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiahong Zhong
- Department of Neuropharmacology
and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bingtian Bi
- Department of Neuropharmacology
and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Clinical Trial Center, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Bingqing Zeng
- Department of Neuropharmacology
and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenhua Zheng
- Faculty
of Health Sciences, University of Macau, Taipa, Macau China
| | - Haitao Wang
- Department of Neuropharmacology
and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiangping Xu
- Department of Neuropharmacology
and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Sun Y, Ge X, Li M, Xu L, Shen Y. Dyrk2 involved in regulating LPS-induced neuronal apoptosis. Int J Biol Macromol 2017; 104:979-986. [PMID: 28676338 DOI: 10.1016/j.ijbiomac.2017.06.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/18/2017] [Accepted: 06/20/2017] [Indexed: 11/29/2022]
Abstract
The activation of relevant signaling pathways plays a very important role in LPS-induced neuronal damage. Dual-specificity tyrosine-phosphorylation-regulated kinase 2(Dyrk2), as a phosphokinase that can directly or indirectly phosphorylate signal molecules, was recently reported to down-regulate Type I Interferon(TIF) by promoting ser527 phosphorylation of TBK1. To further investigate the role of Dyrk2 in neuroinflammation, we for the first time focused on its function in LPS-induced neuronal damage. We found LPS stimulation increased the expression of Dyrk2 in the nucleus and cytoplasm of neurons. In addition, overexpression of Dyrk2 not only reduced the level of TNF-α induction, but also obviously inhibited LPS-induced neuronal apoptosis. We further found that Dyrk2 promoted the induction of phospho-Akt, phospho-p65 and phospho-p38MAPK (p38 mitogen-activated protein kinase), but immunoprecipitation showed Dyrk2 interacted with and Akt, p38MAPK and IκBα (IkappaB-alpha), except NF-κB subunit p65. These findings suggest Dyrk2 can inhibit LPS-induced neuronal apoptosis and plays key roles in LPS-indcued signaling pathways by its phosphokinase function. These data provide a novel viewpoint that Dyrks family may have an important role in neuroinflammation, and provide a potential molecular target for improving neuronal apoptosis.
Collapse
Affiliation(s)
- Yuxiang Sun
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China.
| | - Xin Ge
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Mengmeng Li
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Li Xu
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yaodong Shen
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
8
|
Tart Cherry Extracts Reduce Inflammatory and Oxidative Stress Signaling in Microglial Cells. Antioxidants (Basel) 2016; 5:antiox5040033. [PMID: 27669317 PMCID: PMC5187531 DOI: 10.3390/antiox5040033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/02/2016] [Accepted: 09/09/2016] [Indexed: 11/26/2022] Open
Abstract
Tart cherries contain an array of polyphenols that can decrease inflammation and oxidative stress (OS), which contribute to cognitive declines seen in aging populations. Previous studies have shown that polyphenols from dark-colored fruits can reduce stress-mediated signaling in BV-2 mouse microglial cells, leading to decreases in nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression. Thus, the present study sought to determine if tart cherries—which improved cognitive behavior in aged rats—would be efficacious in reducing inflammatory and OS signaling in HAPI rat microglial cells. Cells were pretreated with different concentrations (0–1.0 mg/mL) of Montmorency tart cherry powder for 1–4 h, then treated with 0 or 100 ng/mL lipopolysaccharide (LPS) overnight. LPS application increased extracellular levels of NO and tumor necrosis factor-alpha (TNF-α), and intracellular levels of iNOS and cyclooxygenase-2 (COX-2). Pretreatment with tart cherry decreased levels of NO, TNF-α, and COX-2 in a dose- and time-dependent manner versus those without pretreatment; the optimal combination was between 0.125 and 0.25 mg/mL tart cherry for 2 h. Higher concentrations of tart cherry powder and longer exposure times negatively affected cell viability. Therefore, tart cherries (like other dark-colored fruits), may be effective in reducing inflammatory and OS-mediated signals.
Collapse
|
9
|
He M, Liu Y, Shen J, Duan C, Lu X. Upregulation of PLZF is Associated with Neuronal Injury in Lipopolysaccharide-Induced Neuroinflammation. Neurochem Res 2016; 41:3063-3073. [DOI: 10.1007/s11064-016-2027-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/25/2016] [Accepted: 08/02/2016] [Indexed: 12/22/2022]
|