1
|
Tajbakhsh A, Hosseinpour-Soleimani F, Abedi M, Hashempur MH, Negahdaripour M. Modulation of Neuroinflammation in Poststroke Rehabilitation: The Role of 12/15-Lipoxygenase Inhibition and Baicalein. Stroke 2025; 56:1092-1103. [PMID: 40052290 DOI: 10.1161/strokeaha.124.049048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Neuroinflammation significantly contributes to stroke pathophysiology, leading to tissue damage and neurological deficits. Baicalein, a potent 12/15-LOX (12/15-lipoxygenase) inhibitor, demonstrates neuroprotective effects by reducing inflammatory lipid mediators, modulating key inflammatory pathways, and attenuating oxidative stress. Experimental studies indicate that baicalein can diminish infarct size and neurological deficits while improving safety and tolerability. Combination therapies with baicalein show promise in enhancing stroke outcomes. Overall, targeting 12/15-LOX and employing baicalein represents a promising approach to modulating neuroinflammation and improving recovery in stroke patients. This review highlights the therapeutic potential of inhibiting the 12/15-LOX pathway and utilizing the natural compound baicalein to mitigate poststroke neuroinflammation.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center (A.T., M.A., M.N.), Shiraz University of Medical Sciences, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies (A.T.), Shiraz University of Medical Sciences, Iran
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies (A.T.), Shiraz University of Medical Sciences, Iran
| | - Fatemeh Hosseinpour-Soleimani
- Student Research Committee (F.H.-S.), Shiraz University of Medical Sciences, Iran
- Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Medical Sciences and Technologies (F.H.-S.), Shiraz University of Medical Sciences, Iran
| | - Mehdi Abedi
- Pharmaceutical Sciences Research Center (A.T., M.A., M.N.), Shiraz University of Medical Sciences, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine (M.H.H.), Shiraz University of Medical Sciences, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center (A.T., M.A., M.N.), Shiraz University of Medical Sciences, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy (M.N.), Shiraz University of Medical Sciences, Iran
| |
Collapse
|
2
|
Dogra A. Baicalein: unveiling the multifaceted marvel of hepatoprotection and beyond. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-13. [PMID: 40126088 DOI: 10.1080/10286020.2025.2481273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Flavonoids are bioactive compounds derived from plants that play a crucial role in human health. Baicalein is a prominent phytoconstituent with multifaceted therapeutic potential against various diseases. This review explores recent advancements in understanding baicalein's hepatoprotective action against different toxicity models (acetaminophen, cisplatin, doxorubicin, CCL4, monocrotaline, & d-galactosamine). Furthermore, we report the key pharmacological activities of baicalein against neurotoxicity (6-OHDA, rotenone, d-galactose, stroke, alzheimer, & sclerosis), inflammation (arthritis, pulmonary fibrosis, & LPS-induced sepsis), cancer (breast, prostate, gall bladder, gastric, & pancreatic), & diabetes. Overall, baicalein has potential to influence diverse biological networks, making it a promising candidate for both dietary supplementation and therapeutic development.
Collapse
Affiliation(s)
- Ashish Dogra
- Department of Zoology, HNB Garhwal University, SRT Campus, Badshahithaul, Tehri Garhwal, Uttarakhand 249199, India
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Faysal M, Al Amin M, Zehravi M, Sweilam SH, Arjun UVNV, Gupta JK, Shanmugarajan TS, Prakash SS, Dayalan G, Kasimedu S, Madhuri YB, Reddy KTK, Rab SO, Al Fahaid AAF, Emran TB. Therapeutic potential of flavonoids in neuroprotection: brain and spinal cord injury focus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03888-4. [PMID: 40014123 DOI: 10.1007/s00210-025-03888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Flavonoids in fruits, vegetables, and plant-based drinks have potential neuroprotective properties, with clinical research focusing on their role in reducing oxidative stress, controlling inflammation, and preventing apoptosis. Some flavonoids, such as quercetin, kaempferol, fisetin, apigenin, luteolin, chrysin, baicalein, catechin, epigallocatechin gallate, naringenin, naringin, hesperetin, genistein, rutin, silymarin, and daidzein, have been presented to help heal damage to the central nervous system by affecting key signaling pathways including PI3K/Akt and NF-κB. This review systematically analyzed articles on flavonoids, neuroprotection, and brain and spinal cord injury from primary medical databases like Scopus, PubMed, and Web of Science. Flavonoids enhance antioxidant defenses, reduce pro-inflammatory cytokine production, and aid cell survival and repair by focusing on specific molecular pathways. Clinical trials are also exploring the application of preclinical results to therapeutic approaches for patients with spinal cord injury and traumatic brain injury. Flavonoids can enhance injury healing, reduce lesion size, and enhance synaptic plasticity and neurogenesis. The full potential of flavonoids lies in their bioavailability, dose, and administration methods, but there are still challenges to overcome. This review explores flavonoid-induced neuroprotection, its clinical implications, future research opportunities, and molecular mechanisms, highlighting the potential for innovative CNS injury therapies and improved patient health outcomes.
Collapse
Affiliation(s)
- Md Faysal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Md Al Amin
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Sarandeep Shanmugam Prakash
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Girija Dayalan
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Saravanakumar Kasimedu
- Department of Pharmaceutics, Seven Hills College of Pharmacy (Autonomous), Venkatramapuram, Tirupati, Andhra Pradesh, 517561, India
| | - Y Bala Madhuri
- Piramal Pharma Solutions in Sellersville, Sellersville, PA, USA
| | - Konatham Teja Kumar Reddy
- Department of Pharmacy, University College of Technology, Osmania University, Hyderabad, 500007, Telangana, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| |
Collapse
|
4
|
Li J, Yu Y, Zhang Y, Zhou Y, Ding S, Dong S, Jin S, Li Q. Flavonoids Derived from Chinese Medicine: Potential Neuroprotective Agents. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1613-1640. [PMID: 39343989 DOI: 10.1142/s0192415x24500630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Due to their complex pathological mechanisms, neurodegenerative diseases have brought great challenges to drug development and clinical treatment. Studies have shown that many traditional Chinese medicines have neuroprotective pharmacological activities such as anti-inflammatory and anti-oxidation properties and have certain effects on improving the symptoms of neurodegenerative diseases and delaying disease progression. Flavonoids are the main active components of many traditional Chinese medicines for the treatment of neurodegenerative diseases. These compounds have a wide range of biological activities, including anti-inflammatory, anti-oxidative stress, regulation of autophagy balance, inhibition of apoptosis, and promotion of neuronal regeneration. This paper focuses on the neuroprotective effects of six common flavonoids: quercetin, rutin, luteolin, kaempferol, baicalein, and puerarin. It then systematically reviews their characteristics, mechanisms, and key signaling pathways, summarizes the common characteristics and laws of their neuroprotective effects, and discusses the significance of strengthening the research on the neuroprotective effects of these compounds, aiming to provide reference for more research and drug development of these substances as neuroprotective drugs.
Collapse
Affiliation(s)
- Jinhua Li
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Ye Yu
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Yanjie Zhang
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Yilin Zhou
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Shuxian Ding
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Shuze Dong
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Sainan Jin
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| | - Qin Li
- Hangzhou Medical College, Xihu District, Hangzhou, Zhejiang, 310013, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P. R. China
| |
Collapse
|
5
|
Forouzanfar F, Pourbagher-Shahri AM, Vafaee F, Sathyapalan T, Sahebkar A. Phytochemicals as Substances that Affect Astrogliosis and their Implications for the Management of Neurodegenerative Diseases. Curr Med Chem 2024; 31:5550-5566. [PMID: 37143267 DOI: 10.2174/0929867330666230504121523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Astrocytes are a multifunctional subset of glial cells that are important in maintaining the health and function of the central nervous system (CNS). Reactive astrocytes may release inflammatory mediators, chemokines, and cytokines, as well as neurotrophic factors. There may be neuroprotective (e.g., cytokines, like IL-6 and TGF-b) and neurotoxic effects (e.g., IL-1β and TNF-a) associated with these molecules. In response to CNS pathologies, astrocytes go to a state called astrogliosis which produces diverse and heterogenic functions specific to the pathology. Astrogliosis has been linked to the progression of many neurodegenerative disorders. Phytochemicals are a large group of compounds derived from natural herbs with health benefits. This review will summarize how several phytochemicals affect neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, and Parkinson's disease) in basic medical and clinical studies and how they might affect astrogliosis in the process.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull- HU3 2JZ, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Tang J, Yan B, Tang Y, Zhou X, Ji Z, Xu F. Baicalein ameliorates oxidative stress and brain injury after intracerebral hemorrhage by activating the Nrf2/ARE pathway via miR-106a-5p/PHLPP2 axis. Int J Neurosci 2023; 133:1380-1393. [PMID: 35612366 DOI: 10.1080/00207454.2022.2080676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating stroke subtype. Baicalein (BAI) has been reported to be effective in ischemic stroke. The aim of the present study was to investigate the mechanism of BAI on brain injury after ICH. Firstly, ICH mouse models were established by injecting collagenase into the right of basal ganglia, followed by detection of neurobehavioral scores, brain edema, oxidative stress (OS) level, neuronal apoptosis and pathological changes. Average neurologic scores, brain water content, and blood-brain barrier permeability and MDA level in ICH mice were reduced after BAI treatment, while serum SOD and GSH-Px levels were increased and neuronal apoptosis and pathological injury of the brain tissues were mitigated. miR-106a-5p downregulation averted the effect of BAI on ICH mice. miR-106a-5p targeted PHLPP2 and PHLPP2 overexpression reversed the effect of BAI on ICH mice. BAI activated the Nrf2/ARE pathway by inhibiting PHLPP2 expression. In conclusion, BAI inhibited OS and protected against brain injury after ICH by activating the Nrf2/ARE pathway through the miR-106a-5p/PHLPP2 axis.
Collapse
Affiliation(s)
- Jilei Tang
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Bingchao Yan
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Yangyang Tang
- Department of Nursing Basic Medicine Teaching and Research Section, Jiangsu Provincial Xuzhou Pharmaceutical Vocational College, Xuzhou, Jiangsu, China
| | - Xin Zhou
- Xuzhou College of Industrial Technolog, Xuzhou, Jiangsu, China
| | - Ziteng Ji
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Feng Xu
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| |
Collapse
|
7
|
Huang Y, Omorou M, Gao M, Mu C, Xu W, Xu H. Hydrogen sulfide and its donors for the treatment of cerebral ischaemia-reperfusion injury: A comprehensive review. Biomed Pharmacother 2023; 161:114506. [PMID: 36906977 DOI: 10.1016/j.biopha.2023.114506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
As an endogenous gas signalling molecule, hydrogen sulfide (H2S) is frequently present in a variety of mammals and plays a significant role in the cardiovascular and nervous systems. Reactive oxygen species (ROS) are produced in large quantities as a result of cerebral ischaemia-reperfusion, which is a very serious class of cerebrovascular diseases. ROS cause oxidative stress and induce specific gene expression that results in apoptosis. H2S reduces cerebral ischaemia-reperfusion-induced secondary injury via anti-oxidative stress injury, suppression of the inflammatory response, inhibition of apoptosis, attenuation of cerebrovascular endothelial cell injury, modulation of autophagy, and antagonism of P2X7 receptors, and it plays an important biological role in other cerebral ischaemic injury events. Despite the many limitations of the hydrogen sulfide therapy delivery strategy and the difficulty in controlling the ideal concentration, relevant experimental evidence demonstrating that H2S plays an excellent neuroprotective role in cerebral ischaemia-reperfusion injury (CIRI). This paper examines the synthesis and metabolism of the gas molecule H2S in the brain as well as the molecular mechanisms of H2S donors in cerebral ischaemia-reperfusion injury and possibly other unknown biological functions. With the active development in this field, it is expected that this review will assist researchers in their search for the potential value of hydrogen sulfide and provide new ideas for preclinical trials of exogenous H2S.
Collapse
Affiliation(s)
- Yiwei Huang
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Moussa Omorou
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Meng Gao
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Chenxi Mu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Weijing Xu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
8
|
Wang ZY, Li MZ, Li WJ, Ouyang JF, Gou XJ, Huang Y. Mechanism of action of Daqinjiao decoction in treating cerebral small vessel disease explored using network pharmacology and molecular docking technology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154538. [PMID: 36370638 DOI: 10.1016/j.phymed.2022.154538] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND PURPOSE Cerebral small vessel disease (CSVD) is a clinically commonly-seen slow-progressing cerebral vascular disease. As a classic Chinese formula for the treatment of stroke, Daqinjiao Decoction (DQJD) is now used to treat CSVD with desirable effect. Since the mechanism of action is still unclear, this article will explore the therapeutic effect and mechanism of action of the formula using network pharmacology technology. METHODS The major chemical components and potential target genes of DQJD were screened by bioinformatics. The key targets in CSVD were identified based on network modules. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Pharmacodynamics of the decoction was evaluated by establishing a rat model with bilateral common carotid artery occlusion in the brain. Molecular docking, Western blot analysis and quantitative real-time polymerase chain reaction (QRT-PCR) were performed to confirm the effectiveness of targets in related pathways. RESULTS Network pharmacology showed that 16 targets and 30 pathways were involved in the DQJD-targeted pathway network. Results revealed that DQJD might play a role by targeting the key targets including Caspse3 and P53 and regulating the P53 signaling pathway. Cognitive function and neuronal cell changes of rats were evaluated using Morris water maze, open field test and HE staining. It was indicated that DQJD could keep the nerve cells intact and neatly arranged. The decoction could improve the memory and learning ability of rats compared with the model group. It decreased the protein and mRNA expression levels of Caspse3 and P53 significantly (p<0.01). CONCLUSION The study shows that baicalein, quercetin and wogonin, the effective components of DQJD, may regulate multiple signaling pathways by targeting the targets like Caspse3 and P53 and treat CSVD by reducing the damage to brain nerve cells.
Collapse
Affiliation(s)
- Zhuo-Yuan Wang
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China
| | - Ming-Zhe Li
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Wen-Jie Li
- Experimental Research center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing 100700, China
| | - Jing-Feng Ouyang
- Experimental Research center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing 100700, China
| | - Xiao-Jun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China.
| | - Ying Huang
- Experimental Research center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing 100700, China.
| |
Collapse
|
9
|
Soluble ANPEP Released From Human Astrocytes as a Positive Regulator of Microglial Activation and Neuroinflammation: Brain Renin-Angiotensin System in Astrocyte-Microglia Crosstalk. Mol Cell Proteomics 2022; 21:100424. [PMID: 36220603 PMCID: PMC9650055 DOI: 10.1016/j.mcpro.2022.100424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
Astrocytes are major supportive glia and immune modulators in the brain; they are highly secretory in nature and interact with other cell types via their secreted proteomes. To understand how astrocytes communicate during neuroinflammation, we profiled the secretome of human astrocytes following stimulation with proinflammatory factors. A total of 149 proteins were significantly upregulated in stimulated astrocytes, and a bioinformatics analysis of the astrocyte secretome revealed that the brain renin-angiotensin system (RAS) is an important mechanism of astrocyte communication. We observed that the levels of soluble form of aminopeptidase N (sANPEP), an RAS component that converts angiotensin (Ang) III to Ang IV in a neuroinflammatory milieu, significantly increased in the astrocyte secretome. To elucidate the role of sANPEP and Ang IV in neuroinflammation, we first evaluated the expression of Ang IV receptors in human glial cells because Ang IV mediates biological effects through its receptors. The expression of angiotensin type 1 receptor was considerably upregulated in activated human microglial cells but not in human astrocytes. Moreover, interleukin-1β release from human microglial cells was synergistically increased by cotreatment with sANPEP and its substrate, Ang III, suggesting the proinflammatory action of Ang IV generated by sANPEP. In a mouse neuroinflammation model, brain microglial activation and proinflammatory cytokine expression levels were increased by intracerebroventricular injection of sANPEP and attenuated by an enzymatic inhibitor and neutralizing antibody against sANPEP. Collectively, our results indicate that astrocytic sANPEP-induced increase in Ang IV exacerbates neuroinflammation by interacting with microglial proinflammatory receptor angiotensin type 1 receptor, highlighting an important role of indirect crosstalk between astrocytes and microglia through the brain RAS in neuroinflammation.
Collapse
|
10
|
Duan T, Li L, Yu Y, Li T, Han R, Sun X, Cui Y, Liu T, Wang X, Wang Y, Fan X, Liu Y, Zhang H. Traditional Chinese medicine use in the pathophysiological processes of intracerebral hemorrhage and comparison with conventional therapy. Pharmacol Res 2022; 179:106200. [PMID: 35367344 DOI: 10.1016/j.phrs.2022.106200] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) refers to hemorrhage caused by non-traumatic vascular rupture in the brain parenchyma, which is characterized by acute onset, severe illness, and high mortality and disability. The influx of blood into the brain tissue after cerebrovascular rupture causes severe brain damage, including primary injury caused by persistent hemorrhage and secondary brain injury (SBI) induced by hematoma. The mechanism of brain injury is complicated and is a significant cause of disability after ICH. Therefore, it is essential to understand the mechanism of brain injury after ICH to develop drugs to prevent and treat ICH. Studies have confirmed that many traditional Chinese medicines (TCM) can reduce brain injury by improving neurotoxicity, inflammation, oxidative stress (OS), blood-brain barrier (BBB), apoptosis, and neurological dysfunction after ICH. Starting from the pathophysiological process of brain injury after ICH, this paper summarizes the mechanisms by which TCM improves cerebral injury after ICH and its comparison with conventional western medicine, so as to provide clues and a reference for the clinical application of TCM in the prevention and treatment of hemorrhagic stroke and further research and development of new drugs.
Collapse
Affiliation(s)
- Tian Duan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yajun Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tiantian Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xingyi Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoying Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
11
|
Du X, Li C, Zhang S, Sun C, Zhang X, Chen C, Wang X, Cheng F, Wang Q. Exploring the pharmacological mechanism of calculus bovis in cerebral ischaemic stroke using a network pharmacology approach. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114507. [PMID: 34384847 DOI: 10.1016/j.jep.2021.114507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Calculus bovis is commonly used in traditional Chinese medicine for the treatment of cerebrovascular diseases given its roles in clearing away heat, detoxification and pain relief. Calculus bovis is used the treatment of cerebral ischaemia, liver and gallbladder diseases and various inflammatory conditions. However, the mechanism of action of calculus bovis in the treatment of ischaemic stroke is not well understood. AIM OF THE STUDY In this study, the anti-inflammatory, antioxidative and antiapoptotic effects of calculus bovis on neurovascular units were studied, and the mechanism of action of calculus bovis on neurovascular units was also discussed. MATERIALS AND METHODS Neurons, astrocytes, and endothelial cells were used to construct models of brain neurovascular units in vitro. The oxygen-glucose deprivation/reoxygenation and glucose (OGD/R) model was used to assess the effects of in vitro cultured calculus bovis on inflammatory factors, oxidative stress, and apoptosis. ZO-1, Occludin, Claudin-5, HIF-1, VEGF, PI3K, Akt, Bax, Bcl-2, and Caspase-3 expression was detected. RESULTS In vitro cultured calculus bovis protects the blood-brain barrier; repairs tight junction proteins; increases ZO-1, Occludin and Claudin-5 protein expression; maintains TEER(transepithelial electrical resistance) values; repairs damaged endothelial cells; increases γ-GT activity; reduces LDH and inflammatory injury; and reduces TNF-α, LI-6, and IL-1β levels. In vitro cultured calculus bovis reduces oxidative stress damage and NO and improves SOD activity. In vitro cultured calculus bovis protects neurons through antiapoptotic activities, including reductions in the apoptotic proteins Bax and Caspase-3, increases in Bcl-2 protein expression, and protection of brain neurovascular units through the HIF/VEGF and PI3K/Akt signalling pathways. CONCLUSION In summary, the protective effect of calculus bovis on neurovascular units is achieved through antioxidative, anti-inflammatory and antiapoptotic effects. The mechanism of action of in vitro cultured calculus bovis in ischaemic stroke involves multiple targets and signalling pathways. The PI3K/Akt, HIF-1α and VEGF pathways effectively protect neurovascular units in the brain.
Collapse
Affiliation(s)
- Xin Du
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Changxiang Li
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Shuang Zhang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Chunyan Sun
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Xiaole Zhang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Congai Chen
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Xueqian Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Fafeng Cheng
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Qingguo Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China.
| |
Collapse
|
12
|
Kim Y, Cho AY, Kim HC, Ryu D, Jo SA, Jung YS. Effects of Natural Polyphenols on Oxidative Stress-Mediated Blood–Brain Barrier Dysfunction. Antioxidants (Basel) 2022; 11:antiox11020197. [PMID: 35204080 PMCID: PMC8868362 DOI: 10.3390/antiox11020197] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
The blood-brain barrier (BBB), which consists mainly of brain microvascular endothelial cells and astrocytes connected by tight junctions (TJs) and adhesion molecules (AMs), maintains the homeostatic balance between brain parenchyma and extracellular fluid. Accumulating evidence shows that BBB dysfunction is a common feature of neurodegenerative diseases, including stroke, traumatic brain injury, and Alzheimer’s disease. Among the various pathological pathways of BBB dysfunction, reactive oxygen species (ROS) are known to play a key role in inducing BBB disruption mediated via TJ modification, AM induction, cytoskeletal reorganization, and matrix metalloproteinase activation. Thus, antioxidants have been suggested to exert beneficial effects on BBB dysfunction-associated brain diseases. In this review, we summarized the sources of ROS production in multiple cells that constitute or surround the BBB, such as BBB endothelial cells, astrocytes, microglia, and neutrophils. We also reviewed various pathological mechanisms by which BBB disruption is caused by ROS in these cells. Finally, we summarized the effects of various natural polyphenols on BBB dysfunction to suggest a therapeutic strategy for BBB disruption-related brain diseases.
Collapse
Affiliation(s)
- Yeonjae Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
| | - A Yeon Cho
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
| | - Hong Cheol Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
| | - Dajung Ryu
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
| | - Sangmee Ahn Jo
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea;
- Department of Pharmacology, College of Pharmacy, Dankook University, Cheonan 31116, Korea
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-3444
| |
Collapse
|
13
|
Chen X, Zhou Y, Wang S, Wang W. Mechanism of Baicalein in Brain Injury After Intracerebral Hemorrhage by Inhibiting the ROS/NLRP3 Inflammasome Pathway. Inflammation 2021; 45:590-602. [PMID: 34625906 DOI: 10.1007/s10753-021-01569-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/24/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating subtype of stroke with high disability/mortality. Baicalein has strong anti-inflammatory activity. This study aims to explore the mechanism of baicalein on brain injury after ICH. The model of brain injury after ICH was established by collagenase induction, followed by the evaluation of neurological severity, brain water content, the degenerated neurons, neuronal apoptosis, and reactive oxygen species (ROS). The ICH model was treated with baicalein or silencing NLRP3 to detect brain injury. The expression of NLRP3 inflammasome was detected after treatment with ROS scavenger. The expressions of oxidative stress markers and inflammatory factors were detected, and the levels of components in NLRP3 inflammasome were detected. Baicalein reduced the damage of nervous system, lesion surface, brain water content, and apoptosis. Baicalein inhibited malondialdehyde and increased IL-10 by inhibiting ROS in brain tissue after ICH. Baicalein inhibited the high expression of NLRP3 inflammasome in ICH. ROS scavenger inhibited the NLRP3 inflammatory response by inhibiting ROS levels. Silencing NLRP3 alleviated the brain injury after ICH by inhibiting excessive oxidative stress and inflammatory factors. Overall, baicalein alleviated the brain injury after ICH by inhibiting ROS and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Neurosurgery, The First People's Hospital of Shangqiu, No. 292 Kaixuan Road, Suiyang District, Shangqiu, Henan, China
| | - Yue Zhou
- Department of Neurological Rehabilitation, Yidu Central Hospital, Weifang, China
| | - Shanshan Wang
- Department of Cardiology First Ward, Yidu Central Hospital, Weifang, China
| | - Wei Wang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Street, Shenyang, 110032, China.
| |
Collapse
|
14
|
BMSCs Regulate Astrocytes through TSG-6 to Protect the Blood-Brain Barrier after Subarachnoid Hemorrhage. Mediators Inflamm 2021; 2021:5522291. [PMID: 34305453 PMCID: PMC8263246 DOI: 10.1155/2021/5522291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 01/18/2023] Open
Abstract
Background In patients with subarachnoid hemorrhage (SAH), the damage of the blood-brain barrier (BBB) can be life-threatening. Mesenchymal stem cells are widely used in clinical research due to their pleiotropic properties. This study is aimed at exploring the effect of BMSCs regulating astrocytes on the BBB after SAH. Methods The SAH model was established by perforating the blood vessels. BMSCs were transfected with TSG-6 inhibitor plasmid and cocultured with astrocytes. Intravenous transplantation of BMSCs was utilized to treat SAH rats. We performed ELISA, neurological scoring, Evans blue staining, NO measurement, immunofluorescence, BBB permeability, Western blot, HE staining, Nissl staining, and immunohistochemistry to evaluate the effect of BMSCs on astrocytes and BBB. Results SAH rats showed BBB injury, increased BBB permeability, and brain histological damage. BMSCs will secrete TSG-6 after being activated by TNF-α. Under the influence of TSG-6, the NF-κB and MAPK signaling pathways of astrocytes were inhibited. The expression of iNOS was reduced, while occludin, claudin 3, and ZO-1 expression was increased. The production of harmful substances NO and ONOO- decreased. The level of inflammatory factors decreased. The apoptosis of astrocytes was weakened. TSG-6 secreted by BMSCs can relieve inflammation caused by SAH injury. The increase in BBB permeability of SAH rats was further reduced and the risk of rebleeding was reduced. Conclusion BMSCs can regulate the activation of astrocytes through secreting TSG-6 in vivo and in vitro to protect BBB.
Collapse
|
15
|
Xiao W, He Z, Luo W, Feng D, Wang Y, Tang T, Yang A, Luo J. BYHWD Alleviates Inflammatory Response by NIK-Mediated Repression of the Noncanonical NF-κB Pathway During ICH Recovery. Front Pharmacol 2021; 12:632407. [PMID: 34025405 PMCID: PMC8138445 DOI: 10.3389/fphar.2021.632407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/19/2021] [Indexed: 01/24/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a life-threatening type of stroke that lacks effective treatments. The inflammatory response following ICH is a vital response that affects brain repair and organism recovery. The nuclear factor κB (NF-κB) signaling pathway is considered one of the most important inflammatory response pathways and one of its response pathways, the noncanonical NF-κB signaling pathway, is known to be associated with persistent effect and chronic inflammation. NF-κB–inducing kinase (NIK) via the noncanonical NF-κB signaling plays a key role in controlling inflammation. Here, we investigated potential effects of the traditional Chinese medicine formula Buyang Huanwu Decoction (BYHWD) on inflammatory response in a rat model of ICH recovery by inhibiting the NIK-mediated the noncanonical NF-κB signaling pathway. In the first part, rats were randomly divided into three groups: the sham group, the ICH group, and the BYHWD group. ICH was induced in rats by injecting collagenase (type VII) into the right globus pallidus of rats' brain. For the BYHWD group, rats were administered BYHWD (4.36 g/kg) once a day by intragastric administration until they were sacrificed. Neurological function was evaluated in rats by a modified neurological severity score (mNSS), the corner turn test, and the foot-fault test. The cerebral edema showed the degree of inflammatory response by sacrificed brain water content. Western blot and real-time quantitative reverse transcription PCR tested the activity of inflammatory response and noncanonical NF-κB signaling. In the second part, siRNA treatment and assessment of inflammation level as well as alterations in the noncanonical NF-κB signaling were performed to determine whether the effect of BYHWD on inflammatory response was mediated by suppression of NIK via the noncanonical NF-κB signaling pathway. We show that BYHWD treated rats exhibited: (i) better health conditions and better neural functional recovery; (ii) decreased inflammatory cytokine and the edema; (iii) reduced expression of NIK, a key protein in unregulated the noncanonical NF-κB signaling pathways; (iv) when compared with pretreated rats with NIK targeting (NIK siRNAs), showed the same effect of inhibiting the pathway and decreased inflammatory cytokine. BYHWD can attenuate the inflammatory response during ICH recovery in rats by inhibiting the NIK-mediated noncanonical NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zehui He
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Weikang Luo
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Dandan Feng
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ali Yang
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiekun Luo
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Synergistic Network Pharmacology for Traditional Chinese Medicine Liangxue Tongyu Formula in Acute Intracerebral Hemorrhagic Stroke. Neural Plast 2021; 2021:8874296. [PMID: 33727915 PMCID: PMC7936909 DOI: 10.1155/2021/8874296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Background Nowadays, acute intracerebral hemorrhage stroke (AICH) still causes higher mortality. Liangxue Tongyu Formula (LXTYF), originating from a traditional Chinese medicine (TCM) prescription, is widely used as auxiliary treatment for AICH. Objective To dig into the multicomponent, multitarget, and multipathway mechanism of LXTYF on treating AICH via network pharmacology and RNA-seq. Methods Network pharmacology analysis was used by ingredient collection, target exploration and prediction, network construction, and Gene Ontology (GO) and KEGG analysis, with the Cytoscape software and ClusterProfiler package in R. The RNA-seq data of the AICH-rats were analyzed for differential expression and functional enrichments. Herb-Compound-Target-Pathway (H-C-T-P) network was shown to clarify the mechanism of LXTYF for AICH. Results 76 active ingredients (quercetin, Alanine, kaempferol, etc.) of LXTYF and 376 putative targets to alleviate AICH (PTGS2, PTGS1, ESR1, etc.) were successfully identified. The protein-protein interaction (PPI) network indicated the important role of STAT3. The functional enrichment of GO and KEGG pathway showed that LXTYF is most likely to influence MAPK and PI3K-Akt signaling pathways for AICH treatment. From the RNA-seq of AICH-rats, 583 differential mRNAs were identified and 14 of them were consistent with the putative targets of LXTYF for AICH treatment. The KEGG pathway enrichment also implied that the MAPK signaling pathway was the most correlated one among all the related signaling pathways. Many important targets with expression changes of LXTYF for AICH treatment and their related pathways are great markers of antioxidation, anti-inflammatory, antiapoptosis, and lowering blood pressure, which indicated that LXTYF may play mutiroles in the mechanisms for AICH treatment. Conclusion The LXTYF attenuates AICH partially by antioxidation, anti-inflammatory, and antiapoptosis and lowers blood pressure roles through regulating the targets involved MAPK, calcium, apoptosis, and TNF signaling pathway, which provide notable clues for further experimental validation.
Collapse
|
17
|
Cheng G, Zhao W, Xin Y, Huang G, Liu Y, Li Z, Zhan M, Li Y, Lu L, van Leyen K, Liu Y. Effects of ML351 and tissue plasminogen activator combination therapy in a rat model of focal embolic stroke. J Neurochem 2021; 157:586-598. [PMID: 33481248 DOI: 10.1111/jnc.15308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/20/2020] [Accepted: 01/06/2021] [Indexed: 01/08/2023]
Abstract
Thrombolytic stroke therapy with tissue plasminogen activator (tPA) is limited by risks of hemorrhagic transformation (HT). We have reported that a new 12/15-lipoxygenase (12/15-LOX) inhibitor ML351 reduced tPA related HT in mice subjected to experimental stroke under anticoagulation. In this study, we asked whether ML351 can ameliorate tPA induced HT in an embolic stroke model. Rats were subjected to embolic middle cerebral artery occlusion with 2 or 3 hr ischemia and tPA infusion, with or without ML351. Regional cerebral blood flow was monitored 2 hr after ischemia and continuously monitored for 1 hr after treatment for determining reperfusion. Hemoglobin was determined in brain homogenates and infarct volume was quantified at 24 hr after stroke.12/15-LOX, cluster of differentiation 68(CD68), immunoglobulin G (IgG), and tight junction proteins expression was detected by immunohistochemistry. ML351 significantly reduced tPA related hemorrhage after stroke without affecting its thrombolytic efficacy. ML351 also reduced blood-brain barrier disruption and improved preservation of junction proteins. ML351 and tPA combination improved neurological deficit of rats even though ML351 did not further reduce the infarct volume compared to tPA alone treated animals. Pro-inflammatory cytokines were suppressed by ML351 both in vivo and in vitro experiments. We further showed that ML351 suppressed the expression of c-Jun-N-terminal kinase (JNK) in brains and microglia cultures, whereas exogenous 12-HETE attenuated this effect in vitro. In conclusion, ML351 and tPA combination therapy is beneficial in ameliorating HT after ischemic stroke. This protective effect is probably because of 12/15-LOX inhibition and suppression of JNK-mediated microglia/macrophage activation.
Collapse
Affiliation(s)
- Guangsen Cheng
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Wei Zhao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Yongjie Xin
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Guomin Huang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Yongkang Liu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Zhongliang Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yu Liu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai People's Hospital of Jinan University, Zhuhai, China
| |
Collapse
|
18
|
Role of brain renin angiotensin system in neurodegeneration: An update. Saudi J Biol Sci 2020; 27:905-912. [PMID: 32127770 PMCID: PMC7042626 DOI: 10.1016/j.sjbs.2020.01.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/12/2023] Open
Abstract
Renin angiotensin system (RAS) is an endocrine system widely known for its physiological roles in electrolyte homeostasis, body fluid volume regulation and cardiovascular control in peripheral circulation. However, brain RAS is an independent form of RAS expressed locally in the brain, which is known to be involved in brain functions and disorders. There is strong evidence for a major involvement of excessive brain angiotensin converting enzyme (ACE)/Angiotensin II (Ang II)/Angiotensin type-1 receptor (AT-1R) axis in increased activation of oxidative stress, apoptosis and neuroinflammation causing neurodegeneration in several brain disorders. Numerous studies have demonstrated strong neuroprotective effects by blocking AT1R in these brain disorders. Additionally, the angiotensin converting enzyme 2 (ACE2)/Angiotensin (1–7)/Mas receptor (MASR), is another axis of brain RAS which counteracts the damaging effects of ACE/Ang II/AT1R axis on neurons in the brain. Thus, angiotensin II receptor blockers (ARBs) and activation of ACE2/Angiotensin (1–7)/MASR axis may serve as an exciting and novel method for neuroprotection in several neurodegenerative diseases. Here in this review article, we discuss the expression of RAS in the brain and highlight how altered RAS level may cause neurodegeneration. Understanding the pathophysiology of RAS and their links to neurodegeneration has enormous potential to identify potentially effective pharmacological tools to treat neurodegenerative diseases in the brain.
Collapse
|
19
|
Gao Z, Zhang Y, Zhou H, Lv J. Baicalein inhibits the growth of oral squamous cell carcinoma cells by downregulating the expression of transcription factor Sp1. Int J Oncol 2020; 56:273-282. [PMID: 31746368 DOI: 10.3892/ijo.2019.4894] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/29/2019] [Indexed: 11/06/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), the most common malignancy of the oral cavity, accounts for >90% of all diagnosed oral cancer cases. Baicalein, a naturally derived compound, has been shown to alter p65 and the nuclear factor (NF)‑κB pathway, thus exerting cytotoxic effects on various tumor cell types. However, the mechanism of action of baicalein in OSCC has not been fully elucidated. In the present study, the proliferation of OSCC cells treated with baicalein was examined using a CCK‑8 assay. The effects of baicalein on the cell cycle and apoptosis of OSCC cells were determined by flow cytometric analyses. The expression of specificity protein 1 (Sp1), p65 and p50 at the mRNA and protein levels was determined by reverse transcription‑quantitative PCR and western blot analysis, respectively. The results of the present study demonstrated that baicalein suppresses the proliferation of OSCC cell lines in vivo and in vitro. Baicalein also induced apoptosis of OSCC cells and arrested the cell cycle at the G0/G1 phase. Baicalein inhibited the expression of Sp1, p65 and p50 by downregulating the relative mRNA levels. Baicalein reduced the activity of NF‑κB in OSCC cells. Knockdown of Sp1 also resulted in reduced expression of p65 and p50. In addition, Sp1 silencing enhanced the effects of baicalein. In conclusion, the present study demonstrated that baicalein suppresses the growth of OSCC cells through an Sp1/NF‑κB‑dependent mechanism.
Collapse
Affiliation(s)
- Zilong Gao
- Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yaqian Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, Wuhan, Hubei 430060, P.R. China
| | - Heng Zhou
- Department of Pathology, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Juan Lv
- Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
20
|
He F, Dai R, Zhou X, Li X, Song X, Yan H, Meng Q, Yang C, Lin Q. Protective effect of 4-Methoxy benzyl alcohol on the neurovascular unit after cerebral ischemia reperfusion injury. Biomed Pharmacother 2019; 118:109260. [PMID: 31548176 DOI: 10.1016/j.biopha.2019.109260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/20/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Cerebral ischemia reperfusion injury (CIRI) is a major cause of ischemic stroke (IS) deterioration. Considering the intricate mechanism of the pathological process of CIRI, most drugs only work on one target. The neurovascular unit (NVU) puts forward the concept of neuroprotection from nerve protection to global stabilization. The NVU plays an important role in maintaining the brain microenvironment. This would promote neuronal survival and overall neurological recovery, which would likely lead to the reduction of mortality rate. Previous studies have shown that 4-methoxy benzyl alcohol (4-MA) ameliorated neurological score and cerebral infarct volume and reduced the concentration of Evans blue (EB) in brain tissue. In this research, we investigated the effects of 4-MA on NVU microenvironment improvement in rats impaired by middle cerebral artery occlusion/reperfusion (MCAO/R). METHODS First, we established a rat model of middle cerebral artery occlusion (MCAO) so as to use Western blot analysis, immunofluorescence and transmission electron microscopy (TEM) evaluating the NVU's protection of 4-MA. Then we established a primary cortical neuron model of oxygen glucose deprivation and re-oxygenation (OGD/R) with the objective of identifying whether 4-MA exhibited anti-oxidant and anti-apoptotic effects on neurons. RESULTS NVU ultra structural changes were improved by 4-MA. Immunofluorescence and western blot showed that 4-MA protected NVUs through enhancement of the expression of the symbolic neuronal proteins Microtubule Associated Protein-2(MAP-2), and attenuation of protein expression of Asy symbolic protein Glial Fibrillary Acidic Protein(GFAP). Furthermore, in the OGD/R model of I/R injury in vitro, 4-MA significantly increased Superoxide dismutase(SOD), Nitric Oxide(NO), B-cell lymphoma-2(Bcl-2), decreased Bcl-2-Associated X(Bax) and increased Bcl-2/Bax. CONCLUSION 4-MA can play the role of anti-ischemic stroke drug by ameliorating the microenvironment of NVUs while its neuroprotective effects will contribute towards the inhibition of the antioxidant and anti-apoptotic activities.
Collapse
Affiliation(s)
- Fangyan He
- Department of Pharmacology, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Rong Dai
- Department of Pharmacology, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xiaonan Zhou
- Department of Pharmacology, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xiufang Li
- Department of Pharmacology, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xuelan Song
- Department of Pharmacology, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Hanwen Yan
- Department of Pharmacology, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Qingting Meng
- Department of Pharmacology, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Cui Yang
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650500, China.
| | - Qing Lin
- Department of Pharmacology, Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
21
|
Fu X, Niu T, Li X. MicroRNA-126-3p Attenuates Intracerebral Hemorrhage-Induced Blood-Brain Barrier Disruption by Regulating VCAM-1 Expression. Front Neurosci 2019; 13:866. [PMID: 31474826 PMCID: PMC6707088 DOI: 10.3389/fnins.2019.00866] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/02/2019] [Indexed: 01/17/2023] Open
Abstract
Background miR-126 is closely related to the occurrence of various complications after intracerebral hemorrhage (ICH), but the molecular mechanism is not fully elucidated. This study aimed to explore the mechanism of miR-126-3p in alleviating brain injury after ICH. Methods Serum miR-126-3p levels were compared between patients with IHC and healthy controls. A rat model of ICH was generated by intracerebral injection of Type VII collagenase. The rats were intracerebral injected with miR-126-3p mimics or negative control miRNA. Rat brain microvascular endothelial cells (BMECs) were used as a cell model of blood-brain barrier (BBB), and validated by immunofluorescence staining of Factor VIII. The BBB permeability of BMECs after miR-126-3p antagomir transfection was determined by FITC-dextran 20 through a confluent BMECs layer (measured over 120 min). The binding site of miR-126-3p in the 3'UTR of VCAM-1 was predicated by TargetScan, and verified by dual luciferase reporter assay. The expression levels of miR-126-3p and vascular cell adhesion molecule-1 (VCAM-1) in rat brain tissues and BMECs were measured by real-time PCR or western blotting. Results Serum miR-126-3p level was markedly down-regulated in patients with ICH. The rats with ICH had decreased miR-126-3p levels in serum and hemorrhagic area, while those changes were reversed by the treatment with miR-126-3p mimic. VCAM-1 is a direct target of miR-126-3p, and VCAM-1 expression in hemorrhagic area was down-regulated by the administration of miR-126-3p mimic in rats. Inhibition of miR-126-3p by anti-miR126 treatment in BMECs resulted in barrier leakage. Conclusion miR-126-3p attenuates intracerebral hemorrhage-induced blood-brain barrier disruption, which is associated with down-regulated expression of VCAM-1 in hemorrhagic area.
Collapse
Affiliation(s)
- Xi Fu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tiesheng Niu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Zhang Y, Wang H, Liu Y, Wang C, Wang J, Long C, Guo W, Sun X. Baicalein inhibits growth of Epstein-Barr virus-positive nasopharyngeal carcinoma by repressing the activity of EBNA1 Q-promoter. Biomed Pharmacother 2018; 102:1003-1014. [PMID: 29710517 DOI: 10.1016/j.biopha.2018.03.114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) can establish a life-long latent infection in the host and is associated with various human malignancies, including nasopharyngeal carcinoma (NPC), the most common cancer originated from nasopharynx. EBV nuclear antigen 1 (EBNA1) is the only viral protein absolutely demanded for segregation, replication, transcription and maintenance of EBV viral genome in host cells. Baicalein, a bioactive flavonoid compound purified from the root of Scutellariae baicaleinsis, displays anti-inflammatory, immunosuppressive, and anti-tumor properties. In this study, the therapeutic effects and functional mechanism of baicalein on EBV-positive human NPC were determined. Cell Counting Kit-8 assays and cell formation colony were performed to investigate that baicalein can suppress proliferation of EBV-infected human NPC cells. Flow cytometric and hoechst 33258 staining results indicated that baicalein induced cell cycle arrest and apoptosis. Western blotting results demonstrated that baicalein down-regulates EBNA1 expression but not reduces the stability and half-life of EBNA1 in EBV-infected NPC cells. Additionally, the mRNA level of EBNA1 was examined by real time-PCR, the activity of EBNA1 Q promoter (Qp) was determined by dual luciferase reporter assay. Considering that transcription factor specificity protein 1 (Sp1) can maintain EBNA1 Qp active. Further analyses also elucidated that baicalein inhibits the expression of Sp1 while knock-down Sp1 by specific shRNAs decreases the expression and transcription levels of EBNA1. Therefore, the results suggested that baicalein may decrease EBNA1 expression level in EBV-positive NPC cells via inhibiting the activity of EBNA1 Q-promoter while over-expression of EBNA1 attenuate the inhibitory effect of baicalein. Finally, it was found that baicalein may strongly reduce growth of tumor in the mouse xenograft model of EBV-positive NPC. These results indicated that baicalein inhibits growth of EBV-positive NPC by repressing the activity of EBNA1 Q-promoter. Baicalein may be used as a therapeutic agent to treat EBV-positive NPC.
Collapse
Affiliation(s)
- Yaqian Zhang
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Huan Wang
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Yu Liu
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Chao Wang
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Jingchao Wang
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Cong Long
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Wei Guo
- Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Xiaoping Sun
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China; State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
23
|
Meng X, Mao Z, Li X, Zhong D, Li M, Jia Y, Wei J, Yang B, Zhou H. Baicalein decreases uric acid and prevents hyperuricemic nephropathy in mice. Oncotarget 2018; 8:40305-40317. [PMID: 28445133 PMCID: PMC5522264 DOI: 10.18632/oncotarget.16928] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/24/2017] [Indexed: 12/28/2022] Open
Abstract
Baicalein, a natural flavonoid, is structurally advantageous for binding to xanthine oxidoreductase. In our study, molecular docking analysis and Surface Plasmon Resonance revealed a direct interaction between baicalein and xanthine oxidoreductase. Moreover, 50 mg/kg/d baicalein treatment significantly suppressed the viability of xanthine oxidoreductase in hyperuricemia mouse model. The data showed that baicalein remarkably prevented renal dysfunction, ameliorated kidney fibrosis, alleviated epithelial-mesenchymal transition and oxidative stress in hyperuricemia mice. Thus, we concluded that baicalein executed a kidney-protection action in hyperuricemia and therefore may be used as a therapeutic alternative for hyperuricemic nephropathy.
Collapse
Affiliation(s)
- Xiaolu Meng
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Zhuo Mao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P.R. China
| | - Xin Li
- Drug Clinical Trial Institution, The Affiliated Hospital of Qingdao University, Qingdao, 266003, P.R. China
| | - Dandan Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Min Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Yingli Jia
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Jing Wei
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P.R. China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Hong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| |
Collapse
|
24
|
Li HL, Jin JM, Yang C, Wang P, Huang F, Wu H, Zhang BB, Shi HL, Wu XJ. Isoastragaloside I suppresses LPS-induced tight junction disruption and monocyte adhesion on bEnd.3 cells via an activating Nrf2 antioxidant defense system. RSC Adv 2018. [DOI: 10.1039/c7ra10246a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ISOI rescued TJs disruption from ROS induced by LPS in bEnd.3 cells. ISOI ameliorated inflammatory response and decreased monocyte adhesion onto bEnd.3 cells induced with LPS. ISOI protected BBB integrity through activating Nrf2 antioxidant pathway.
Collapse
Affiliation(s)
- Hong-Li Li
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Jin-Mei Jin
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Chun Yang
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Ping Wang
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Bei-Bei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Hai-Lian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| | - Xiao-Jun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines
- The Ministry of Education (MOE)
- Key Laboratory for Standardization of Chinese Medicines
- Institute of Chinese Materia Medica
- Shanghai University of Traditional Chinese Medicine
| |
Collapse
|
25
|
Li Y, Lin S, Xu C, Zhang P, Mei X. Triggering of Autophagy by Baicalein in Response to Apoptosis after Spinal Cord Injury: Possible Involvement of the PI3K Activation. Biol Pharm Bull 2018; 41:478-486. [DOI: 10.1248/bpb.b17-00768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuanlong Li
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University
| | - Sen Lin
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University
| | - Chang Xu
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University
| | - Peng Zhang
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University
| | - Xifan Mei
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University
| |
Collapse
|
26
|
Xi T, Jin F, Zhu Y, Wang J, Tang L, Wang Y, Liebeskind DS, He Z. MicroRNA-126-3p attenuates blood-brain barrier disruption, cerebral edema and neuronal injury following intracerebral hemorrhage by regulating PIK3R2 and Akt. Biochem Biophys Res Commun 2017; 494:144-151. [PMID: 29042193 DOI: 10.1016/j.bbrc.2017.10.064] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/13/2017] [Indexed: 01/11/2023]
Abstract
MiR-126, a microRNA implicated in blood vessel integrity, angiogenesis and vascular inflammation, is markedly decreased in the sera of patients with intracerebral hemorrhage (ICH). The current study aims to evaluate the potential therapeutic effect of miR-126-3p on brain injuries in a rat model of collagenase-induced ICH. Intracerebroventricular administration of a miR-126-3p mimic significantly alleviated behavioral defects 24 h after ICH, as examined by paw placement and corner tests. ICH led to increased blood-brain barrier (BBB) permeability and cerebral edema, both of which were attenuated by miR-126-3p mimic. Treatment with miR-126-3p mimic reduced the numbers of myeloperoxidase (MPO)-positive, OX42-positive, Fluoro Jade B (FJB)-positive and NEUN/TUNEL double-positive cells around the hematoma, implying that miR-126-3p inhibited neutrophil infiltration, microglial activation and neuronal apoptosis following hemorrhage. In addition, miR-126-3p mimic suppressed the upregulation of phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) in the perihematomal area and maintained the activation of Akt. Furthermore, in vitro assays confirmed upregulation of PIK3R2 upon knockdown of miR-126-3p in rat brain microvascular endothelial cells (BMECs), and silencing of miR-126-3p resulted in impaired BMEC barrier permeability and reversed vascular endothelial growth factor (VEGF)- and angiopoietin-1 (Ang-1)-induced activation of Akt and inhibition of BMEC apoptosis. In summary, our results suggest that exogenous miR-126-3p may alleviate BBB disruption, cerebral edema and neuronal injury following ICH by targeting PIK3R2 and the Akt signaling pathway in brain vascular endothelium.
Collapse
Affiliation(s)
- Tianyang Xi
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Feng Jin
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ying Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jialu Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ling Tang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yanzhe Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - David S Liebeskind
- Department of Neurology, University of California, Los Angeles, CA 90095-7334, USA
| | - Zhiyi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
27
|
Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S. Baicalein as a potent neuroprotective agent: A review. Biomed Pharmacother 2017; 95:1021-1032. [PMID: 28922719 DOI: 10.1016/j.biopha.2017.08.135] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 12/18/2022] Open
Abstract
In recent times, neurodegenerative diseases are the most challenging global health problems. Neuronal cell death or damage is a key factor for many neurodegenerative disorders. Therefore, there has been a growing interest in the development of effective neuroprotective agents, especially from natural sources. In particular, phytochemicals have shown high efficacy with low side effects in various in vitro and in vivo studies. In the various phytoconstituents, flavonoids are important bioactive products and mainly found in various vegetables and fruits. Among them, baicalein is one of the important flavones, which is mainly found in the root of Scutellaria baicalensis Georgi. A number of studies have reported that baicalein has potent neuroprotective properties under in vitro as well as in vivo systems. Hence, the purpose of this paper is to provide a review of the existing literature in connection with the neuroprotective effects of baicalein and its molecular mechanisms of action. The current review highlights could be useful to identify novel therapeutic agents in relation to the treatment of neurotoxicity-mediated diseases.
Collapse
Affiliation(s)
- Kandhasamy Sowndhararajan
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Ponnuvel Deepa
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Minju Kim
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Songmun Kim
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea.
| |
Collapse
|
28
|
Abstract
Alzheimer's disease and Parkinson's disease are the two most common, progressive central neurodegenerative diseases affecting the population over the age of 60 years. Apart from treatments that temporarily improve symptoms, there is no medicine currently available to inhibit or reverse the progression of Alzheimer's disease and Parkinson's disease. In traditional Chinese medicine, the root of Scutellaria baicalensis Georgi is a classic compatible component in the decoction of herbal medicine used for treating central nervous system diseases. Modern pharmacokinetic studies have confirmed that baicalein (5,6,7-trihydroxyflavone) is a major bioactive flavone constituent root of S. baicalensis Georgi. Studies showed that baicalein possesses a range of key pharmacological properties, such as reducing oxidative stress, anti-inflammatory properties, inhibiting aggregation of disease-specific amyloid proteins, inhibiting excitotoxicity, stimulating neurogenesis and differentiation action, and anti-apoptosis effects. Based on these properties, baicalein shows therapeutic potential for Alzheimer's disease and Parkinson's disease. In this review, we summarize the pharmacological protective actions of baicalein that make it suitable for the treatment of Alzheimer's disease and Parkinson's disease, and discuss the potential mechanisms underlying the effects.
Collapse
Affiliation(s)
- Yanwei Li
- Department of Human Anatomy, Medical College, Shaoyang University, Xueyuan Road Qiliping Campus, Shaoyang, 422000, Hunan, People's Republic of China.
| | - Jinying Zhao
- Department of Human Anatomy, Medical College, Shaoyang University, Xueyuan Road Qiliping Campus, Shaoyang, 422000, Hunan, People's Republic of China
| | - Christian Hölscher
- Biomedical and Life Science, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
29
|
Zhou X, Liu Y, Huang Y, Zhu S, Zhu J, Wang R. Hypertonic saline infusion suppresses apoptosis of hippocampal cells in a rat model of cardiopulmonary resuscitation. Sci Rep 2017; 7:5783. [PMID: 28724904 PMCID: PMC5517425 DOI: 10.1038/s41598-017-05919-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023] Open
Abstract
Hypertonic saline (HS) attenuates cerebral edema, improves microcirculation perfusion and alleviates inflammation. However, whether the beneficial effect of HS on neurological function after cardiopulmonary resuscitation (CPR) in rat model of asphyxial cardiac arrest (CA) is mediated via attenuating apoptosis of neurons is not known. We studied the neuroprotective effect of HS in rats after CA and CPR, and explored the likely underlying mechanisms. Animals were randomly assigned to 4 equal groups (n = 15 each) according to the different infusions administered during resuscitation: control (C), normal saline (NS), hypertonic saline (HS), and hydroxyethyl starch (HES) groups. NDS at 12, 24, 48 and 72 h post-ROSC in the HS group were significantly higher than those in the NS and HES groups. Western blot analysis demonstrated a significant increase in Bcl-2 expression in HS, as compared to that in the NS and HES groups. However, Bax and Caspase-3 expressions in HS were significantly lower than that in the NS and HES groups. The apoptosis rate in HS was significantly lower than that in the NS and HES groups, suggesting HS treatment during resuscitation could effectively suppress neuronal cell apoptosis in hippocampal CA1 post-ROSC and improve neuronal function.
Collapse
Affiliation(s)
- Xiang Zhou
- Southern Medical University, Guangzhou, China
- Department of Thoracic Cardiovascular Surgery, Wuhan General Hospital of People's Liberation Army of China, Guangzhou, China
| | - Yong Liu
- Department of Thoracic Cardiovascular Surgery, Wuhan General Hospital of People's Liberation Army of China, Guangzhou, China
| | - Yang Huang
- Southern Medical University, Guangzhou, China
| | - ShuiBo Zhu
- Southern Medical University, Guangzhou, China.
- Department of Thoracic Cardiovascular Surgery, Wuhan General Hospital of People's Liberation Army of China, Guangzhou, China.
| | - Jian Zhu
- Department of Thoracic Cardiovascular Surgery, Wuhan General Hospital of People's Liberation Army of China, Guangzhou, China
| | - RongPing Wang
- Department of Thoracic Cardiovascular Surgery, Wuhan General Hospital of People's Liberation Army of China, Guangzhou, China
| |
Collapse
|
30
|
Shi J, Wu G, Zou X, Jiang K. Oleuropein protects intracerebral hemorrhage-induced disruption of blood-brain barrier through alleviation of oxidative stress. Pharmacol Rep 2017; 69:1206-1212. [PMID: 29128801 DOI: 10.1016/j.pharep.2017.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/26/2017] [Accepted: 05/09/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Intracerebral haemorrhage (ICH) as a devastating form of stroke has remained a public health threat due to lack of FDA-approved therapy. Oxidative stress originated from blood cell degradation products plays a crucial role in the ICH pathogenesis. In this study we evaluated oleuropein, a potent natural antioxidant from olive, in a well-established rat ICH model from overall symptoms to detailed molecular mechanism. METHODS ICH model was established by collagenase injection to the brain of rats, which were randomly divided into groups with vehicle mock treatment, followed by treatment with different doses of oleuropein via daily intraperitoneal injection post-ICH for 3days. The overall neurological deficit, brain edema level and blood-brain barrier (BBB) integrity were then measured in different treatment groups. To understand the protection mechanism of oleuropein in ICH, BBB structural components ZO-1 and occludin, oxidative stress and MAPK signalling pathways were also examined. RESULTS Oleuropein treatment showed overall alleviation of ICH-associated neurological deficit and brain edema in a dose dependent manner. Consistently, it could preserve the BBB structure and attenuate oxidative stress as well as ICH-induced MAPK activation in brain tissue. CONCLUSION Our study suggests oleuropein could be used as a promising therapeutic agent for ICH.
Collapse
Affiliation(s)
- Jing Shi
- The Second Affiliated Hospital of Suzhou University, Suzhou, China; The Affiliated Hospital of Guizhou Medical University, Guiyang China
| | - Guofeng Wu
- The Second Affiliated Hospital of Suzhou University, Suzhou, China; The Affiliated Hospital of Guizhou Medical University, Guiyang China.
| | - Xiaohua Zou
- The Affiliated Hospital of Guizhou Medical University, Guiyang China
| | - Ke Jiang
- The Affiliated Hospital of Guizhou Medical University, Guiyang China
| |
Collapse
|
31
|
Wei N, Wei Y, Li B, Pang L. Baicalein Promotes Neuronal and Behavioral Recovery After Intracerebral Hemorrhage Via Suppressing Apoptosis, Oxidative Stress and Neuroinflammation. Neurochem Res 2017; 42:1345-1353. [PMID: 28108850 DOI: 10.1007/s11064-017-2179-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/07/2017] [Accepted: 01/10/2017] [Indexed: 01/10/2023]
Abstract
Intracerebral hemorrhage (ICH) is an important public health problem in neurology, which is not only associated with high mortality but also leading to disability. Yet no satisfactory treatment has been developed. The secondary injury that resulted from a number of self-destructive processes such as neuroinflammation, apoptosis and oxidative stress, is the key factor contributing to ICH-induced brain damage. Baicalein has been proved to improve neuronal functional recovery in rat model of subarachnoid hemorrhage and ischemic brain damage. To investigate the effect of baicalein on ICH and its underlying mechanism, a collagenase-induced ICH rat model was performed. Baicalein treatment significantly decreased neurological severity score at day 1 and 3 after ICH injury. Our results showed that the lesion volume, the brain water content, the expression levels of four pro-inflammatory cytokines (IL-1β, IL-4 and IL-6 and TNF-α) and the numbers of apoptotic cells were reduced significantly in ICH rats receiving baicalein treatment, especially in 50 mg/kg baicalein-treated group. Moreover, baicalein increased SOD and GSH-Px activities and down-regulated MDA level of brain tissues in rats. These results suggested that the therapeutic efficacy of baicalein on repairing brain damage is probably caused by suppressing apoptosis, oxidative stress and neuroinflammation. Baicalein could be developed into a novel drug for clinical treatment of ICH and ICH-related brain injuries.
Collapse
Affiliation(s)
- Ning Wei
- Department of the Fifth Yard of Neurology, Affiliated Guangxi Minzu Hospital of Guangxi Medical University, Min Xiu Rd. #232, 530001, Nanning, China.
| | - Yinghai Wei
- Department of the Fifth Yard of Neurology, Affiliated Guangxi Minzu Hospital of Guangxi Medical University, Min Xiu Rd. #232, 530001, Nanning, China
| | - Binru Li
- Department of the Fifth Yard of Neurology, Affiliated Guangxi Minzu Hospital of Guangxi Medical University, Min Xiu Rd. #232, 530001, Nanning, China
| | - Linlin Pang
- Department of the Fifth Yard of Neurology, Affiliated Guangxi Minzu Hospital of Guangxi Medical University, Min Xiu Rd. #232, 530001, Nanning, China
| |
Collapse
|
32
|
Lam V, Hackett M, Takechi R. Antioxidants and Dementia Risk: Consideration through a Cerebrovascular Perspective. Nutrients 2016; 8:nu8120828. [PMID: 27999412 PMCID: PMC5188481 DOI: 10.3390/nu8120828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 12/16/2022] Open
Abstract
A number of natural and chemical compounds that exert anti-oxidative properties are demonstrated to be beneficial for brain and cognitive function, and some are reported to reduce the risk of dementia. However, the detailed mechanisms by which those anti-oxidative compounds show positive effects on cognition and dementia are still unclear. An emerging body of evidence suggests that the integrity of the cerebrovascular blood-brain barrier (BBB) is centrally involved in the onset and progression of cognitive impairment and dementia. While recent studies revealed that some anti-oxidative agents appear to be protective against the disruption of BBB integrity and structure, few studies considered the neuroprotective effects of antioxidants in the context of cerebrovascular integrity. Therefore, in this review, we examine the mechanistic insights of antioxidants as a pleiotropic agent for cognitive impairment and dementia through a cerebrovascular axis by primarily focusing on the current available data from physiological studies. Conclusively, there is a compelling body of evidence that suggest antioxidants may prevent cognitive decline and dementia by protecting the integrity and function of BBB and, indeed, further studies are needed to directly examine these effects in addition to underlying molecular mechanisms.
Collapse
Affiliation(s)
- Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth WA 6845, Australia.
| | - Mark Hackett
- Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
- Department of Chemistry, Faculty of Science and Engineering, Curtin University, Perth WA 6845, Australia.
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth WA 6845, Australia.
| |
Collapse
|