1
|
Younis NS, Almostafa MM, Mohamed ME. Geraniol Ameliorates Pentylenetetrazol-Induced Epilepsy, Neuroinflammation, and Oxidative Stress via Modulating the GABAergic Tract: In vitro and in vivo studies. Drug Des Devel Ther 2024; 18:5655-5672. [PMID: 39654600 PMCID: PMC11627104 DOI: 10.2147/dddt.s481985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Geraniol (Ger), a monoterpene, is a common constituent of several essential oils. This study explored the anticonvulsant effect of Ger in-vitro using nerve growth factor (NGF) prompted PC12 cell injured by Glutamate (Glu) and in-vivo using Pentylenetetrazole (PTZ)-induced kindling through the GABAergic pathway. Materials To assess the effect of Ger on NGF prompted PC12 cells injured by Glu, Ger at concentrations of 25, 50, 100, 200 and 400 μg/mL was used. GABA, 5-HT, IL-1β, IL-4, and TNF-α levels and the gene expressions of GABAA-Rα1, NMDAR1, GAD 65, GAD 67, GAT 1 and GAT 3 were measured in NGF-induced PC12 cells treated with Ger (100, and 200 μg/mL). Mice were randomly separated into five groups. Normal and PTZ groups in which mice were injected with saline or PTZ, respectively. PTZ + Ger 100, PTZ + Ger 200 and PTZ + SV groups in which mice orally administered Ger or sodium valproate (SV), respectively, then injected with PTZ. Results Ger up to 400 μg/mL did not display any toxicity or injury in PC12 cells. Ger (100 to 200 μg/mL) reduced the injury induced by Glu, increased the gene expression of GABAA-Rα1, GAD65 and GAD67 and decreased GAT 1, GAT 3 and NMDAR1 expression in NGF-induced PC12 cells damaged by Glu. Ger (100 to 200 μg/mL) increased GABA and reduced TNF-α, IL-4 and IL-1β levels in NGF-induced PC12 cells injured by Glu. As for the in-vivo results, Ger increased GABA, GAD, GAT 1 and 3 and lowered GABA T. Ger mitigated MDA, NO, IL-1β, IL-6, TNF-α and IFN-γ, GFAP, caspase-3, and -9 levels and Bax gene expression and escalated GSH, SOD, catalase, BDNF and Bcl2 gene expression. Conclusion Ger reduced the oxidative stress status, neuroinflammation and apoptosis and activated GABAergic neurotransmission, which might clarify its anticonvulsant. Ger protects animals against PTZ prompted kindling as established by the enhancement in short term as well as long-term memory. Ger mitigated the injury induced by Glu in NGF prompted PC12 cell.
Collapse
Affiliation(s)
- Nancy S Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf, Al-Ahsa, 31982, Saudi Arabia
- Zagazig University Hospitals, Zagazig University, Zagazig, 44519, Egypt
| | - Mervt M Almostafa
- Department of Chemistry, College of Science, King Faisal University, Alhofuf, Al-Ahsa, 31982, Saudi Arabia
| | - Maged E Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf, Al-Ahsa, 31982, Saudi Arabia
- Pharmacognosy, College of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
2
|
Nisar R, Inamullah A, Ghalib AUF, Nisar H, Sarkaki A, Afzal A, Tariq M, Batool Z, Haider S. Geraniol mitigates anxiety-like behaviors in rats by reducing oxidative stress, repairing impaired hippocampal neurotransmission, and normalizing brain cortical-EEG wave patterns after a single electric foot-shock exposure. Biomed Pharmacother 2024; 176:116771. [PMID: 38795639 DOI: 10.1016/j.biopha.2024.116771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Anxiety-like conditions can interfere with daily activities as the adaptive mechanism fails to cope with stress. These conditions are often linked with increased oxidative stress, and abrupt neurotransmission and electroencephalography (EEG) wave pattern. Geraniol, a monoterpenoid, has antioxidant and anti-inflammatory activities, as well as brain-calming effects. Therefore, in this study, geraniol was tested for the potential anxiolytic effects in a rat model of anxiety. The rats were exposed to an electric foot shock (1 mA for 1 s) to develop anxiety-like symptoms. Treatment was carried out using geraniol (10 and 30 mg/kg) and the standard diazepam drug. The behavior of the rats was analyzed using the open field test, light-dark test, and social interaction test. Afterward, the rats were decapitated to collect samples for neurochemical and biochemical analyses. The cortical-EEG wave pattern was also obtained. The study revealed that the electric foot shock induced anxiety-like symptoms, increased oxidative stress, and altered hippocampal neurotransmitter levels. The power of low-beta and high-beta was amplified with the increased coupling of delta-beta waves in anxiety group. However, the treatment with geraniol and diazepam normalized cortical-EEG wave pattern and hippocampal serotonin and catecholamines profile which was also reflected by reduced anxious behavior and normalized antioxidant levels. The study reports an anxiolytic potential of geraniol, which can be further explored in future.
Collapse
Affiliation(s)
- Rida Nisar
- Husein Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Aimen Inamullah
- Husein Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asad Ullah Faiz Ghalib
- Husein Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Hareem Nisar
- Institute of Biomedical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asia Afzal
- Department of Biochemistry, Federal Urdu University of Arts, Sciences & Technology, Karachi, Pakistan
| | - Maryam Tariq
- Dual General Adult and Old Age Trainee, Humber Teaching NHS Foundation Trust, Hull, UK
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| | - Saida Haider
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
3
|
Zhang N, Zhang S, Dong X. Plant-derived bioactive compounds and their novel role in central nervous system disorder treatment via ATF4 targeting: A systematic literature review. Biomed Pharmacother 2024; 176:116811. [PMID: 38795641 DOI: 10.1016/j.biopha.2024.116811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Central nervous system (CNS) disorders exhibit exceedingly intricate pathogenic mechanisms. Pragmatic and effective solutions remain elusive, significantly compromising human life and health. Activating transcription factor 4 (ATF4) participates in the regulation of multiple pathophysiological processes, including CNS disorders. Considering the widespread involvement of ATF4 in the pathological process of CNS disorders, the targeted regulation of ATF4 by plant-derived bioactive compounds (PDBCs) may become a viable strategy for the treatment of CNS disorders. However, the regulatory relationship between PDBCs and ATF4 remains incompletely understood. Here, we aimed to comprehensively review the studies on PDBCs targeting ATF4 to ameliorate CNS disorders, thereby offering novel directions and insights for the treatment of CNS disorders. A computerized search was conducted on PubMed, Embase, Web of Science, and Google Scholar databases to identify preclinical experiments related to PDBCs targeting ATF4 for the treatment of CNS disorders. The search timeframe was from the inception of the databases to December 2023. Two assessors conducted searches using the keywords "ATF4," "Central Nervous System," "Neurological," "Alzheimer's disease," "Parkinson's Disease," "Stroke," "Spinal Cord Injury," "Glioblastoma," "Traumatic Brain Injury," and "Spinal Cord Injury." Overall, 31 studies were included, encompassing assessments of 27 PDBCs. Combining results from in vivo and in vitro studies, we observed that these PDBCs, via ATF4 modulation, prevent the deposition of amyloid-like fibers such as Aβ, tau, and α-synuclein. They regulate ERS, reduce the release of inflammatory factors, restore mitochondrial membrane integrity to prevent oxidative stress, regulate synaptic plasticity, modulate autophagy, and engage anti-apoptotic mechanisms. Consequently, they exert neuroprotective effects in CNS disorders. Numerous PDBCs targeting ATF4 have shown potential in facilitating the restoration of CNS functionality, thereby presenting expansive prospects for the treatment of such disorders. However, future endeavors necessitate high-quality, large-scale, and comprehensive preclinical and clinical studies to further validate this therapeutic potential.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Seventh Clinical College of China Medical University, No. 24 Central Street, Xinfu District, Fushun, Liaoning 113000, China
| | - Shun Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| |
Collapse
|
4
|
Yang R, Yan F, Shen J, Wang T, Li M, Ni H. Geraniol attenuates oxygen-glucose deprivation/reoxygenation-induced ROS-dependent apoptosis and permeability of human brain microvascular endothelial cells by activating the Nrf-2/HO-1 pathway. J Bioenerg Biomembr 2024; 56:193-204. [PMID: 38446318 DOI: 10.1007/s10863-024-10011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Blood-brain barrier breakdown and ROS overproduction are important events during the progression of ischemic stroke aggravating brain damage. Geraniol, a natural monoterpenoid, possesses anti-apoptotic, cytoprotective, anti-oxidant, and anti-inflammatory activities. Our study aimed to investigate the effect and underlying mechanisms of geraniol in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced human brain microvascular endothelial cells (HBMECs). Apoptosis, caspase-3 activity, and cytotoxicity of HBMECs were evaluated using TUNEL, caspase-3 activity, and CCK-8 assays, respectively. The permeability of HBMECs was examined using FITC-dextran assay. Reactive oxygen species (ROS) production was measured using the fluorescent probe DCFH-DA. The protein levels of zonula occludens-1 (ZO-1), occludin, claudin-5, β-catenin, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were determined by western blotting. Geraniol showed no cytotoxicity in HBMECs. Geraniol and ROS scavenger N-acetylcysteine (NAC) both attenuated OGD/R-induced apoptosis and increase of caspase-3 activity and the permeability to FITC-dextran in HBMECs. Geraniol relieved OGD/R-induced ROS accumulation and decrease of expression of ZO-1, occludin, claudin-5, and β-catenin in HBMECs. Furthermore, we found that geraniol activated Nrf2/HO-1 pathway to inhibit ROS in HBMECs. In conclusion, geraniol attenuated OGD/R-induced ROS-dependent apoptosis and permeability in HBMECs through activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Ronggang Yang
- Department of Neurological Intensive Resuscitation, Nanshi Hospital of Nanyang, Nanyang, 473000, China
| | - Feng Yan
- Department of Neurological Intensive Resuscitation, Nanshi Hospital of Nanyang, Nanyang, 473000, China
| | - Jiangyi Shen
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, 473000, China
| | - Tiancai Wang
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, 473000, China
| | - Menglong Li
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, 473000, China
| | - Hongzao Ni
- Department of Neurosurgery, Huai'an Second People's Hospital, the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223300, China.
| |
Collapse
|
5
|
Pandya JD, Musyaju S, Modi HR, Okada-Rising SL, Bailey ZS, Scultetus AH, Shear DA. Intranasal delivery of mitochondria targeted neuroprotective compounds for traumatic brain injury: screening based on pharmacological and physiological properties. J Transl Med 2024; 22:167. [PMID: 38365798 PMCID: PMC10874030 DOI: 10.1186/s12967-024-04908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
Targeting drugs to the mitochondrial level shows great promise for acute and chronic treatment of traumatic brain injury (TBI) in both military and civilian sectors. Perhaps the greatest obstacle to the successful delivery of drug therapies is the blood brain barrier (BBB). Intracerebroventricular and intraparenchymal routes may provide effective delivery of small and large molecule therapies for preclinical neuroprotection studies. However, clinically these delivery methods are invasive, and risk inadequate exposure to injured brain regions due to the rapid turnover of cerebral spinal fluid. The direct intranasal drug delivery approach to therapeutics holds great promise for the treatment of central nervous system (CNS) disorders, as this route is non-invasive, bypasses the BBB, enhances the bioavailability, facilitates drug dose reduction, and reduces adverse systemic effects. Using the intranasal method in animal models, researchers have successfully reduced stroke damage, reversed Alzheimer's neurodegeneration, reduced anxiety, improved memory, and delivered neurotrophic factors and neural stem cells to the brain. Based on literature spanning the past several decades, this review aims to highlight the advantages of intranasal administration over conventional routes for TBI, and other CNS disorders. More specifically, we have identified and compiled a list of most relevant mitochondria-targeted neuroprotective compounds for intranasal administration based on their mechanisms of action and pharmacological properties. Further, this review also discusses key considerations when selecting and testing future mitochondria-targeted drugs given intranasally for TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| | - Sudeep Musyaju
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Hiren R Modi
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Starlyn L Okada-Rising
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Zachary S Bailey
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Anke H Scultetus
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Deborah A Shear
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| |
Collapse
|
6
|
Zuzarte M, Sousa C, Alves-Silva J, Salgueiro L. Plant Monoterpenes and Essential Oils as Potential Anti-Ageing Agents: Insights from Preclinical Data. Biomedicines 2024; 12:365. [PMID: 38397967 PMCID: PMC10886757 DOI: 10.3390/biomedicines12020365] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Ageing is a natural process characterized by a time-dependent decline of physiological integrity that compromises functionality and inevitably leads to death. This decline is also quite relevant in major human pathologies, being a primary risk factor in neurodegenerative diseases, metabolic disorders, cardiovascular diseases and musculoskeletal disorders. Bearing this in mind, it is not surprising that research aiming at improving human health during this process has burst in the last decades. Importantly, major hallmarks of the ageing process and phenotype have been identified, this knowledge being quite relevant for future studies towards the identification of putative pharmaceutical targets, enabling the development of preventive/therapeutic strategies to improve health and longevity. In this context, aromatic plants have emerged as a source of potential bioactive volatile molecules, mainly monoterpenes, with many studies referring to their anti-ageing potential. Nevertheless, an integrated review on the current knowledge is lacking, with several research approaches studying isolated ageing hallmarks or referring to an overall anti-ageing effect, without depicting possible mechanisms of action. Herein, we aim to provide an updated systematization of the bioactive potential of volatile monoterpenes on recently proposed ageing hallmarks, and highlight the main mechanisms of action already identified, as well as possible chemical entity-activity relations. By gathering and categorizing the available scattered information, we also aim to identify important research gaps that could help pave the way for future research in the field.
Collapse
Affiliation(s)
- Mónica Zuzarte
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Cátia Sousa
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal;
- Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal
| | - Jorge Alves-Silva
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|
7
|
Demir S, Mentese A, Usta ZT, Alemdar NT, Demir EA, Aliyazicioglu Y. Alpha-pinene neutralizes cisplatin-induced reproductive toxicity in male rats through activation of Nrf2 pathway. Int Urol Nephrol 2024; 56:527-537. [PMID: 37789204 DOI: 10.1007/s11255-023-03817-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE Testicular toxicity is one of the most important side effects of cisplatin (CP) therapy. Alpha-pinene (AP) is a naturally occurring monoterpene with antioxidant character in plants. Here, we aimed to evaluate the therapeutic activity of AP against CP-induced testicular toxicity by including the nuclear factor erythroid 2-associated factor 2 (Nrf2) pathway in rats. METHODS Thirty male rats were divided into 5 groups: control, CP, CP + AP (5 and 10 mg/kg) and only AP (10 mg/kg). CP was administered intraperitoneally at a dose of 5 mg/kg on the first day, followed by three consecutive injections of AP. Serum reproductive hormone levels were evaluated using ELISA kits. Oxidative stress (OS), inflammation, endoplasmic reticulum stress (ERS) and apoptosis markers in testicular tissue were also determined colorimetrically. In addition, how CP affects Nrf2 pathway and the effect of AP on this situation were also addressed. RESULTS Treatment with CP significantly increased OS, inflammation, ERS and apoptosis in testicular tissue. Administrations of AP resulted in an amelioration of these altered parameters. The mechanism of therapeutic effect of AP appeared to involve induction of Nrf2. Furthermore, these results were also confirmed by histological data. CONCLUSION Results suggest that AP can exhibit therapeutic effects against CP-induced testicular toxicity. It can be concluded that AP may be a potential molecule to abolish reproductive toxicity after chemotherapy.
Collapse
Affiliation(s)
- Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Zeynep Turkmen Usta
- Department of Medical Pathology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
- Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, 61750, Trabzon, Turkey
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
8
|
Avola R, Furnari AG, Graziano ACE, Russo A, Cardile V. Management of the Brain: Essential Oils as Promising Neuroinflammation Modulator in Neurodegenerative Diseases. Antioxidants (Basel) 2024; 13:178. [PMID: 38397776 PMCID: PMC10886016 DOI: 10.3390/antiox13020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Neuroinflammation, a pivotal factor in the pathogenesis of various brain disorders, including neurodegenerative diseases, has become a focal point for therapeutic exploration. This review highlights neuroinflammatory mechanisms that hallmark neurodegenerative diseases and the potential benefits of essential oils in counteracting neuroinflammation and oxidative stress, thereby offering a novel strategy for managing and mitigating the impact of various brain disorders. Essential oils, derived from aromatic plants, have emerged as versatile compounds with a myriad of health benefits. Essential oils exhibit robust antioxidant activity, serving as scavengers of free radicals and contributing to cellular defense against oxidative stress. Furthermore, essential oils showcase anti-inflammatory properties, modulating immune responses and mitigating inflammatory processes implicated in various chronic diseases. The intricate mechanisms by which essential oils and phytomolecules exert their anti-inflammatory and antioxidant effects were explored, shedding light on their multifaceted properties. Notably, we discussed their ability to modulate diverse pathways crucial in maintaining oxidative homeostasis and suppressing inflammatory responses, and their capacity to rescue cognitive deficits observed in preclinical models of neurotoxicity and neurodegenerative diseases.
Collapse
Affiliation(s)
- Rosanna Avola
- Faculty of Medicine and Surgery, University of Enna "Kore", 94100 Enna, Italy
| | | | | | - Alessandra Russo
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
9
|
Stylianopoulou E, Daviti A, Giourou V, Gerasimidi E, Nikolaou A, Kourkoutas Y, Grigoriou ME, Paleologou KE, Skavdis G. Assessment of the Anti-Amyloidogenic Properties of Essential Oils and Their Constituents in Cells Using a Whole-Cell Recombinant Biosensor. Brain Sci 2023; 14:35. [PMID: 38248250 PMCID: PMC10812981 DOI: 10.3390/brainsci14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Essential oils exhibit numerous medicinal properties, including antimicrobial, anti-inflammatory and antioxidant effects. Recent studies also indicate that certain essential oils demonstrate anti-amyloidogenic activity against β-amyloid, the protein implicated in Alzheimer's disease. To investigate whether the anti-aggregating properties of essential oils extend to α-synuclein, the protein involved in Parkinson's disease, we constructed and employed a whole-cell biosensor based on the split-luciferase complementation assay. We validated our biosensor by using baicalein, a known inhibitor of α-synuclein aggregation, and subsequently we tested eight essential oils commonly used in food and the hygienic industry. Two of them, citron and sage, along with their primary components, pure linalool (the main constituent in citron essential oil) and pure eucalyptol (1,8-cineole, the main constituent in sage essential oil), were able to reduce α-syn aggregation. These findings suggest that both essential oils and their main constituents could be regarded as potential components in functional foods or incorporated into complementary Parkinson's disease therapies.
Collapse
Affiliation(s)
- Electra Stylianopoulou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.S.); (A.D.); (E.G.); (M.E.G.)
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Anastasia Daviti
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.S.); (A.D.); (E.G.); (M.E.G.)
| | - Venetia Giourou
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Eleni Gerasimidi
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.S.); (A.D.); (E.G.); (M.E.G.)
| | - Anastasios Nikolaou
- Laboratory of Applied Microbiology & Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.N.); (Y.K.)
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology & Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.N.); (Y.K.)
| | - Maria E. Grigoriou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.S.); (A.D.); (E.G.); (M.E.G.)
| | - Katerina E. Paleologou
- Laboratory of Developmental Biology & Molecular Neurobiology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.S.); (A.D.); (E.G.); (M.E.G.)
| | - George Skavdis
- Laboratory of Molecular Regulation & Diagnostic Technology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
10
|
Meerman JJ, Legler J, Piersma AH, Westerink RHS, Heusinkveld HJ. An adverse outcome pathway for chemical-induced Parkinson's disease: Calcium is key. Neurotoxicology 2023; 99:226-243. [PMID: 37926220 DOI: 10.1016/j.neuro.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Exposure to pesticides is associated with an increased risk of developing Parkinson's disease (PD). Currently, rodent-based risk assessment studies cannot adequately capture neurodegenerative effects of pesticides due to a lack of human-relevant endpoints targeted at neurodegeneration. Thus, there is a need for improvement of the risk assessment guidelines. Specifically, a mechanistic assessment strategy, based on human physiology and (patho)biology is needed, which can be applied in next generation risk assessment. The Adverse Outcome Pathway (AOP) framework is particularly well-suited to provide the mechanistic basis for such a strategy. Here, we conducted a semi-systematic review in Embase and MEDLINE, focused on neurodegeneration and pesticides, to develop an AOP network for parkinsonian motor symptoms. Articles were labelled and included/excluded using the online platform Sysrev. Only primary articles, written in English, focused on effects of pesticides or PD model compounds in models for the brain were included. A total of 66 articles, out of the 1700 screened, was included. PD symptoms are caused by loss of function and ultimately death of dopaminergic neurons in the substantia nigra (SN). Our literature review highlights that a unique feature of these cells that increases their vulnerability is their reliance on continuous low-level influx of calcium. As such, excess intracellular calcium was identified as a central early Key Event (KE). This KE can lead to death of dopaminergic neurons of the SN, and eventually parkinsonian motor symptoms, via four distinct pathways: 1) activation of calpains, 2) endoplasmic reticulum stress, 3) impairment of protein degradation, and 4) oxidative damage. Several receptors have been identified that may serve as molecular initiating events (MIEs) to trigger one or more of these pathways. The proposed AOP network provides the biological basis that can be used to develop a mechanistic testing strategy that captures neurodegenerative effects of pesticides.
Collapse
Affiliation(s)
- Julia J Meerman
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Juliette Legler
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Harm J Heusinkveld
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands.
| |
Collapse
|
11
|
Podturkina AV, Ardashov OV, Volcho KP, Salakhutdinov NF. A New Stereoselective Approach to the Substitution of Allyl Hydroxy Group in para-Mentha-1,2-diol in the Search for New Antiparkinsonian Agents. Molecules 2023; 28:7303. [PMID: 37959723 PMCID: PMC10650740 DOI: 10.3390/molecules28217303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Two approaches to the synthesis of para-menthene epoxide ((1S,5S,6R)-4) are developed. The first approach includes a reaction between chlorohydrin 7 and NaH in THF. The second involves the formation of epoxide in the reaction of corresponding diacetate 6 with sodium tert-butoxide. One possible mechanism of this reaction is proposed to explain unexpected outcomes in the regio- and stereospecificity of epoxide (1S,5S,6R)-4 formation. The epoxide ring in (1S,5S,6R)-4 is then opened by various S- and O-nucleophiles. This series of reactions allows for the stereoselective synthesis of diverse derivatives of the monoterpenoid Prottremine 1, a compound known for its antiparkinsonian activity, including promising antiparkinsonian properties.
Collapse
Affiliation(s)
| | | | - Konstantin P. Volcho
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (A.V.P.); (O.V.A.); (N.F.S.)
| | | |
Collapse
|
12
|
Taban Akça K, Çınar Ayan İ, Çetinkaya S, Miser Salihoğlu E, Süntar İ. Autophagic mechanisms in longevity intervention: role of natural active compounds. Expert Rev Mol Med 2023; 25:e13. [PMID: 36994671 PMCID: PMC10407225 DOI: 10.1017/erm.2023.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
The term 'autophagy' literally translates to 'self-eating' and alterations to autophagy have been identified as one of the several molecular changes that occur with aging in a variety of species. Autophagy and aging, have a complicated and multifaceted relationship that has recently come to light thanks to breakthroughs in our understanding of the various substrates of autophagy on tissue homoeostasis. Several studies have been conducted to reveal the relationship between autophagy and age-related diseases. The present review looks at a few new aspects of autophagy and speculates on how they might be connected to both aging and the onset and progression of disease. Additionally, we go over the most recent preclinical data supporting the use of autophagy modulators as age-related illnesses including cancer, cardiovascular and neurodegenerative diseases, and metabolic dysfunction. It is crucial to discover important targets in the autophagy pathway in order to create innovative therapies that effectively target autophagy. Natural products have pharmacological properties that can be therapeutically advantageous for the treatment of several diseases and they also serve as valuable sources of inspiration for the development of possible new small-molecule drugs. Indeed, recent scientific studies have shown that several natural products including alkaloids, terpenoids, steroids, and phenolics, have the ability to alter a number of important autophagic signalling pathways and exert therapeutic effects, thus, a wide range of potential targets in various stages of autophagy have been discovered. In this review, we summarised the naturally occurring active compounds that may control the autophagic signalling pathways.
Collapse
Affiliation(s)
- Kevser Taban Akça
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - İlknur Çınar Ayan
- Department of Medical Biology, Medical Faculty, Necmettin Erbakan University, Meram, Konya, Türkiye
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, Yenimahalle, Ankara, Türkiye
| | - Ece Miser Salihoğlu
- Biochemistry Department, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - İpek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| |
Collapse
|
13
|
Paeoniflorin protects 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease mice by inhibiting oxidative stress and neuronal apoptosis through activating the Nrf2/HO-1 signaling pathway. Neuroreport 2023; 34:255-266. [PMID: 36881748 DOI: 10.1097/wnr.0000000000001884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVES This study aimed to explore the neuroprotective effects of paeoniflorin on oxidative stress and apoptosis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mice. METHODS The effects of paeoniflorin on motor function in mice were evaluated by behavioral test. Then substantia nigra of mice were collected and neuronal damage was assessed using Nissl staining. Positive expression of tyrosine hydroxylase (TH) was detected by immunohistochemistry. Levels of malondialdehyde, superoxide dismutase (SOD) and glutathione were measured by biochemical method. terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay was used to detect apoptosis of dopaminergic neurons. Western blotting and real-time fluorescence quantitative PCR were used to detect the protein and mRNA expressions of Nrf2, heme oxygenase-1 (HO-1), B-cell lymphoma-2(Bcl-2), Bax and cleaved caspase-3. RESULTS Paeoniflorin treatment significantly ameliorated the motor performance impairment in MPTP-induced PD mice. Moreover, it notably increased the positive expression rate of TH and reduced the damage and apoptosis of dopaminergic neurons in the substantia nigra. Furthermore, paeoniflorin increased the levels of SOD and glutathione and decreased the malondialdehyde content. It also promoted Nrf2 nuclear translocation, increased the protein and mRNA expressions of HO-1 and Bcl-2 and reduced the protein and mRNA expressions of BCL2-Associated X2 (Bax) and cleaved caspase-3. Treatment with the Nrf2 inhibitor, ML385, notably reduced the effects of paeoniflorin in MPTP-induced PD mice. CONCLUSIONS Neuroprotective effects of paeoniflorin in MPTP-induced PD mice may be mediated via inhibition of oxidative stress and apoptosis of dopaminergic neurons in substantia nigra through activation of the Nrf2/HO-1 signaling pathway.
Collapse
|
14
|
Rayff da Silva P, de Andrade JC, de Sousa NF, Portela ACR, Oliveira Pires HF, Remígio MCRB, da Nóbrega Alves D, de Andrade HHN, Dias AL, Salvadori MGDSS, de Oliveira Golzio AMF, de Castro RD, Scotti MT, Felipe CFB, de Almeida RN, Scotti L. Computational Studies Applied to Linalool and Citronellal Derivatives Against Alzheimer's and Parkinson's Disorders: A Review with Experimental Approach. Curr Neuropharmacol 2023; 21:842-866. [PMID: 36809939 PMCID: PMC10227923 DOI: 10.2174/1570159x21666230221123059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 02/24/2023] Open
Abstract
Alzheimer's and Parkinson's are neurodegenerative disorders that affect a great number of people around the world, seriously compromising the quality of life of individuals, due to motor and cognitive damage. In these diseases, pharmacological treatment is used only to alleviate symptoms. This emphasizes the need to discover alternative molecules for use in prevention. Using Molecular Docking, this review aimed to evaluate the anti-Alzheimer's and anti-Parkinson's activity of linalool and citronellal, as well as their derivatives. Before performing Molecular Docking simulations, the compounds' pharmacokinetic characteristics were evaluated. For Molecular Docking, 7 chemical compounds derived from citronellal, and 10 compounds derived from linalool, and molecular targets involved in Alzheimer's and Parkinson's pathophysiology were selected. According to the Lipinski rules, the compounds under study presented good oral absorption and bioavailability. For toxicity, some tissue irritability was observed. For Parkinson-related targets, the citronellal and linalool derived compounds revealed excellent energetic affinity for α-Synuclein, Adenosine Receptors, Monoamine Oxidase (MAO), and Dopamine D1 receptor proteins. For Alzheimer disease targets, only linalool and its derivatives presented promise against BACE enzyme activity. The compounds studied presented high probability of modulatory activity against the disease targets under study, and are potential candidates for future drugs.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Jéssica Cabral de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Natália Ferreira de Sousa
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Anne Caroline Ribeiro Portela
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Hugo Fernandes Oliveira Pires
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Maria Caroline Rodrigues Bezerra Remígio
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Danielle da Nóbrega Alves
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Humberto Hugo Nunes de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Arthur Lins Dias
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | | | | | - Ricardo Dias de Castro
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Marcus T. Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Cícero Francisco Bezerra Felipe
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| |
Collapse
|
15
|
Jangra A, Verma M, Kumar D, Chandrika C, Rachamalla M, Dey A, Dua K, Jha SK, Ojha S, Alexiou A, Kumar D, Jha NK. Targeting Endoplasmic Reticulum Stress using Natural Products in Neurological Disorders. Neurosci Biobehav Rev 2022; 141:104818. [DOI: 10.1016/j.neubiorev.2022.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
|
16
|
Neuroprotective effect of geraniol on neurological disorders: a review article. Mol Biol Rep 2022; 49:10865-10874. [PMID: 35900613 DOI: 10.1007/s11033-022-07755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Neurological disorders are structural, biochemical, and electrical abnormalities that affect the peripheral and central nervous systems. Paralysis, muscle weakness, tremors, spasms, and partial or complete loss of sensation are some symptoms of these disorders. Neurorehabilitation is the main treatment for neurological disorders. Treatments can improve the quality of life of patients. Neuroprotective substances of natural origin are used for the treatments of these disorders. METHODS AND RESULTS Online databases, such as Google Scholar, PubMed, ScienceDirect, and Scopus were searched to evaluate articles from 1981-2021 using the Mesh words of geraniol (GER), neurological disorders, epilepsy, spinal cord injury (SCI), Parkinson's diseases (PD), and depression. A total of 87 studies were included in this review. GER with antioxidant, anti-inflammatory, and neuroprotective effects can improve the symptoms and reduce the progression of neurological diseases. GER exhibits neuroprotective effects by binding to GABA and glycine receptors as well as by inhibiting the activation of nuclear factor kappa B (NF-κB) pathway and regulating the expression of nucleotide-binding oligomerization of NLRP3 inflammasome. In this study, the effect of GER was investigated on neurological disorders, such as epilepsy, SCI, PD, and depression. CONCLUSION Although the medicinal uses of GER have been reported, more clinical and experimental studies are needed to investigate the effect of using traditional medicine on improving lifethreatening diseases and the quality of life of patients.
Collapse
|
17
|
Paraquat Inhibits Autophagy Via Intensifying the Interaction Between HMGB1 and α-Synuclein. Neurotox Res 2022; 40:520-529. [PMID: 35316522 DOI: 10.1007/s12640-022-00490-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
Paraquat, a widely used herbicide, is associated with an increased risk of Parkinson's disease (PD). PQ induces upregulation and accumulation of α-synuclein in neurons, which is one of the major pathological hallmarks of PD. Autophagy, as the major mechanism for the clearance of α-synuclein, is disrupted upon pesticide exposure as well as in PD patients. Meanwhile, HMGB1 is involved in autophagy dysfunction and particularly relevant to PD. However, whether PQ exposure affects HMGB1, α-synuclein, and autophagy function have rarely been reported. In this study, we found that PQ exposure impaired autophagy function via disturbing the complex formation of HMGB1 and Beclin1. Moreover, the expression of α-synuclein is modulated by HMGB1 and the interaction between HMGB1 and α-synuclein was intensified by PQ exposure. Taken together, our results revealed that HMGB1-mediated α-synuclein accumulation could competitively perturb the complex formation of HMGB1 and Beclin1, thereby inhibiting the autophagy function in SH-SY5Y cells.
Collapse
|
18
|
Atef MM, Emam MN, Abo El Gheit RE, Elbeltagi EM, Alshenawy HA, Radwan DA, Younis RL, Abd-Ellatif RN. Mechanistic Insights into Ameliorating Effect of Geraniol on D-Galactose Induced Memory Impairment in Rats. Neurochem Res 2022; 47:1664-1678. [PMID: 35235140 PMCID: PMC9124169 DOI: 10.1007/s11064-022-03559-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
Geraniol (GE), an important ingredient in several essential oils, displayed pleiotropic biological activities through targeting multiple signaling cascades. In the current study, we aimed to examine the protective effect of GE on D-galactose (D-gal) induced cognitive impairment and explore the underlying mechanisms. Forty male Wistar rats (8 weeks old) were randomly categorized into 4 groups; Group I (saline + vehicle [edible oil]), group II (saline + geraniol) (100 mg/kg/day orally), group III (D-galactose) (100 mg/kg/day subcutaneously injected), and group IV (D-galactose + geraniol). Behavioral impairments were evaluated. Brain levels of malondialdehyde (MDA) and reduced glutathione (GSH) as well as superoxide dismutase (SOD) and acetylcholinesterase (AchE) activities were estimated. The levels of inflammatory markers [tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, and nuclear factor kappa beta (NF-kβ)], endoplasmic reticulum stress sensors [inositol requiring protein 1(IRE1) and protein kinase RNA-like endoplasmic reticulum kinase (PERK)], brain-derived neurotrophic factor (BDNF), and mitogen-activated protein kinases (MAPK) pathway were measured by ELISA. Also, hippocampal histopathological assessment and immunohistochemical analysis of glial fibrillary acidic protein (GFAP) and caspase-3 were performed. Glucose regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) mRNA expression and protein levels were assessed. GE effectively ameliorated aging-related memory impairment through increasing GSH, BDNF, Ach levels, and SOD activity. Additionally, GE treatment caused a decrease in the levels of MDA, inflammatory mediators, and ER stress sensors as well as the AchE activity together with concomitant down-regulation of GRP78 and CHOP mRNA expression. Moreover, GE improved neuronal architecture and rat's spatial memory; this is evidenced by the shortened escape latency and increased platform crossing number. Therefore, GE offers a unique pharmacological approach for aging-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Marwa Mohamed Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, 31511, Egypt.
| | - Marwa Nagy Emam
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | | - H A Alshenawy
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Doaa A Radwan
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Reham L Younis
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rania Nagi Abd-Ellatif
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, 31511, Egypt
| |
Collapse
|
19
|
A Distinct Hibiscus sabdariffa Extract Prevents Iron Neurotoxicity, a Driver of Multiple Sclerosis Pathology. Cells 2022; 11:cells11030440. [PMID: 35159249 PMCID: PMC8834068 DOI: 10.3390/cells11030440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Iron deposition in the brain begins early in multiple sclerosis (MS) and continues unabated. Ferrous iron is toxic to neurons, yet the therapies used in MS do not counter iron neurotoxicity. Extracts of Hibiscus sabdariffa (HS) are used in many cultures for medicinal purposes. We collected a distinct HS extract and found that it abolished the killing of neurons by iron in culture; medications used in MS were ineffective when similarly tested. Neuroprotection by HS was not due to iron chelation or anthocyanin content. In free radical scavenging assays, HS was equipotent to alpha lipoic acid, an anti-oxidant being tested in MS. However, alpha lipoic acid was only modestly protective against iron-mediated killing. Moreover, a subfraction of HS without radical scavenging activity negated iron toxicity, whereas a commercial hibiscus preparation with anti-oxidant activity could not. The idea that HS might have altered properties within neurons to confer neuroprotection is supported by its amelioration of toxicity caused by other toxins: beta-amyloid, rotenone and staurosporine. Finally, in a mouse model of MS, HS reduced disability scores and ameliorated the loss of axons in the spinal cord. HS holds therapeutic potential to counter iron neurotoxicity, an unmet need that drives the progression of disability in MS.
Collapse
|
20
|
Sun Z, Gu P, Xu H, Zhao W, Zhou Y, Zhou L, Zhang Z, Wang W, Han R, Chai X, An S. Human Umbilical Cord Mesenchymal Stem Cells Improve Locomotor Function in Parkinson's Disease Mouse Model Through Regulating Intestinal Microorganisms. Front Cell Dev Biol 2022; 9:808905. [PMID: 35127723 PMCID: PMC8810651 DOI: 10.3389/fcell.2021.808905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurological disorder characterized by loss of neurons that synthesize dopamine, and subsequent impaired movement. Umbilical cord mesenchymal stem cells (UC-MSCs) exerted neuroprotection effects in a rodent model of PD. However, the mechanism underlying UC-MSC-generated neuroprotection was not fully elucidated. In the present study, we found that intranasal administration of UC-MSCs significantly alleviated locomotor deficits and rescued dopaminergic neurons by inhibiting neuroinflammation in a PD mouse model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, a toxic agent which selectively destroys nigrostriatal neurons but does not affect dopaminergic neurons elsewhere). Furthermore, UC-MSC treatment altered gut microbiota composition characterized by decreased phylum Proteobacteria, class Gammaproteobacteria, family Enterobacteriaceae, and genus Escherichia-Shigella. In addition, the neurotransmitter dopamine in the striatum and 5-hydroxytryptamine in the colon were also modulated by UC-MSCs. Meanwhile, UC-MSCs significantly maintained intestinal goblet cells, which secrete mucus as a mechanical barrier against pathogens. Furthermore, UC-MSCs alleviate the level of TNF-α and IL-6 as well as the conversion of NF-κB expression in the colon, indicating that inflammatory responses were blocked by UC-MSCs. PICRUSt showed that some pathways including bacterial invasion of epithelial cells, fluorobenzoate degradation, and pathogenic Escherichia coli infection were significantly reversed by UC-MSCs. These data suggest that the beneficial effects were detected following UC-MSC intranasal transplantation in MPTP-treated mice. There is a possible neuroprotective role of UC-MSCs in MPTP-induced PD mice by cross talk between the brain and gut.
Collapse
Affiliation(s)
- Zhengqin Sun
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
| | - Ping Gu
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongjun Xu
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wei Zhao
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Yongjie Zhou
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Luyang Zhou
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhongxia Zhang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
| | - Wenting Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Han
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiqing Chai
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shengjun An
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
21
|
Molina-Martínez B, Jentsch LV, Ersoy F, van der Moolen M, Donato S, Ness TV, Heutink P, Jones PD, Cesare P. A multimodal 3D neuro-microphysiological system with neurite-trapping microelectrodes. Biofabrication 2021; 14. [PMID: 34942606 DOI: 10.1088/1758-5090/ac463b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/23/2021] [Indexed: 11/12/2022]
Abstract
Three-dimensional cell technologies as pre-clinical models are emerging tools for mimicking the structural and functional complexity of the nervous system. The accurate exploration of phenotypes in engineered 3D neuronal cultures, however, demands morphological, molecular and especially functional measurements. Particularly crucial is measurement of electrical activity of individual neurons with millisecond resolution. Current techniques rely on customized electrophysiological recording set-ups, characterized by limited throughput and poor integration with other readout modalities. Here we describe a novel approach, using multiwell glass microfluidic microelectrode arrays, allowing non-invasive electrical recording from engineered 3D neural tissues. We demonstrate parallelized studies with reference compounds, calcium imaging and optogenetic stimulation. Additionally, we show how microplate compatibility allows automated handling and high-content analysis of human induced pluripotent stem cell-derived neurons. This microphysiological platform opens up new avenues for high-throughput studies on the functional, morphological and molecular details of neurological diseases and their potential treatment by therapeutic compounds.
Collapse
Affiliation(s)
- Beatriz Molina-Martínez
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, Reutlingen, 72770, GERMANY
| | - Laura-Victoria Jentsch
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, Reutlingen, 72770, GERMANY
| | - Fulya Ersoy
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, Reutlingen, 72770, GERMANY
| | - Matthijs van der Moolen
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, Reutlingen, 72770, GERMANY
| | - Stella Donato
- German Center for Neurodegenerative Diseases (DZNE), Otfried Müller Strasse 23, Tübingen, 72076, GERMANY
| | - Torbjørn V Ness
- Norwegian University of Life Sciences NMBU, Universitetstunet 3, As, 1432, NORWAY
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Otfried Müller Strasse 23, Tübingen, 72076, GERMANY
| | - Peter D Jones
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen (Germany), Markwiesenstrasse 55, Reutlingen, 72770, GERMANY
| | - Paolo Cesare
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, Reutlingen, 72770, GERMANY
| |
Collapse
|
22
|
Queiroz Junior NF, Steffani JA, Machado L, Longhi PJH, Montano MAE, Martins M, Machado SA, Machado AK, Cadoná FC. Antioxidant and cytoprotective effects of avocado oil and extract ( Persea americana Mill) against rotenone using monkey kidney epithelial cells (Vero). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:875-890. [PMID: 34256683 DOI: 10.1080/15287394.2021.1945515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oxidative stress is known to be involved in development of numerous diseases including cardiovascular, respiratory, renal, kidney and cancer. Thus, investigations that mimic oxidative stress in vitro may play an important role to find new strategies to control oxidative stress and subsequent consequences are important. Rotenone, widely used as a pesticide has been used as a model to simulate oxidative stress. However, this chemical was found to produce several diseases. Therefore, the aim of this study was to investigate the antioxidant and cytoprotective effect of avocado (Persea americana Mill) extract and oil in monkey kidney epithelial cells (VERO) exposed to rotenone. VERO cells were exposed to IC50 of rotenone in conjunction with different concentrations of avocado extract and oil (ranging from 1 to 1000 µg/ml), for 24 hr. Subsequently, cell viability and oxidative metabolism were assessed. Data demonstrated that avocado extract and oil in the presence of rotenone increased cellular viability at all tested concentrations compared to cells exposed only to rotenone. In addition, extract and avocado oil exhibited antioxidant action as evidenced by decreased levels of reactive oxygen species (ROS), superoxide ion, and lipid peroxidation, generated by rotenone. Further, avocado extract and oil appeared to be safe, since these compounds did not affect cell viability and or generate oxidative stress. Therefore, avocado appears to display a promising antioxidant potential by decreasing oxidative stress.
Collapse
Affiliation(s)
| | - Jovani Antônio Steffani
- Postgraduate Program of Biosciences and Health, West University of Santa Catarina, Joaçaba, SC, Brazil
| | - Larissa Machado
- Biological Sciences Course, West University of Santa Catarina, Joaçaba, SC, Brazil
| | | | | | - Mathias Martins
- Postgraduate Program in Health and Animal Production, West University of Santa Catarina, Joaçaba, SC, Brazil
| | - Sérgio Abreu Machado
- Postgraduate Program in Health and Animal Production, West University of Santa Catarina, Joaçaba, SC, Brazil
| | | | - Francine Carla Cadoná
- Postgraduate Program in Sciences of Health and Life, Franciscan University, Santa Maria, RS, Brazil
| |
Collapse
|
23
|
Shaikh S, Ahmad K, Ahmad SS, Lee EJ, Lim JH, Beg MMA, Verma AK, Choi I. Natural Products in Therapeutic Management of Multineurodegenerative Disorders by Targeting Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6347792. [PMID: 34557265 PMCID: PMC8455192 DOI: 10.1155/2021/6347792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022]
Abstract
Autophagy is an essential cellular process that involves the transport of cytoplasmic content in double-membraned vesicles to lysosomes for degradation. Neurons do not undergo cytokinesis, and thus, the cell division process cannot reduce levels of unnecessary proteins. The primary cause of neurodegenerative disorders (NDs) is the abnormal deposition of proteins inside neuronal cells, and this could be averted by autophagic degradation. Thus, autophagy is an important consideration when considering means of developing treatments for NDs. Various pharmacological studies have reported that the active components in herbal medicines exhibit therapeutic benefits in NDs, for example, by inhibiting cholinesterase activity and modulating amyloid beta levels, and α-synuclein metabolism. A variety of bioactive constituents from medicinal plants are viewed as promising autophagy controllers and are revealed to recover the NDs by targeting the autophagic pathway. In the present review, we discuss the role of autophagy in the therapeutic management of several NDs. The molecular process responsible for autophagy and its importance in various NDs and the beneficial effects of medicinal plants in NDs by targeting autophagy are also discussed.
Collapse
Affiliation(s)
- Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Amit K. Verma
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
24
|
Ali AA, Kamal MM, Khalil MG, Ali SA, Elariny HA, Bekhit A, Wahid A. Behavioral, Biochemical and Histopathological effects of Standardised Pomegranate extract with Vinpocetine, Propolis or Cocoa in a rat model of Parkinson's disease. Exp Aging Res 2021; 48:191-210. [PMID: 34384037 DOI: 10.1080/0361073x.2021.1959823] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Parkinsonism is a neurodegenerative disorder. Pomegranate (POM) has been previously shown to have a dopaminergic neuroprotective effect against parkinsonism. OBJECTIVE The aim of the current study is to investigate the possible effect of POM in combination with each of vinpocetine, propolis, or cocoa in the treatment of parkinsonism disease even without being given as adjuvant to L-dopa . METHODS Rats were divided into seven groups, one normal and six RT model groups. One of the RT groups (2.5 mg/kg/48 h/10 doses sc), for 20 days served as non-treated parkinsonism model, whereas the others were treated with either L-dopa (10 mg/kg, p.o./day) or with POM (150 mg/kg, p.o./day) together with each of the following; vinpocetine (VIN) (20 mg/kg, p.o./day), propolis (300 mg/kg, p.o./day), cocoa (24 mg/kg, p.o./day). Motor and cognitive performances were examined using four tests (catalepsy, swimming, Y-maze, open field). Striatal dopamine, norepinephrine, serotonin, GABA, glutamate, acetylcholinesterase, GSK-3β, BDNF levels were assessed as well as MDA, SOD, TAC, IL-1β, TNF-α, iNOs, and caspase-3. Also, histopathological examinations of different brain regions were determined. RESULTS Treatment with L-dopa alone or with all POM combination groups alleviated the deficits in locomotor activities, cognition, neurotransmitter levels, acetylcholinesterase activity, oxidative stress, and inflammatory markers as well as caspase-3 expression induced by RT. CONCLUSION Combinations of POM with each of VIN, propolis, or cocoa have a promising disease-modifying antiparkinsonian therapy even without being given as an adjuvant to L-dopa.
Collapse
Affiliation(s)
- Azza A Ali
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mona M Kamal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mona G Khalil
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Shimaa A Ali
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hemat A Elariny
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Amany Bekhit
- Biochemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Ahmed Wahid
- Pharmaceutical Biochemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
25
|
Yang H, Liu G, Zhao H, Dong X, Yang Z. Inhibiting the JNK/ERK signaling pathway with geraniol for attenuating the proliferation of human gastric adenocarcinoma AGS cells. J Biochem Mol Toxicol 2021; 35:e22818. [PMID: 34075659 DOI: 10.1002/jbt.22818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/22/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022]
Abstract
Geraniol, a natural compound found in the essential oils of various aromatic plants, has attracted attention for its probable anticancer effects. The molecular mechanisms of the cell proliferation suppression and apoptosis induction via geraniol in gastric cancer cells (AGS), however, remain unclear. Gastric cancer cells were treated with geraniol, and it was found that the IC50 values were 25 μM/ml, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results showed that 20 and 25 μM geraniol-induced reactive oxygen species (ROS) production (2'-7'dichlorofluorescin diacetate staining) and decreased mitochondrial membrane potential (rhodamine 123 staining) in AGS cells. Then, it effectively inhibited cell growth and induced apoptosis, confirmed through acridine orange/ethidium bromide, 4',6-diamidino-2-phenylindole, and propidium iodide staining and molecular marker analysis in AGS cells. Also, geraniol potently diminished caspase-9, Bax, Bcl-2, and caspase-3 expression in AGS cells. We also evaluated the essential mechanism of the cytotoxic effect of geraniol. Moreover, the present study depicted that geraniol-induced cell death through mitochondrial ROS production and inhibited the phosphorylation form of mitogen-activated protein kinase (p38, MAPK, JNK, and ERK1/2) signaling pathway. Taken together, these results concluded that geraniol has a novel therapeutic property against human stomach cancer.
Collapse
Affiliation(s)
- Hongwei Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, HeNan Province, China
| | - Guanghui Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, HeNan Province, China
| | - Hongchao Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, HeNan Province, China
| | - Xinhua Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, HeNan Province, China
| | - Zhen Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, HeNan Province, China
| |
Collapse
|
26
|
Truzzi E, Rustichelli C, de Oliveira Junior ER, Ferraro L, Maretti E, Graziani D, Botti G, Beggiato S, Iannuccelli V, Lima EM, Dalpiaz A, Leo E. Nasal biocompatible powder of Geraniol oil complexed with cyclodextrins for neurodegenerative diseases: physicochemical characterization and in vivo evidences of nose to brain delivery. J Control Release 2021; 335:191-202. [PMID: 34019946 DOI: 10.1016/j.jconrel.2021.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/16/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022]
Abstract
Recently, many studies have shown that plant metabolites, such as geraniol (GER), may exert anti-inflammatory effects in neurodegenerative diseases and, in particular, Parkinson's disease (PD) models. Unfortunately, delivering GER to the CNS via nose-to-brain is not feasible due to its irritant effects on the mucosae. Therefore, in the present study β-cyclodextrin (βCD) and its hydrophilic derivative hydroxypropyl-beta-cyclodextrin (HPβCD) were selected as potential carriers for GER nose-to-brain delivery. Inclusion complexes were formulated and the biocompatibility with nasal mucosae and drug bioavailability into cerebrospinal fluid (CSF) were studied in rats. It has been demonstrated by DTA, FT-IR and NMR analyses that both the CDs were able to form 1:1 GER-CD complexes, arising long-term stable powders after the freeze-drying process. GER-HPβCD-5 and GER-βCD-2 complexes exhibited comparable results, except for morphology and solubility, as demonstrated by SEM analysis and phase solubility study, respectively. Even though both complexes were able to directly and safely deliver GER to CNS, GER-βCD-2 displayed higher ability in releasing GER in the CSF. In conclusion, βCD complexes can be considered a very promising tool in delivering GER into the CNS via nose-to-brain route, preventing GER release into the bloodstream and ensuring the integrity of the nasal mucosa.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| | - Cecilia Rustichelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| | - Edilson Ribeiro de Oliveira Junior
- Faculty of Pharmacy, Laboratory of Pharmaceutical Technology - FarmaTec, Federal University of Goiás, Rua 240, esquina com 5a Avenida, s/n, Setor Universitário, Goiânia, CEP 74605-170, Brazil
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA Center, Via L. Borsari 46, I-44121 Ferrara, Italy.
| | - Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| | - Daniel Graziani
- School of Veterinary and Animal Sciences - Molecular, Cell and Tissue Analysis Laboratory, Federal University of Goiás, Av. Esperança. s/n. Campus Samambaia, Goiânia, GO 74690-900. Brazil
| | - Giada Botti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy.
| | - Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini - campus universitario, 66100 Chieti, Italy.
| | - Valentina Iannuccelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| | - Eliana Martins Lima
- Faculty of Pharmacy, Laboratory of Pharmaceutical Technology - FarmaTec, Federal University of Goiás, Rua 240, esquina com 5a Avenida, s/n, Setor Universitário, Goiânia, CEP 74605-170, Brazil.
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy.
| | - Eliana Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| |
Collapse
|
27
|
Kuzu B, Cüce G, Ayan İÇ, Gültekin B, Canbaz HT, Dursun HG, Şahin Z, Keskin İ, Kalkan SS. Evaluation of Apoptosis Pathway of Geraniol on Ishikawa Cells. Nutr Cancer 2020; 73:2532-2537. [PMID: 33086902 DOI: 10.1080/01635581.2020.1836244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Endometrial cancer is the most common type of cancer in the female reproductive system. Geraniol is acyclic monoterpene alcohol derived from essential oils of aromatic plants. This study aimed to investigate the apoptosis pathway of geraniol on Ishikawa cells. The cytotoxic effects of Geraniol on Ishikawa cells were determined by an MTT test. Ishikawa cells were seeded on cover slips, the IC50 dose was applied, and the cells were incubated with antibodies against Bax, Bcl-2, and TUNEL Assay. mRNA expression analysis of apoptosis-related genes was determined by RT-qPCR with an IC50 dose of Geraniol. The IC50 dose of Geraniol decreased Bcl-2 staining significantly, but it significantly increased Bax staining and TUNEL positive cells. A significant increase in the Bax, caspase3, caspase-8, cytochrome C and Fas genes and a significant decrease in the Bcl-2 gene was observed when the IC50 dose group was compared to the cells in the control group based on their mRNA expression levels.Analysis of expression of genes whose products are involved in apoptosis suggests the involvement of the mitochondrial pathway.
Collapse
Affiliation(s)
- Betül Kuzu
- Department of Histology and Embryology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Gökhan Cüce
- Department of Histology and Embryology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - İlknur Çınar Ayan
- Department of Medical Biology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Burcu Gültekin
- Department of Histology and Embryology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Halime Tuba Canbaz
- Department of Histology and Embryology, Hamidiye Medical Faculty, University of Health Sciences, İstanbul, Turkey
| | - Hatice Gül Dursun
- Department of Medical Biology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Zafer Şahin
- Department of Physiology, Medical Faculty, Karadeniz Technical University, Trabzon, Turkey
| | - İlknur Keskin
- Department of Histology and Embryology, Medical Faculty, Medipol University, Istanbul, Turkey
| | - Sabiha Serpil Kalkan
- Department of Histology and Embryology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
28
|
Protective Effect of Geraniol on Oxidative, Inflammatory and Apoptotic Alterations in Isoproterenol-Induced Cardiotoxicity: Role of the Keap1/Nrf2/HO-1 and PI3K/Akt/mTOR Pathways. Antioxidants (Basel) 2020; 9:antiox9100977. [PMID: 33053761 PMCID: PMC7599734 DOI: 10.3390/antiox9100977] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/25/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Myocardial infarction (MI) is still a major contributor to mortality worldwide, and therefore, searching for new drugs is an urgent priority. Natural products are a renewable source for medicinally and pharmacologically active molecules. The objective of this study was to explore the potential of geraniol, a monoterpene alcohol, to protect against MI. Methods: Five groups of Wister rats were used: a control group; a group treated only with geraniol; a group treated only with isoproterenol, to induce MI; and two groups pretreated with geraniol (100 or 200 mg/kg, respectively) for 14 days and challenged with isoproterenol on the 13th and 14th days. Several parameters were measured including electrocardiogram (ECG), cardiac markers, the expression of Kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), and other downstream antioxidant enzymes, as well as the expression of phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and other downstream apoptotic and inflammatory mediators. Results: Geraniol treatment reduced the size of the infarct region, attenuated the levels of cardiac indicators, and diminished myocardial necrosis and immune cell infiltration. Geraniol treatment also activated the Keap1/Nrf2/heme oxygenase-1 (HO-1) pathway, increased antioxidant enzyme activities, modulated the PI3K/Akt/mTOR pathway, and ameliorated myocardial autophagy, inflammation, and apoptosis. Conclusion: Geraniol may possess a protective effect against MI through moderating MI-induced myocardial oxidative stress (glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), and Keap1/Nrf2 pathway), inflammation (IL-1β, IL-6, TNF-α, and Nuclear factor-κB (NF-κB)), apoptosis (caspase-3, caspase-9, Bcl2, and Bax), and autophagy (PI3K/Akt/mTOR pathway).
Collapse
|
29
|
Oxidative Stress in Parkinson's Disease: Potential Benefits of Antioxidant Supplementation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2360872. [PMID: 33101584 PMCID: PMC7576349 DOI: 10.1155/2020/2360872] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) occurs in approximately 1% of the population over 65 years of age and has become increasingly more common with advances in age. The number of individuals older than 60 years has been increasing in modern societies, as well as life expectancy in developing countries; therefore, PD may pose an impact on the economic, social, and health structures of these countries. Oxidative stress is highlighted as an important factor in the genesis of PD, involving several enzymes and signaling molecules in the underlying mechanisms of the disease. This review presents updated data on the involvement of oxidative stress in the disease, as well as the use of antioxidant supplements in its therapy.
Collapse
|
30
|
Stacchiotti A, Corsetti G. Natural Compounds and Autophagy: Allies Against Neurodegeneration. Front Cell Dev Biol 2020; 8:555409. [PMID: 33072744 PMCID: PMC7536349 DOI: 10.3389/fcell.2020.555409] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Prolonging the healthy life span and limiting neurological illness are imperative goals in gerontology. Age-related neurodegeneration is progressive and leads to severe diseases affecting motility, memory, cognitive function, and social life. To date, no effective treatments are available for neurodegeneration and irreversible neuronal loss. Bioactive phytochemicals could represent a natural alternative to ensure active aging and slow onset of neurodegenerative diseases in elderly patients. Autophagy or macroautophagy is an evolutionarily conserved clearing process that is needed to remove aggregate-prone proteins and organelles in neurons and glia. It also is crucial in synaptic plasticity. Aberrant autophagy has a key role in aging and neurodegeneration. Recent evidence indicates that polyphenols like resveratrol and curcumin, flavonoids, like quercetin, polyamine, like spermidine and sugars, like trehalose, limit brain damage in vitro and in vivo. Their common mechanism of action leads to restoration of efficient autophagy by dismantling misfolded proteins and dysfunctional mitochondria. This review focuses on the role of dietary phytochemicals as modulators of autophagy to fight Alzheimer's and Parkinson's diseases, fronto-temporal dementia, amyotrophic lateral sclerosis, and psychiatric disorders. Currently, most studies have involved in vitro or preclinical animal models, and the therapeutic use of phytochemicals in patients remains limited.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdepartmental University Center of Research "Adaptation and Regeneration of Tissues and Organs (ARTO)," University of Brescia, Brescia, Italy
| | - Giovanni Corsetti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
31
|
Yarmohammadi F, Wallace Hayes A, Najafi N, Karimi G. The protective effect of natural compounds against rotenone‐induced neurotoxicity. J Biochem Mol Toxicol 2020; 34:e22605. [DOI: 10.1002/jbt.22605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - A. Wallace Hayes
- Institute for Integrative Toxicology University of South Florida Tampa Florida
- Institute for Integrative Toxicology Michigan State University East Lansing Michigan
| | - Nahid Najafi
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
32
|
He B, Wang X, Yang C, Zhu J, Jin Y, Fu Z. The regulation of autophagy in the pesticide-induced toxicity: Angel or demon? CHEMOSPHERE 2020; 242:125138. [PMID: 31670000 DOI: 10.1016/j.chemosphere.2019.125138] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 05/20/2023]
Abstract
Pesticides have become an essential tool for pest kill, weed control and microbiome inhibition for both agricultural and domestic use. However, with the massive use, pesticides can exist in soil, air and water, and sometimes even accumulate in the human or other mammals through food chains. Lots of researches have proven that pesticides possess toxicity to mammals on endocrine, neural and immune systems. Autophagy, as a conservative intracellular process, which is activated by stress-related signals, plays a pivotal role, either "angle" or "demon", in regulation of cell fate and function. Recent evidences in researches elucidated a strong link between the autophagy and the toxicity of pesticides. In this review, we summarized the previous researches which focus on the autophagy regulation in the pesticides-induced toxicity, and hope that this work can help us to discover a potential strategy for the treatment of the disease caused by pesticides.
Collapse
Affiliation(s)
- Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
33
|
The protective effect of inosine against rotenone-induced Parkinson's disease in mice; role of oxido-nitrosative stress, ERK phosphorylation, and A2AR expression. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1041-1053. [PMID: 31915844 DOI: 10.1007/s00210-019-01804-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a severe disabling syndrome in which neuroinflammation and various signaling pathways are believed to mediate dopaminergic neurodegeneration. Here, the possible disease-modifying effects of the purine nucleoside inosine were examined against rotenone-induced PD. Mice were allocated into six groups, namely, a normal control group receiving dimethylsulfoxide, a PD control group receiving rotenone, a standard treatment group receiving L-dopa/carbidopa together with rotenone, and three treatment groups receiving inosine in low, medium, and high doses together with rotenone. At the end of the experimental protocol, three behavioral tests were performed to assess PD motor manifestations, namely, wire-hanging test, wood-walking test, and stair test. After performing the behavioral study, mice striata were isolated for the colorimetric assay of hypoxanthine, the enzyme-linked immunosorbent assay of dopamine, tumor necrosis factor-α, interleukin-6 and nitrite, the Western blot estimation of total and phosphorylated extracellular signal-regulated kinase (tERK and pERK), the polymerase chain reaction estimation of adenosine A2A receptor (A2AR) expression, as well as the histopathological examination of substantia nigra and striatal tissue. Inosine protected against PD progression in a dose-dependent manner, with the effect comparable to the standard treatment L-dopa/carbidopa, evidenced by behavioral, biochemical, and histologic findings. The beneficial antiparkinsonian effect of inosine could be attributed to the ability of the drug to ameliorate neuroinflammation and oxido-nitrosative stress, together with suppression of ERK phosphorylation and down-regulation of A2AR expression. Inosine could therefore be considered as a disease-modifying agent against PD, but further studies are claimed to confirm such effects clinically.
Collapse
|
34
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Kaviyani N, Tavakol S. Monoterpenes modulating autophagy: A review study. Basic Clin Pharmacol Toxicol 2020; 126:9-20. [PMID: 31237736 DOI: 10.1111/bcpt.13282] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/21/2019] [Indexed: 01/19/2023]
Abstract
From the beginning of the 21st century, much attention has been made towards the medicinal herbs due to their low side effects and valuable biological activities. Among them, terpenes comprise a large group of naturally occurring chemical compounds that are considered as main components of flavours, antifeedants and pheromones. Monoterpenes have demonstrated a favourable profile as compounds that have antioxidant, anti-inflammatory, anti-diabetic, hepatoprotective and anti-tumour activities. On the other hand, autophagy is a 'self-digestion' mechanism which plays a remarkable role in a number of pathological conditions such as cancer, ageing, metabolic disorders and infection. Also, autophagy is considered as a stress adaptor that may lead to apoptotic cell death under severe and sustained stress. Autophagy modulation is a promising strategy in cancer treatment, and a variety of drugs have been designed in line with this strategy. In the present MiniReview, we discuss the effects of monoterpenes on autophagy and its relationship with therapeutic impacts of monoterpenes.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- NanoBioEletrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran.,Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Zahra Ahmadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Nasim Kaviyani
- Department of Basic Science, Islamic Azad University, Shoushtar, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Parekh P, Sharma N, Gadepalli A, Shahane A, Sharma M, Khairnar A. A Cleaning Crew: The Pursuit of Autophagy in Parkinson's Disease. ACS Chem Neurosci 2019; 10:3914-3926. [PMID: 31385687 DOI: 10.1021/acschemneuro.9b00244] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disorder, neuropathologically characterized by the aggregation of misfolded α-synuclein (α-syn) protein, which appears to be central to the onset and progression of PD pathology. Evidence from pioneering studies has highly advocated the existence of impaired autophagy pathways in the brains of PD patients. Autophagy is an evolutionarily conserved, homeostatic mechanism for minimizing abnormal protein aggregates and facilitating organelle turnover. Any aberration in constitutive autophagy activity results in the aggregation of misfolded α-syn, which, in turn, may further inhibit their own degradation-leading to a vicious cycle of neuronal death. Despite the plethora of available literature, there are still lacunas existing in our understanding of the exact cellular interplay between autophagy impairment and α-syn accumulation-mediated neurotoxicity. In this context, clearance of aggregated α-syn via up-regulation of the autophagy-lysosomal pathway could provide a pharmacologically viable approach to the treatment of PD. The present Review highlights the basics of autophagy and detrimental cross-talk between α-syn and chaperone-mediated autophagy, and α-syn and macroautophagy. It also depicts the interaction between α-syn and novel targets, LRRK2 and mTOR, followed by the role of autophagy in PD from a therapeutic perspective. More importantly, it further updates the reader's understanding of various newer therapeutic avenues that may accomplish disease modification via promoting clearance of toxic α-syn through activation of autophagy.
Collapse
Affiliation(s)
- Pathik Parekh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat India
| | - Nishant Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat India
| | - Anagha Gadepalli
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat India
| | - Abhishekh Shahane
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat India
| | - Monika Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat India
| |
Collapse
|
36
|
Alonso-Andrés P, Martín M, Albasanz JL. Modulation of Adenosine Receptors and Antioxidative Effect of Beer Extracts in in Vitro Models. Nutrients 2019; 11:nu11061258. [PMID: 31163630 PMCID: PMC6628356 DOI: 10.3390/nu11061258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 12/14/2022] Open
Abstract
The fight against neurodegenerative diseases is promoting the searching of nutrients, preferably of wide consumption, with proven effects on health. Beer is widely consumed and has potential benefits on health. In this work, three different extracts from dark beer (DB), non-alcoholic beer (NAB), and lager beer (LB) were assayed at 30 min and 24 h in rat C6 glioma and human SH-SY5Y neuroblastoma cells in order to study their possible protective effects. Cell viability and adenosine A1, A2A, A2B, and A3 receptor gene expression and protein levels were measured in control cells and in cells challenged with hydrogen peroxide as an oxidant stressor. Among the three extracts analyzed, DB showed a greater protective effect against H2O2-induced oxidative stress and cell death. Moreover, a higher A1 receptor level was also induced by this extract. Interestingly, A1 receptor level was also increased by NAB and LB extracts, but to a lower extent, and the protective effect of these extracts against H2O2 was lower. This possible correlation between protection and A1 receptor level was observed at 24 h in both C6 and SH-SY5Y cells. In summary, different beer extracts modulate, to a different degree, adenosine receptors expression and protect both glioma and neuroblastoma cells from oxidative stress.
Collapse
Affiliation(s)
- Patricia Alonso-Andrés
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain.
| | - Mairena Martín
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain.
| | - José Luis Albasanz
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain.
| |
Collapse
|