1
|
Dong K, Gould SI, Li M, Rivera FJS. Computational modeling of human genetic variants in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639784. [PMID: 40060429 PMCID: PMC11888284 DOI: 10.1101/2025.02.23.639784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Mouse models represent a powerful platform to study genes and variants associated with human diseases. While genome editing technologies have increased the rate and precision of model development, predicting and installing specific types of mutations in mice that mimic the native human genetic context is complicated. Computational tools can identify and align orthologous wild-type genetic sequences from different species; however, predictive modeling and engineering of equivalent mouse variants that mirror the nucleotide and/or polypeptide change effects of human variants remains challenging. Here, we present H2M (human-to-mouse), a computational pipeline to analyze human genetic variation data to systematically model and predict the functional consequences of equivalent mouse variants. We show that H2M can integrate mouse-to-human and paralog-to-paralog variant mapping analyses with precision genome editing pipelines to devise strategies tailored to model specific variants in mice. We leveraged these analyses to establish a database containing > 3 million human-mouse equivalent mutation pairs, as well as in silico-designed base and prime editing libraries to engineer 4,944 recurrent variant pairs. Using H2M, we also found that predicted pathogenicity and immunogenicity scores were highly correlated between human-mouse variant pairs, suggesting that variants with similar sequence change effects may also exhibit broad interspecies functional conservation. Overall, H2M fills a gap in the field by establishing a robust and versatile computational framework to identify and model homologous variants across species while providing key experimental resources to augment functional genetics and precision medicine applications. The H2M database (including software package and documentation) can be accessed at https://human2mouse.com.
Collapse
Affiliation(s)
- Kexin Dong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- University of Chinese Academy of Sciences, Beijing, China
| | - Samuel I Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- University of Chinese Academy of Sciences, Beijing, China
| | - Minghang Li
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Francisco J Sánchez Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Fang P, Yu LW, Espey H, Agirman G, Kazmi SA, Li K, Deng Y, Lee J, Hrncir H, Romero-Lopez A, Arnold AP, Hsiao EY. Sex-dependent interactions between prodromal intestinal inflammation and LRRK2 G2019S in mice promote endophenotypes of Parkinson's disease. Commun Biol 2024; 7:570. [PMID: 38750146 PMCID: PMC11096388 DOI: 10.1038/s42003-024-06256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Gastrointestinal (GI) disruptions and inflammatory bowel disease (IBD) are commonly associated with Parkinson's disease (PD), but how they may impact risk for PD remains poorly understood. Herein, we provide evidence that prodromal intestinal inflammation expedites and exacerbates PD endophenotypes in rodent carriers of the human PD risk allele LRRK2 G2019S in a sex-dependent manner. Chronic intestinal damage in genetically predisposed male mice promotes α-synuclein aggregation in the substantia nigra, loss of dopaminergic neurons and motor impairment. This male bias is preserved in gonadectomized males, and similarly conferred by sex chromosomal complement in gonadal females expressing human LRRK2 G2019S. The early onset and heightened severity of neuropathological and behavioral outcomes in male LRRK2 G2019S mice is preceded by increases in α-synuclein in the colon, α-synuclein-positive macrophages in the colonic lamina propria, and loads of phosphorylated α-synuclein within microglia in the substantia nigra. Taken together, these data reveal that prodromal intestinal inflammation promotes the pathogenesis of PD endophenotypes in male carriers of LRRK2 G2019S, through mechanisms that depend on genotypic sex and involve early accumulation of α-synuclein in myeloid cells within the gut.
Collapse
Affiliation(s)
- Ping Fang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Lewis W Yu
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hannah Espey
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Gulistan Agirman
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sabeen A Kazmi
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kai Li
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Yongning Deng
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jamie Lee
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Haley Hrncir
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Arlene Romero-Lopez
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, Los Angeles, CA, 90095, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Mansour HM, Mohamed AF, Khattab MM, El-Khatib AS. Heat Shock Protein 90 in Parkinson's Disease: Profile of a Serial Killer. Neuroscience 2024; 537:32-46. [PMID: 38040085 DOI: 10.1016/j.neuroscience.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by abnormal α-synuclein misfolding and aggregation, mitochondrial dysfunction, oxidative stress, as well as progressive death of dopaminergic neurons in the substantia nigra. Molecular chaperones play a role in stabilizing proteins and helping them achieve their proper structure. Previous studies have shown that overexpression of heat shock protein 90 (HSP90) can lead to the death of dopaminergic neurons associated with PD. Inhibiting HSP90 is considered a potential treatment approach for neurodegenerative disorders, as it may reduce protein aggregation and related toxicity, as well as suppress various forms of regulated cell death (RCD). This review provides an overview of HSP90 and its role in PD, focusing on its modulation of proteostasis and quality control of LRRK2. The review also explores the effects of HSP90 on different types of RCD, such as apoptosis, chaperone-mediated autophagy (CMA), necroptosis, and ferroptosis. Additionally, it discusses HSP90 inhibitors that have been tested in PD models. We will highlight the under-investigated neuroprotective effects of HSP90 inhibition, including modulation of oxidative stress, mitochondrial dysfunction, PINK/PARKIN, heat shock factor 1 (HSF1), histone deacetylase 6 (HDAC6), and the PHD2-HSP90 complex-mediated mitochondrial stress pathway. By examining previous literature, this review uncovers overlooked neuroprotective mechanisms and emphasizes the need for further research on HSP90 inhibitors as potential therapeutic strategies for PD. Finally, the review discusses the potential limitations and possibilities of using HSP90 inhibitors in PD therapy.
Collapse
Affiliation(s)
- Heba M Mansour
- Central Administration of Biological, Innovative Products, and Clinical Studies (BIO-INN), Egyptian Drug Authority, EDA, Giza, Egypt.
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Wang Z, Chen G. Insights about circadian clock in glioma: From molecular pathways to therapeutic drugs. CNS Neurosci Ther 2022; 28:1930-1941. [PMID: 36066207 PMCID: PMC9627379 DOI: 10.1111/cns.13966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Glioma is characterized as the most aggressive brain tumor that occurred in the central nervous system. The circadian rhythm is an essential cyclic change system generated by the endogenous circadian clock. Current studies found that the circadian clock affects glioma pathophysiology. It is still controversial whether the circadian rhythm disruption is a cause or an effect of tumorigenesis. This review discussed the association between cell cycle and circadian clock and provided a prominent molecular theoretical basis for tumor therapy. We illustrated the external factors affecting the circadian clock including thermodynamics, hypoxia, post-translation, and microRNA, while the internal characteristics concerning the circadian clock in glioma involve stemness, metabolism, radiotherapy sensitivity, and chemotherapy sensitivity. We also summarized the molecular pathways and the therapeutic drugs involved in the glioma circadian rhythm. There are still many questions in this field waiting for further investigation. The results of glioma chronotherapy in sensitizing radiation therapy and chemotherapy have shown great therapeutic potential in improving clinical outcomes. These findings will help us further understand the characteristics of glioma pathophysiology.
Collapse
Affiliation(s)
- Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| |
Collapse
|
5
|
Pérez-Carrión MD, Posadas I, Solera J, Ceña V. LRRK2 and Proteostasis in Parkinson's Disease. Int J Mol Sci 2022; 23:6808. [PMID: 35743250 PMCID: PMC9224256 DOI: 10.3390/ijms23126808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Parkinson's disease is a neurodegenerative condition initially characterized by the presence of tremor, muscle stiffness and impaired balance, with the deposition of insoluble protein aggregates in Lewy's Bodies the histopathological hallmark of the disease. Although different gene variants are linked to Parkinson disease, mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene are one of the most frequent causes of Parkinson's disease related to genetic mutations. LRRK2 toxicity has been mainly explained by an increase in kinase activity, but alternative mechanisms have emerged as underlying causes for Parkinson's disease, such as the imbalance in LRRK2 homeostasis and the involvement of LRRK2 in aggregation and spreading of α-synuclein toxicity. In this review, we recapitulate the main LRRK2 pathological mutations that contribute to Parkinson's disease and the different cellular and therapeutic strategies devised to correct LRRK2 homeostasis. In this review, we describe the main cellular control mechanisms that regulate LRRK2 folding and aggregation, such as the chaperone network and the protein-clearing pathways such as the ubiquitin-proteasome system and the autophagic-lysosomal pathway. We will also address the more relevant strategies to modulate neurodegeneration in Parkinson's disease through the regulation of LRRK2, using small molecules or LRRK2 silencing.
Collapse
Affiliation(s)
- María Dolores Pérez-Carrión
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Inmaculada Posadas
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Solera
- Servicio de Medicina Interna, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain;
- Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (M.D.P.-C.); (I.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Consorcio CIBER, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Zhang M, Li C, Ren J, Wang H, Yi F, Wu J, Tang Y. The Double-Faceted Role of Leucine-Rich Repeat Kinase 2 in the Immunopathogenesis of Parkinson's Disease. Front Aging Neurosci 2022; 14:909303. [PMID: 35645775 PMCID: PMC9131027 DOI: 10.3389/fnagi.2022.909303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 12/17/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is one of the most common causative genes in Parkinson's disease (PD). The complex structure of this multiple domains' protein determines its versatile functions in multiple physiological processes, including migration, autophagy, phagocytosis, and mitochondrial function, among others. Mounting studies have also demonstrated the role of LRRK2 in mediating neuroinflammation, the prominent hallmark of PD, and intricate functions in immune cells, such as microglia, macrophages, and astrocytes. Of those, microglia were extensively studied in PD, which serves as the resident immune cell of the central nervous system that is rapidly activated upon neuronal injury and pathogenic insult. Moreover, the activation and function of immune cells can be achieved by modulating their intracellular metabolic profiles, in which LRRK2 plays an emerging role. Here, we provide an updated review focusing on the double-faceted role of LRRK2 in regulating various cellular physiology and immune functions especially in microglia. Moreover, we will summarize the latest discovery of the three-dimensional structure of LRRK2, as well as the function and dysfunction of LRRK2 in immune cell-related pathways.
Collapse
Affiliation(s)
- Mengfei Zhang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaoyi Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Ren
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huakun Wang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Yi
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Chandler R, Cogo S, Lewis P, Kevei E. Modelling the functional genomics of Parkinson's disease in Caenorhabditis elegans: LRRK2 and beyond. Biosci Rep 2021; 41:BSR20203672. [PMID: 34397087 PMCID: PMC8415217 DOI: 10.1042/bsr20203672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
For decades, Parkinson's disease (PD) cases have been genetically categorised into familial, when caused by mutations in single genes with a clear inheritance pattern in affected families, or idiopathic, in the absence of an evident monogenic determinant. Recently, genome-wide association studies (GWAS) have revealed how common genetic variability can explain up to 36% of PD heritability and that PD manifestation is often determined by multiple variants at different genetic loci. Thus, one of the current challenges in PD research stands in modelling the complex genetic architecture of this condition and translating this into functional studies. Caenorhabditis elegans provide a profound advantage as a reductionist, economical model for PD research, with a short lifecycle, straightforward genome engineering and high conservation of PD relevant neural, cellular and molecular pathways. Functional models of PD genes utilising C. elegans show many phenotypes recapitulating pathologies observed in PD. When contrasted with mammalian in vivo and in vitro models, these are frequently validated, suggesting relevance of C. elegans in the development of novel PD functional models. This review will discuss how the nematode C. elegans PD models have contributed to the uncovering of molecular and cellular mechanisms of disease, with a focus on the genes most commonly found as causative in familial PD and risk factors in idiopathic PD. Specifically, we will examine the current knowledge on a central player in both familial and idiopathic PD, Leucine-rich repeat kinase 2 (LRRK2) and how it connects to multiple PD associated GWAS candidates and Mendelian disease-causing genes.
Collapse
Affiliation(s)
| | - Susanna Cogo
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, U.K
- Department of Biology, University of Padova, Padova, Via Ugo Bassi 58/B, 35121, Italy
| | - Patrick A. Lewis
- Royal Veterinary College, University of London, London, NW1 0TU, U.K
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, U.K
| | - Eva Kevei
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, U.K
| |
Collapse
|
8
|
Kluss JH, Mamais A, Cookson MR. LRRK2 links genetic and sporadic Parkinson's disease. Biochem Soc Trans 2019; 47:651-661. [PMID: 30837320 PMCID: PMC6563926 DOI: 10.1042/bst20180462] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
The past two decades in research has revealed the importance of leucine-rich repeat kinase 2 (LRRK2) in both monogenic and sporadic forms of Parkinson's disease (PD). In families, mutations in LRRK2 can cause PD with age-dependent but variable penetrance and genome-wide association studies have found variants of the gene that are risk factors for sporadic PD. Functional studies have suggested that the common mechanism that links all disease-associated variants is that they increase LRRK2 kinase activity, albeit in different ways. Here, we will discuss the roles of LRRK2 in areas of inflammation and vesicular trafficking in the context of monogenic and sporadic PD. We will also provide a hypothetical model that links inflammation and vesicular trafficking together in an effort to outline how these pathways might interact and eventually lead to neuronal cell death. We will also highlight the translational potential of LRRK2-specific kinase inhibitors for the treatment of PD.
Collapse
Affiliation(s)
- Jillian H Kluss
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bldg. 35, 35 Convent Drive, Bethesda, MD 20892-3707, U.S.A
| | - Adamantios Mamais
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bldg. 35, 35 Convent Drive, Bethesda, MD 20892-3707, U.S.A
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bldg. 35, 35 Convent Drive, Bethesda, MD 20892-3707, U.S.A.
| |
Collapse
|