1
|
Chauhan R, Mohan M, Mannan A, Devi S, Singh TG. Unravelling the role of Interleukin-12 in Neuroinflammatory mechanisms: Pathogenic pathways linking Neuroinflammation to neuropsychiatric disorders. Int Immunopharmacol 2025; 156:114654. [PMID: 40294470 DOI: 10.1016/j.intimp.2025.114654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
Neuropsychiatric disorders are clinically characterized conditions involving both neurology and psychiatry, arising from dysfunctioning of cerebral function, or indirect effects of extra cerebral disease. Neuropsychiatric disorders tend to influence emotions, mood, and brain functioning. Growing evidence indicates that the etiology of these disorders is not confined to neuronal abnormalities but extends to include inflammation. While the underlying mechanism of these disorders is still in its infancy, recent data highlights the significant role of neuroinflammation in their pathophysiology. Neuroinflammation concerns the inflammation within the neural tissue characterized by alteration in astrocytes, cytokines, microglia, and chemokines within the central nervous system. The cytokines include IFN-γ, IL-1β, IL-2, IL4, IL-6, IL-8, IL-10, and IL-12. This review focuses on interleukin-12 (IL-12), a key mediator of neuroinflammation, and its potential involvement in neuropsychiatric disorders. IL-12 promotes neuroinflammation and influences neurotransmitter systems. Additionally, it also affects the HPA axis, impairs neuroplasticity, and activates microglia by interacting with TLR, JAK-STAT, PI3K/Akt, GSK-3, NMDA, MAPK, PKC, VEGFR, ROCK, and Wnt signaling pathways and elicit its role in ND. In this review, we dwell on the current evidence supporting IL-12's pathogenic role and explore the possible mechanisms by which it contributes to the development and progression of these conditions. This review aims to provide insights that may aid in future therapeutic strategies by illuminating the interplay between neuroinflammation and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rupali Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
2
|
Kong X, Dai G, Zeng Z, Zhang Y, Gu J, Ma T, Wang N, Gu J, Wang Y. Integrating Proteomics and Transcriptomics Reveals the Potential Pathways of Hippocampal Neuron Apoptosis in Dravet Syndrome Model Mice. Int J Mol Sci 2024; 25:4457. [PMID: 38674042 PMCID: PMC11050081 DOI: 10.3390/ijms25084457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
An important component contributing to the onset of epilepsy is the death of hippocampal neurons. Several studies have shown that Dravet syndrome model mice: Scn1a KO mice have a high number of apoptotic neurons following seizures, but the precise mechanism underlying this remains unclear. The aim of this research was to elucidate the potential molecular mechanism of neuronal apoptosis in Scn1a KO mice by integrating proteomics and transcriptomics, with the ultimate goal of offering better neuroprotection. We found that apoptotic processes were enriched in both proteomic and transcriptomic GO analyses, and KEGG results also indicated that differential proteins and genes play a role in neurotransmission, the cell cycle, apoptosis, and neuroinflammation. Then, we examined the upstream and downstream KGML interactions of the pathways to determine the relationship between the two omics, and we found that the HIF-1 signaling pathway plays a significant role in the onset and apoptosis of epilepsy. Meanwhile, the expression of the apoptosis-related protein VHL decreased in this pathway, and the expression of p21 was upregulated. Therefore, this study suggests that VHL/HIF-1α/p21 might be involved in the apoptosis of hippocampal neurons in Scn1a KO mice.
Collapse
Affiliation(s)
- Xuerui Kong
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China; (X.K.); (T.M.); (N.W.)
- Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan 750004, China; (G.D.); (Y.Z.)
| | - Gaohe Dai
- Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan 750004, China; (G.D.); (Y.Z.)
| | - Zhong Zeng
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China;
| | - Yi Zhang
- Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan 750004, China; (G.D.); (Y.Z.)
| | - Jiarong Gu
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China;
| | - Teng Ma
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China; (X.K.); (T.M.); (N.W.)
| | - Nina Wang
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China; (X.K.); (T.M.); (N.W.)
| | - Jinhai Gu
- Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan 750004, China; (G.D.); (Y.Z.)
| | - Yin Wang
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China; (X.K.); (T.M.); (N.W.)
| |
Collapse
|
3
|
He W, Shi X, Dong Z. The roles of RACK1 in the pathogenesis of Alzheimer's disease. J Biomed Res 2024; 38:137-148. [PMID: 38410996 PMCID: PMC11001590 DOI: 10.7555/jbr.37.20220259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 02/28/2024] Open
Abstract
The receptor for activated C kinase 1 (RACK1) is a protein that plays a crucial role in various signaling pathways and is involved in the pathogenesis of Alzheimer's disease (AD), a prevalent neurodegenerative disease. RACK1 is highly expressed in neuronal cells of the central nervous system and regulates the pathogenesis of AD. Specifically, RACK1 is involved in regulation of the amyloid-β precursor protein processing through α- or β-secretase by binding to different protein kinase C isoforms. Additionally, RACK1 promotes synaptogenesis and synaptic plasticity by inhibiting N-methyl-D-aspartate receptors and activating gamma-aminobutyric acid A receptors, thereby preventing neuronal excitotoxicity. RACK1 also assembles inflammasomes that are involved in various neuroinflammatory pathways, such as nuclear factor-kappa B, tumor necrosis factor-alpha, and NOD-like receptor family pyrin domain-containing 3 pathways. The potential to design therapeutics that block amyloid-β accumulation and inflammation or precisely regulate synaptic plasticity represents an attractive therapeutic strategy, in which RACK1 is a potential target. In this review, we summarize the contribution of RACK1 to the pathogenesis of AD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Wenting He
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiuyu Shi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
4
|
Madireddy S, Madireddy S. Therapeutic Strategies to Ameliorate Neuronal Damage in Epilepsy by Regulating Oxidative Stress, Mitochondrial Dysfunction, and Neuroinflammation. Brain Sci 2023; 13:brainsci13050784. [PMID: 37239256 DOI: 10.3390/brainsci13050784] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Epilepsy is a central nervous system disorder involving spontaneous and recurring seizures that affects 50 million individuals globally. Because approximately one-third of patients with epilepsy do not respond to drug therapy, the development of new therapeutic strategies against epilepsy could be beneficial. Oxidative stress and mitochondrial dysfunction are frequently observed in epilepsy. Additionally, neuroinflammation is increasingly understood to contribute to the pathogenesis of epilepsy. Mitochondrial dysfunction is also recognized for its contributions to neuronal excitability and apoptosis, which can lead to neuronal loss in epilepsy. This review focuses on the roles of oxidative damage, mitochondrial dysfunction, NAPDH oxidase, the blood-brain barrier, excitotoxicity, and neuroinflammation in the development of epilepsy. We also review the therapies used to treat epilepsy and prevent seizures, including anti-seizure medications, anti-epileptic drugs, anti-inflammatory therapies, and antioxidant therapies. In addition, we review the use of neuromodulation and surgery in the treatment of epilepsy. Finally, we present the role of dietary and nutritional strategies in the management of epilepsy, including the ketogenic diet and the intake of vitamins, polyphenols, and flavonoids. By reviewing available interventions and research on the pathophysiology of epilepsy, this review points to areas of further development for therapies that can manage epilepsy.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
5
|
Downregulation of DDIT4 ameliorates abnormal behaviors in autism by inhibiting ferroptosis via the PI3K/Akt pathway. Biochem Biophys Res Commun 2023; 641:168-176. [PMID: 36528956 DOI: 10.1016/j.bbrc.2022.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is a complex disease with unclear etiology. Studies have shown that ferroptosis is also related to ASD progression, but the specific mechanism is still unclear. Valproic acid (VPA) induced neuronal ferroptosis in vitro. Mechanistic studies showed that both VPA and ferroptosis inducers promoted the expression of DDIT4 in neurons, thereby inhibiting the activation of the PI3K/Akt pathway. DDIT4 increased the accumulation of ROS, MDA and Fe2+, inhibited neuronal viability and downregulated GPX4 expression by inactivating the PI3K/Akt pathway. Ferroptosis inhibitors reversed the anti-survival effect of DDIT4, indicating that DDIT4 enhances ferroptosis through the PI3K/Akt pathway, thereby inhibiting neuronal viability. Further in vivo experiments found that autistic mice had high levels of ROS, MDA and Fe2+, increased DDIT4 expression, and downregulated expression levels of GPX4, p-PI3K and p-Akt; after downregulation of DDIT4 expression, the accumulation of ROS, MDA and Fe2+ was significantly reduced, while the expression levels of GPX4, p-PI3K and p-Akt were upregulated, indicating that DDIT4 knockdown reduces ferroptosis in autistic mice. In addition, DDIT4 downregulation, PI3K/Akt pathway activation, and ferroptosis inhibitors all improved social behavior deficits, repetitive stereotyped and compulsive behaviors, anxiety and exploratory behaviors in autistic mice, but PI3K/Akt pathway inhibitors significantly blocked the rescue of abnormal behaviors by DDIT4 downregulation in autistic mice. Therefore, downregulation of DDIT4 expression ameliorates abnormal behaviors in autism by inhibiting ferroptosis via the PI3K/Akt pathway, indicating that DDIT4, the PI3K/Akt pathway and ferroptosis have key roles in autism.
Collapse
|
6
|
Research progress on oxidative stress regulating different types of neuronal death caused by epileptic seizures. Neurol Sci 2022; 43:6279-6298. [DOI: 10.1007/s10072-022-06302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/24/2022] [Indexed: 12/09/2022]
|
7
|
Tsai CM, Chang SF, Chang H. Transcranial photobiomodulation add-on therapy to valproic acid for pentylenetetrazole-induced seizures in peripubertal rats. BMC Complement Med Ther 2022; 22:81. [PMID: 35313886 PMCID: PMC8935768 DOI: 10.1186/s12906-022-03562-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
Background Convulsive status epilepticus (CSE) prevention is critical for pediatric patients with epilepsy. Immediate intervention before CSE reduce severity. Despite its wide usage as an anticonvulsant, valproic acid (VPA) results in harmful side effects such as dose-dependent hepatotoxicity. Hence, reducing VPA dosage to minimize side effects while maintaining its efficacy is necessary, and transcranial photobiomodulation (tPBM) add-on therapy could facilitate this. We recently demonstrated for the first time that tPBM at a wavelength of 808 nm attenuated CSE in peripubertal rats. However, the effects of VPA with the add-on therapy of tPBM prior to seizures have not yet been explored. This study investigated whether adding tPBM to VPA exerts synergistic effect for CSE prevention in peripubertal rats. Methods A gallium-aluminum-arsenide laser (wavelength of 808 nm with an exposure duration of 100 s and irradiance of 1.333 W/cm2 at the target) was applied transcranially 30 min after VPA injection in Sprague Dawley rats. All the rats received 90 mg/kg of pentylenetetrazole (PTZ). Except for the saline (n = 3), tPBM + saline (n = 3), and PTZ group (n = 6), all the rats received a PTZ injection 30 min after VPA injection. The rats received add-on tPBM with PTZ immediately after tPBM. In the VPA + PTZ group, the rats received low-dose (100 mg/kg, n = 6), medium-dose (200 mg/kg, n = 6), and high-dose (400 mg/kg, n = 7) VPA. In the VPA + tPBM + PTZ group, the rats received low (100 mg/kg, n = 5), medium (200 mg/kg, n = 6), and high (400 mg/kg, n = 3) doses of VPA. Seizures were evaluated according to the revised Racine’s scale in a non-blinded manner. Results Adding tPBM to low-dose VPA reduced the incidence of severe status epilepticus and significantly delayed the latency to stage 2 seizures. However, adding tPBM to high-dose VPA increased the maximum seizure stage, prolonged the duration of stage 4–7 seizures, and shortened the latency to stage 6 seizures. Conclusions Adding tPBM to low-dose VPA exerted a synergistic prevention effect on PTZ-induced seizures, whereas adding tPBM to high-dose VPA offset the attenuation effect.
Collapse
Affiliation(s)
- Chung-Min Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Shwu-Fen Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsi Chang
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Pediatrics, Taipei Medical University Hospital, 250 Wuxing St., Taipei, 11031, Taiwan.
| |
Collapse
|
8
|
Bazhanova E, Kozlov A. Mechanisms of apoptosis in drug-resistant epilepsy. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:43-50. [DOI: 10.17116/jnevro202212205143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Paudel YN, Angelopoulou E, Piperi C, Gnatkovsky V, Othman I, Shaikh MF. From the Molecular Mechanism to Pre-clinical Results: Anti-epileptic Effects of Fingolimod. Curr Neuropharmacol 2021; 18:1126-1137. [PMID: 32310049 PMCID: PMC7709153 DOI: 10.2174/1570159x18666200420125017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 04/14/2020] [Indexed: 02/08/2023] Open
Abstract
Epilepsy is a devastating neurological condition characterized by long-term tendency to generate unprovoked seizures, affecting around 1-2% of the population worldwide. Epilepsy is a serious health concern which often associates with other neurobehavioral comorbidities that further worsen disease conditions. Despite tremendous research, the mainstream anti-epileptic drugs (AEDs) exert only symptomatic relief leading to 30% of untreatable patients. This reflects the complexity of the disease pathogenesis and urges the precise understanding of underlying mechanisms in order to explore novel therapeutic strategies that might alter the disease progression as well as minimize the epilepsy-associated comorbidities. Unfortunately, the development of novel AEDs might be a difficult process engaging huge funds, tremendous scientific efforts and stringent regulatory compliance with a possible chance of end-stage drug failure. Hence, an alternate strategy is drug repurposing, where anti-epileptic effects are elicited from drugs that are already used to treat non-epileptic disorders. Herein, we provide evidence of the anti-epileptic effects of Fingolimod (FTY720), a modulator of sphingosine-1-phosphate (S1P) receptor, USFDA approved already for Relapsing-Remitting Multiple Sclerosis (RRMS). Emerging experimental findings suggest that Fingolimod treatment exerts disease-modifying anti-epileptic effects based on its anti-neuroinflammatory properties, potent neuroprotection, anti-gliotic effects, myelin protection, reduction of mTOR signaling pathway and activation of microglia and astrocytes. We further discuss the underlying molecular crosstalk associated with the anti-epileptic effects of Fingolimod and provide evidence for repurposing Fingolimod to overcome the limitations of current AEDs.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vadym Gnatkovsky
- Unit of Epileptology and Experimental Neurophysiology, Fondazione Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
10
|
Jalloul D, Hajjar H, Asdikian R, Maawie M, Nasrallah L, Medlej Y, Darwich M, Karnib N, Lawand N, Abdel Rassoul R, Wang KKW, Kobeissy F, Darwish H, Obeid M. Potentiating Hemorrhage in a Periadolescent Rat Model of Closed-Head Traumatic Brain Injury Worsens Hyperexcitability but Not Behavioral Deficits. Int J Mol Sci 2021; 22:6456. [PMID: 34208666 PMCID: PMC8234967 DOI: 10.3390/ijms22126456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
Post-traumatic epilepsy (PTE) and neurocognitive deficits are devastating sequelae of head injuries that are common in adolescents. Investigating desperately needed treatments is hindered by the difficulties in inducing PTE in rodents and the lack of established immature rat models of pediatric PTE. Hemorrhage is a significant risk factor for PTE, but compared to humans, rats are less prone to bleeding because of their rapid blood coagulation system. In this study, we promoted bleeding in the controlled cortical impact (CCI) closed-head injury model with a 20 min pre-impact 600 IU/kg intraperitoneal heparin injection in postnatal day 35 (P35) periadolescent rats, given the preponderance of such injuries in this age group. Temporo-parietal CCI was performed post-heparin (HTBI group) or post-saline (TBI group). Controls were subjected to sham procedures following heparin or saline administration. Continuous long-term EEG monitoring was performed for 3 months post-CCI. Sensorimotor testing, the Morris water maze, and a modified active avoidance test were conducted between P80 and P100. Glial fibrillary acidic protein (GFAP) levels and neuronal damage were also assessed. Compared to TBI rats, HTBI rats had persistently higher EEG spiking and increased hippocampal GFAP levels (p < 0.05). No sensorimotor deficits were detected in any group. Compared to controls, both HTBI and TBI groups had a long-term hippocampal neuronal loss (p < 0.05), as well as contextual and visuospatial learning deficits (p < 0.05). The hippocampal astrogliosis and EEG spiking detected in all rats subjected to our hemorrhage-promoting procedure suggest the emergence of hyperexcitable networks and pave the way to a periadolescent PTE rat model.
Collapse
Affiliation(s)
- Dounya Jalloul
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107 2020, Lebanon; (D.J.); (H.H.); (R.A.); (Y.M.); (N.K.); (N.L.)
| | - Helene Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107 2020, Lebanon; (D.J.); (H.H.); (R.A.); (Y.M.); (N.K.); (N.L.)
| | - Rita Asdikian
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107 2020, Lebanon; (D.J.); (H.H.); (R.A.); (Y.M.); (N.K.); (N.L.)
| | - Mariam Maawie
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath P.O. Box 6573/14, Lebanon; (M.M.); (R.A.R.)
| | - Leila Nasrallah
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Yasser Medlej
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107 2020, Lebanon; (D.J.); (H.H.); (R.A.); (Y.M.); (N.K.); (N.L.)
| | - Mouhamad Darwich
- Division of Child Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| | - Nabil Karnib
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107 2020, Lebanon; (D.J.); (H.H.); (R.A.); (Y.M.); (N.K.); (N.L.)
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107 2020, Lebanon; (D.J.); (H.H.); (R.A.); (Y.M.); (N.K.); (N.L.)
- Department of Neurology, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Ronza Abdel Rassoul
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath P.O. Box 6573/14, Lebanon; (M.M.); (R.A.R.)
| | - Kevin K. W. Wang
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL 32608, USA;
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon;
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL 32608, USA;
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Hala Darwish
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107 2020, Lebanon; (D.J.); (H.H.); (R.A.); (Y.M.); (N.K.); (N.L.)
- Rafic Hariri School of Nursing, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Makram Obeid
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107 2020, Lebanon; (D.J.); (H.H.); (R.A.); (Y.M.); (N.K.); (N.L.)
- Division of Child Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| |
Collapse
|
11
|
Zhang D, Qiu L, Zhang Y, Sang Y, Zheng N, Liu X. Efficacy and safety of sodium valproate plus lamotrigine in children with refractory epilepsy. Exp Ther Med 2020; 20:2698-2704. [PMID: 32765764 PMCID: PMC7401730 DOI: 10.3892/etm.2020.8984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 12/28/2022] Open
Abstract
Efficacy and safety of sodium valproate (SV) and lamotrigine (LTG) in treating refractory epilepsy (RE) in children and the predictive value of serum neuron-specific enolase (NSE) and central nervous system specific S100β protein (S100β) on efficacy assessment were explored. A total of 110 RE children admitted to Xuzhou Children's Hospital, Xuzhou Medical University were enrolled. Patients treated with SV alone served as the control group (n=51), and those treated with SV plus LTG as the study group (n=59). Serum NSE and S100β expression levels were measured by enzyme-linked immunosorbent assay (ELISA). The efficacy, seizure frequency, adverse reactions, concentration of serum brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF), and expression of serum NSE and S100β were observed and compared. The total effective rate in the study group was significantly higher than that in the control group, and the seizure frequency and incidence of adverse reactions were significantly lower than that in the control group. The study group showed remarkably higher BDNF and NGF than the control group after treatment. The expression of serum NSE and S100β in effectively treated children were significantly lower than that in ineffectively treated children. The area under the curve (AUC) of serum NSE and S100β were 0.828 and 0.814 respectively. SV combined with LTG is better and safer than SV alone in the treatment of RE in children. Serum NSE and S100β are of high value in predicting the efficacy.
Collapse
Affiliation(s)
- Dongli Zhang
- Department of Neurology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Li Qiu
- Department of Neurology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Yuan Zhang
- Department of Neurology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Yan Sang
- Department of Neurology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Nuo Zheng
- Department of Neurology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Xiaoming Liu
- Department of Neurology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
12
|
Cacabelos R. Pharmacogenomics of Cognitive Dysfunction and Neuropsychiatric Disorders in Dementia. Int J Mol Sci 2020; 21:E3059. [PMID: 32357528 PMCID: PMC7246738 DOI: 10.3390/ijms21093059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Symptomatic interventions for patients with dementia involve anti-dementia drugs to improve cognition, psychotropic drugs for the treatment of behavioral disorders (BDs), and different categories of drugs for concomitant disorders. Demented patients may take >6-10 drugs/day with the consequent risk for drug-drug interactions and adverse drug reactions (ADRs >80%) which accelerate cognitive decline. The pharmacoepigenetic machinery is integrated by pathogenic, mechanistic, metabolic, transporter, and pleiotropic genes redundantly and promiscuously regulated by epigenetic mechanisms. CYP2D6, CYP2C9, CYP2C19, and CYP3A4/5 geno-phenotypes are involved in the metabolism of over 90% of drugs currently used in patients with dementia, and only 20% of the population is an extensive metabolizer for this tetragenic cluster. ADRs associated with anti-dementia drugs, antipsychotics, antidepressants, anxiolytics, hypnotics, sedatives, and antiepileptic drugs can be minimized by means of pharmacogenetic screening prior to treatment. These drugs are substrates, inhibitors, or inducers of 58, 37, and 42 enzyme/protein gene products, respectively, and are transported by 40 different protein transporters. APOE is the reference gene in most pharmacogenetic studies. APOE-3 carriers are the best responders and APOE-4 carriers are the worst responders; likewise, CYP2D6-normal metabolizers are the best responders and CYP2D6-poor metabolizers are the worst responders. The incorporation of pharmacogenomic strategies for a personalized treatment in dementia is an effective option to optimize limited therapeutic resources and to reduce unwanted side-effects.
Collapse
Affiliation(s)
- Ramon Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165-Bergondo, Corunna, Spain
| |
Collapse
|
13
|
Cacabelos R. Pharmacogenomics of drugs used to treat brain disorders. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1738217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ramon Cacabelos
- International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| |
Collapse
|
14
|
Emerging Roles of 5-Lipoxygenase Phosphorylation in Inflammation and Cell Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2749173. [PMID: 31871543 PMCID: PMC6906800 DOI: 10.1155/2019/2749173] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
5-Lipoxygenase (ALOX5) is an iron-containing and nonheme dioxygenase that catalyzes the peroxidation of polyunsaturated fatty acids such as arachidonic acid. ALOX5 is the rate-limiting enzyme for the biosynthesis of leukotrienes, a family of proinflammatory lipid mediators derived from arachidonic acid. ALOX5 also make great contributions to mediating lipid peroxidation. In recent years, it has been discovered that ALOX5 plays a central role in cell death including apoptosis, pyroptosis, and ferroptosis, a newly discovered type of cell death. According to the previous studies, ALOX5 can regulate cell death in two ways: one is inflammation and the other is lipid peroxidation. Meanwhile, it has been shown that ALOX5 activity is regulated by several factors including protein phosphorylation, ALOX5-interactng protein, redox state, and metal ions such as iron and calcium. In this review, we aim to summarize the knowledge on the emerging roles of ALOX5 protein phosphorylation in the regulation of cell death and inflammation in order to explore a potential target for human diseases.
Collapse
|
15
|
Lu J, Zhou N, Yang P, Deng L, Liu G. MicroRNA-27a-3p Downregulation Inhibits Inflammatory Response and Hippocampal Neuronal Cell Apoptosis by Upregulating Mitogen-Activated Protein Kinase 4 (MAP2K4) Expression in Epilepsy: In Vivo and In Vitro Studies. Med Sci Monit 2019; 25:8499-8508. [PMID: 31710596 PMCID: PMC6865231 DOI: 10.12659/msm.916458] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/17/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND This study aimed to discover the effect and mechanism of microRNA-27a-3p (miR-27a-3p) in epilepsy. MATERIAL AND METHODS To perform our investigation, in vivo and in vitro models of epilepsy were induced using kainic acid (KA). Expression of miR-27a-3p in the hippocampus of epileptic rats or normal rats or neuronal cells was detected using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Racine score was used to assess seizures in epileptic rats. Cell viability and cell apoptosis were analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was performed to detect inflammatory factors expression. RESULTS Significantly higher expression of miR-27a-3p in the hippocampus of epileptic rats and in KA-induced neurons was observed. We found that miR-27a-3p inhibitor alleviated seizures in epileptic rats. miR-27a-3p inhibitor also inhibited apoptosis of hippocampal neurons in epileptic rats, promoted Bcl2 expression, and decreased Bax and Caspase3 expression. The results showed that miR-27a-3p inhibitor effectively reduced the expression levels of interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor-alpha (TNF-alpha) in hippocampal tissues of epileptic rats. Dual luciferase reporter assay showed that mitogen-activated protein kinase 4 (MAP2K4) was a direct target of miR-27a-3p. miR-27a-3p inhibitor significantly promoted the cell viability of KA-induced neurons, inhibited cell apoptosis, promoted the expression of Bcl-2, and decreased Bax and Caspase3 expression, and all these changes were abolished by MAP2K4-siRNA co-transfection. CONCLUSIONS Our preliminary findings indicated that miR-27a-3p inhibitor protected against epilepsy-induced inflammatory response and hippocampal neuronal apoptosis by targeting MAP2K4.
Collapse
Affiliation(s)
- Jun Lu
- Department of Neurosurgery, The Brain Hospital of Hunan Province, Changsha, Hunan, P.R. China
| | - Nina Zhou
- Department of Neurosurgery, The Brain Hospital of Hunan Province, Changsha, Hunan, P.R. China
| | - Ping Yang
- Department of Neurosurgery, The Brain Hospital of Hunan Province, Changsha, Hunan, P.R. China
| | - Lanqiuzi Deng
- Department of Neurosurgery, The Brain Hospital of Hunan Province, Changsha, Hunan, P.R. China
| | - Ganzhe Liu
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
16
|
Fu J, Peng L, Wang W, He H, Zeng S, Chen TC, Chen Y. Sodium Valproate Reduces Neuronal Apoptosis in Acute Pentylenetetrzole-Induced Seizures via Inhibiting ER Stress. Neurochem Res 2019; 44:2517-2526. [DOI: 10.1007/s11064-019-02870-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/10/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
|
17
|
Li J, Tang M, Yang G, Wang L, Gao Q, Zhang H. Muscle Injury Associated Elevated Oxidative Stress and Abnormal Myogenesis in Patients with Idiopathic Scoliosis. Int J Biol Sci 2019; 15:2584-2595. [PMID: 31754331 PMCID: PMC6854377 DOI: 10.7150/ijbs.33340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
Idiopathic scoliosis (IS) is a disease with unknown etiology characterized by spinal rotation asymmetry. Reports describing the histochemical and pathological analyses of IS patients have shown that necrosis, fibrosis and fatty involution occurred on the apex paraspinal muscles. However, research on the changes in the paraspinal muscles of IS patients compared with those in matched controls is rare; thus, the basic mechanism of how paraspinal muscles are injured in IS patients is still unclear. In this study, we investigated the morphological changes of paraspinal muscles in the control group and IS patients, and the possible mechanisms were examined in vivo and in vitro. Increased myofiber necrosis was found on both sides of the apex paraspinal muscles of IS patients compared with those of the control group, and the number of TUNEL-positive apoptotic cells was also increased. Apoptosis signaling pathways, including pro-apoptosis proteins such as cleaved-caspase 3 and cytochrome c, were markedly upregulated, whereas the anti-apoptotic Bcl-2/Bax was significantly downregulated in IS patients compared with the control group. Moreover, PGC-1α and SOD1 were upregulated in accordance with the increased ROS production in IS patients. The distribution of myofiber types, as well as the mRNA levels of type IIa myofiber marker MYH2 and the important myogenesis regulator MYOG were remarkably changed in IS patients. In addition, C2C12 or human skeletal muscle mesenchymal progenitor cells treated with antimycin A in glucose-free and serum-free culture medium, which can activate oxidative stress and induce apoptosis, showed similar patterns of the changed distribution of myofiber types and downregulation of MYH2 and MYOG. Altogether, our study suggested that the extents of severe muscle injury and accumulated oxidative stress were increased in IS patients compared with the control group, and the abnormal myogenesis was also observed in IS patients. Since elevated oxidative stress can lead to apoptosis and the dysregulation of myogenesis in muscle cells, it may be associated with the pathological changes observed in IS patients and contribute to the development and progression of IS.
Collapse
Affiliation(s)
- Jiong Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan, China, 410008
| | - Mingxing Tang
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan, China, 410008
| | - Guanteng Yang
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan, China, 410008
| | - Longjie Wang
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan, China, 410008
| | - Qile Gao
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan, China, 410008
| | - Hongqi Zhang
- Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan, China, 410008
| |
Collapse
|
18
|
Yu X, Guan Q, Wang Y, Shen H, Zhai L, Lu X, Jin Y. Anticonvulsant and anti-apoptosis effects of salvianolic acid B on pentylenetetrazole-kindled rats via AKT/CREB/BDNF signaling. Epilepsy Res 2019; 154:90-96. [DOI: 10.1016/j.eplepsyres.2019.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/28/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
|
19
|
Mao XY, Zhou HH, Jin WL. Ferroptosis Induction in Pentylenetetrazole Kindling and Pilocarpine-Induced Epileptic Seizures in Mice. Front Neurosci 2019; 13:721. [PMID: 31379480 PMCID: PMC6652743 DOI: 10.3389/fnins.2019.00721] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022] Open
Abstract
Epilepsy is a serious neurological disorder and is characterized by recurrent and unprovoked seizures. A critical pathological factor in the seizure genesis is neuronal loss. Until now, apart from the known regulatory cell death pathways, ferroptosis is a newly discovered type of cell death with the features of iron accumulation and the excessive production of lipid reactive oxygen species (ROS). In our present work, it was illustrated that ferroptosis occurs in murine models of pentylenetetrazole (PTZ) kindling and pilocarpine (Pilo)-induced seizures. In both of these seizure models, treatment with ferroptosis inhibitor ferrostatin-1 (Fer-1) efficiently alleviates seizures. This was achieved through elevated levels of glutathione peroxidase 4 (GPX4) and glutathione (GSH) as well as inhibitions of lipid degradation products including 4-hydroxynonenal (4-HNE) and malonaldehyde (MDA), iron accumulation, and PTGS2 mRNA in the hippocampus. It was concluded that ferroptosis is involved in seizure genesis in PTZ- and Pilo-treated mice, while the suppression of ferroptosis mitigates PTZ kindling, and Pilo-induced seizures in mice.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Wei-Lin Jin
- Centers for Translational Medicine, Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, China.,Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Mao XY, Zhou HH, Jin WL. Redox-Related Neuronal Death and Crosstalk as Drug Targets: Focus on Epilepsy. Front Neurosci 2019; 13:512. [PMID: 31191222 PMCID: PMC6541114 DOI: 10.3389/fnins.2019.00512] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Cell death has a vital role in embryonic development and organismal homeostasis. Biochemical, pharmacological, behavioral, and electrophysiological evidences support the idea that dysregulation of cell death programs are involved in neuropathological conditions like epilepsy. The brain is particularly vulnerable to oxidative damage due to higher oxygen consumption and lower endogenous antioxidant defense than other bodily organ. Thus, in this review, we focused on the comprehensive summarization of evidence for redox-associated cell death pathways including apoptosis, autophagy, necroptosis, and pyroptosis in epilepsy and the oxidative stress-related signaling in this process. We specially proposed that the molecular crosstalk of various redox-linked neuronal cell death modalities might occur in seizure onset and/or epileptic conditions according to the published data. Additionally, abundance of polyunsaturated fatty acids in neuronal membrane makes the brain susceptible to lipid peroxidation. This presumption was then formalized in the proposal that ferroptosis, a novel type of lipid reactive oxygen species (ROS)-dependent regulatory cell death, is likely to be a critical mechanism for the emergence of epileptic phenotype. Targeting ferroptosis process or combination treatment with multiple cell death pathway inhibitors may shed new light on the therapy of epilepsy.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei-Lin Jin
- Center for Translational Medicine, Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, China.,Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Inhibition of microRNA-34a Suppresses Epileptiform Discharges Through Regulating Notch Signaling and Apoptosis in Cultured Hippocampal Neurons. Neurochem Res 2019; 44:1252-1261. [PMID: 30877521 DOI: 10.1007/s11064-019-02772-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
Epilepsy is characterized by recurrent unprovoked seizures and some seizures can cause neuronal apoptosis, which is possible to make contributions to the epilepsy phenotype, impairments in cognitive function or even epileptogenesis. Moreover, many studies have indicated that microRNA-34a (miRNA-34a) is involved in apoptosis through regulating Notch signaling. However, whether miRNA-34a participates in neuronal apoptosis after seizures remain unclear. Therefore, we aimed to explore the expression of miRNA-34a and its effects on the epileptiform discharge in spontaneous recurrent epileptiform discharges (SREDs) rat hippocampal neuronal pattern. Mg2+-free medium was used to induce SREDs, quantitative reverse-transcription polymerase chain reaction was used to detect the expression of miRNA-34a, western blot was used to determine the expression of Notch pathway and apoptosis-related proteins, and whole cell current clamp recordings was used to observe the alteration of epileptiform discharge. We found obvious apoptosis, increased expression of miRNA-34a and decreased expression of Notch signaling in Mg2+-free-treated neurons. Treatment with miRNA-34a inhibitor decreased the frequency of action potentials, activated Notch signaling and prevented neuronal apoptosis in Mg2+-free-treated neurons. However, treatment with miRNA-34a mimics increased the frequency of action potentials, down-regulated Notch signaling and promoted neuronal apoptosis in Mg2+-free-treated neurons. Furthermore, γ-secretase inhibitor N-[N-(3,5-di-uorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester (DAPT), an inhibitor of Notch signaling, could weaken anti-apoptosis effect of miRNA-34a inhibitor. These results suggest that inhibition of miRNA-34a could suppress epileptiform discharges through regulating Notch signaling and apoptosis in the rat hippocampal neuronal model of SREDs.
Collapse
|
22
|
Loss of HCN1 subunits causes absence epilepsy in rats. Brain Res 2019; 1706:209-217. [DOI: 10.1016/j.brainres.2018.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 02/06/2023]
|