1
|
Lu W, Wen J. Metabolic reprogramming and astrocytes polarization following ischemic stroke. Free Radic Biol Med 2025; 228:197-206. [PMID: 39756488 DOI: 10.1016/j.freeradbiomed.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Astrocytes are critical for maintaining neuronal activity. Activation of astrocytes, occurs within minutes from ischemic stroke onset due to ischemic causes and subsequent inflammatory damage. Activated astrocytes, also known as reactive astrocytes, are divided into two different phenotypes: A1 (pro-inflammatory) and A2 (anti-inflammatory) astrocytes. A2 astrocytes support neuronal survival and promote tissue healing, while A1 astrocytes have neurotoxic effects. Thus, polarization of reactive astrocyte into A1 or A2 genotype is closely correlated with the development of cerebral ischemia/reperfusion (I/R) injury. Metabolic reprogramming is a process that various metabolic pathways upregulate in cells to balance energy, alter their phenotype, and produce building-block requirements. A1 and A2 astrocytes display different metabolic reprogramming, such as glycolysis, glutamate uptake, and glycogenolysis. Accumulating evidence suggested that manipulation of energy metabolism homeostasis can induce astrocytes to switch from A1 to A2 phenotype. This review disucss the potential factors in affecting astrocytic polarization, emphasizes metabolic reprogramming in reactive astrocytes within the pathophysiological context of cerebral I/R, and explores the relationship between metabolic reprogramming and astrocytic polarization. Importantly, we reveal that regulating metabolic reprogramming in reactive astrocytes may be a potential therapeutic target for cerebral I/R injury.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Li Y, Gao Y, Yu G, Ye Y, Zhu H, Wang J, Li Y, Chen L, Gu L. G6PD protects against cerebral ischemia-reperfusion injury by inhibiting excessive mitophagy. Life Sci 2025; 362:123367. [PMID: 39756510 DOI: 10.1016/j.lfs.2024.123367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
AIMS Cerebral ischemia-reperfusion injury (CIRI) exacerbates post-stroke brain damage. We aimed to understand the role of glucose-6-phosphate dehydrogenase (G6PD) in CIRI and mitophagy. MATERIALS AND METHODS Lentivirus and small interfering RNA were utilized to suppress G6PD in tissues and cells, leading to the establishment of in vivo and in vitro models of ischemia-reperfusion following middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/ reoxygenation (OGD/R). The expression and function of G6PD were investigated through differential gene analysis and weighted correlation network analysis (WGCNA), immunofluorescence, and western blotting (WB). KEY FINDINGS G6PD mRNA levels increased 3 d after MCAO, and G6PD protein expression was elevated in the ischemic penumbra of mice and HT22 cells following OGD/R. G6PD knockdown increased neural deficits, enlarged infarct volume in mice after CIRI, and reduced HT22 cell survival during OGD/R. WGCNA indicated a correlation between G6PD and mitophagy in CIRI. Following G6PD knockdown, the p-DRP1/DRP ratio increased, the PINK1/Parkin pathway was further activated, and TOMM20 expression was downregulated. The mitophagy inhibitor Mdivi-1 reversed these changes, as well as the nerve damage caused by G6PD knockdown, and alleviated mitochondrial damage in the ischemic penumbra. SIGNIFICANCE The role of G6PD in CIRI was revealed and its interaction with mitophagy was explored, providing important insights for understanding the molecular mechanism of CIRI and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yikun Gao
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Guixiang Yu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Hua Zhu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jin Wang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yilin Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Lei Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
3
|
Moreno-Sanchez R, Vargas-Navarro JL, Padilla-Flores JA, Robledo-Cadena DX, Granados-Rivas JC, Taba R, Terasmaa A, Auditano GL, Kaambre T, Rodriguez-Enriquez S. Energy Metabolism Behavior and Response to Microenvironmental Factors of the Experimental Cancer Cell Models Differ from that of Actual Human Tumors. Mini Rev Med Chem 2025; 25:319-339. [PMID: 39411957 DOI: 10.2174/0113895575322436240924101642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 04/09/2025]
Abstract
Analysis of the biochemical differences in the energy metabolism among bi-dimensional (2D) and tri-dimensional (3D) cultured cancer cell models and actual human tumors was undertaken. In 2D cancer cells, the oxidative phosphorylation (OxPhos) fluxes range is 2.5-19 nmol O2/min/mg cellular protein. Hypoxia drastically decreased OxPhos flux by 2-3 times in 2D models, similar to what occurs in mature multicellular tumor spheroids (MCTS), a representative 3D cancer cell model. However, mitochondrial protein contents and enzyme activities were significantly different between both models. Moreover, glycolytic fluxes were also significantly different between 2D and MCTS. The glycolytic flux range in 2D models is 1-34 nmol lactate/min/mg cellular protein, whereas in MCTS the range of glycolysis fluxes is 60-80 nmol lactate/min/mg cellular. In addition, sensitivity to anticancer canonical and metabolic drugs was greater in MCTS than in 2D. Actual solid human tumor samples show lower (1.6-4.5 times) OxPhos fluxes compared to normoxic 2D cancer cell cultures. These observations indicate that tridimensional organization provides a unique microenvironment affecting tumor physiology, which has not been so far faithfully reproduced by the 2D environment. Thus, the analysis of the resemblances and differences among cancer cell models undertaken in the present study raises caution on the interpretation of results derived from 2D cultured cancer cells when they are extended to clinical settings. It also raises awareness about detecting which biological and environmental factors are missing in 2D and 3D cancer cell models to be able to reproduce the actual human tumor behavior.
Collapse
Affiliation(s)
- Rafael Moreno-Sanchez
- Laboratorio de Control Metabólico, Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, México
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Jorge Luis Vargas-Navarro
- Laboratorio de Control Metabólico, Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, México
| | - Joaquin Alberto Padilla-Flores
- Laboratorio de Control Metabólico, Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, México
| | - Diana Xochiquetzal Robledo-Cadena
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Colonia Sección XVI, Tlalpan, México
| | - Juan Carlos Granados-Rivas
- Laboratorio de Control Metabólico, Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, México
| | - Rutt Taba
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Anton Terasmaa
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | | | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Sara Rodriguez-Enriquez
- Laboratorio de Control Metabólico, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, México
| |
Collapse
|
4
|
Poon MLS, Ko E, Park E, Shin JH. Hypoxic postconditioning modulates neuroprotective glial reactivity in a 3D cortical ischemic-hypoxic injury model. Sci Rep 2024; 14:27032. [PMID: 39506138 PMCID: PMC11541704 DOI: 10.1038/s41598-024-78522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Stroke remains one of the major health challenges due to its high rates of mortality and long-term disability, necessitating the development of effective therapeutic treatment. This study aims to explore the neuroprotective effects of hypoxic postconditioning (HPC) using a cell-based 3D cortical ischemic-hypoxic injury model. Our model employs murine cells to investigate HPC-induced modulation of glial cell reactivity and intercommunication post-oxygen-glucose deprivation-reoxygenation (OGD-R) injury. We found that a single HPC session (1HPC) provided the most significant neuroprotection post-OGD-R compared to multiple intermittent hypoxic treatments, evidenced by improved spheroidal structure, enhanced cell survival and reduced apoptosis, optimal modulation of neuronal phenotypes, dampened ischemic responses, and augmented neurite outgrowth of spheroids. Furthermore, 1HPC suppressed both pro-inflammatory A1 and anti-inflammatory A2 astrocyte phenotypes despite the induction of astrocyte activation while reducing microglial activation with inhibited M1 and M2 reactive states. This was accompanied by a decrease in gene expression of the pro-inflammatory cytokines essential to microglia-astrocyte signaling, collectively suggesting a shift of glial cells away from their traditional reactive states for neuroprotection. This study highlights the potential of 1HPC as a novel therapeutic intervention for ischemic injury via the modulation of neuroprotective glial reactivity. Moreover, the 3D cortical ischemic-hypoxic injury model employed here holds enormous potential serving as a disease model to further elucidate the underlying mechanism of HPC, which can also extend to the applications in brain regeneration, drug development, and the modeling of neural diseases.
Collapse
Affiliation(s)
- Mong Lung Steve Poon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Eunmin Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Eunyoung Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Yu M, Wang Z, Wang D, Aierxi M, Ma Z, Wang Y. Oxidative stress following spinal cord injury: From molecular mechanisms to therapeutic targets. J Neurosci Res 2023; 101:1538-1554. [PMID: 37272728 DOI: 10.1002/jnr.25221] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023]
Abstract
Spinal cord injury (SCI) is a medical condition that results from severe trauma to the central nervous system; it imposes great psychological and economic burdens on affected patients and their families. The dynamic balance between reactive oxygen species (ROS) and antioxidants is essential for maintaining normal cellular physiological functions. As important intracellular signaling molecules, ROS regulate numerous physiological activities, including vascular reactivity and neuronal function. However, excessive ROS can cause damage to cellular macromolecules, including DNA, lipids, and proteins; this damage eventually leads to cell death. This review discusses the mechanisms of oxidative stress in SCI and describes some signaling pathways that regulate oxidative injury after injury, with the aim of providing guidance for the development of novel SCI treatment strategies.
Collapse
Affiliation(s)
- Mengsi Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhiying Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dongmin Wang
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Milikemu Aierxi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhanjun Ma
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Yonggang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
6
|
TeSlaa T, Ralser M, Fan J, Rabinowitz JD. The pentose phosphate pathway in health and disease. Nat Metab 2023; 5:1275-1289. [PMID: 37612403 PMCID: PMC11251397 DOI: 10.1038/s42255-023-00863-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 07/12/2023] [Indexed: 08/25/2023]
Abstract
The pentose phosphate pathway (PPP) is a glucose-oxidizing pathway that runs in parallel to upper glycolysis to produce ribose 5-phosphate and nicotinamide adenine dinucleotide phosphate (NADPH). Ribose 5-phosphate is used for nucleotide synthesis, while NADPH is involved in redox homoeostasis as well as in promoting biosynthetic processes, such as the synthesis of tetrahydrofolate, deoxyribonucleotides, proline, fatty acids and cholesterol. Through NADPH, the PPP plays a critical role in suppressing oxidative stress, including in certain cancers, in which PPP inhibition may be therapeutically useful. Conversely, PPP-derived NADPH also supports purposeful cellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) for signalling and pathogen killing. Genetic deficiencies in the PPP occur relatively commonly in the committed pathway enzyme glucose-6-phosphate dehydrogenase (G6PD). G6PD deficiency typically manifests as haemolytic anaemia due to red cell oxidative damage but, in severe cases, also results in infections due to lack of leucocyte oxidative burst, highlighting the dual redox roles of the pathway in free radical production and detoxification. This Review discusses the PPP in mammals, covering its roles in biochemistry, physiology and disease.
Collapse
Affiliation(s)
- Tara TeSlaa
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jing Fan
- Morgride Institute for Research, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua D Rabinowitz
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA.
| |
Collapse
|
7
|
Insight into the Effects of High-Altitude Hypoxic Exposure on Learning and Memory. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4163188. [PMID: 36160703 PMCID: PMC9492407 DOI: 10.1155/2022/4163188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/22/2022] [Indexed: 02/05/2023]
Abstract
The earth land area is heterogeneous in terms of elevation; about 45% of its land area belongs to higher elevation with altitude above 500 meters compared to sea level. In most cases, oxygen concentration decreases as altitude increases. Thus, high-altitude hypoxic stress is commonly faced by residents in areas with an average elevation exceeding 2500 meters and those who have just entered the plateau. High-altitude hypoxia significantly affects advanced neurobehaviors including learning and memory (L&M). Hippocampus, the integration center of L&M, could be the most crucial target affected by high-altitude hypoxia exposure. Based on these points, this review thoroughly discussed the relationship between high-altitude hypoxia and L&M impairment, in terms of hippocampal neuron apoptosis and dysfunction, neuronal oxidative stress disorder, neurotransmitters and related receptors, and nerve cell energy metabolism disorder, which is of great significance to find potential targets for medical intervention. Studies illustrate that the mechanism of L&M damaged by high-altitude hypoxia should be further investigated based on the entire review of issues related to this topic.
Collapse
|
8
|
Churilova A, Zachepilo T, Baranova K, Rybnikova E. Differences in the Autophagy Response to Hypoxia in the Hippocampus and Neocortex of Rats. Int J Mol Sci 2022; 23:ijms23148002. [PMID: 35887346 PMCID: PMC9320385 DOI: 10.3390/ijms23148002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Autophagy is a regulated mechanism of degradation of misfolded proteins and organelles in the cell. Neurons are highly differentiated cells with extended projections, and therefore, their functioning largely depends on the mechanisms of autophagy. For the first time in an animal model using immunohistochemistry, dot analysis, and qRT-PCR, the autophagy (macroautophagy) activity in neurons of two brain regions (hippocampus and neocortex) under normoxia and after exposure to hypoxia was studied. It was found that under normoxia, the autophagic activity was higher in the hippocampal neurons than in the neocortex of rats. In the hippocampus, the exposure of rats to hypoxia resulted in a decrease in the content of autophagy markers LC3 and p62, which was followed by activation of the autophagy-related gene expression. In the neocortex, no changes in these marker proteins were observed after the exposure to hypoxia. These data indicate that the neurons in the hippocampus and neocortex differ in the autophagy response to hypoxia, which may reflect the physiological and functional differences of the pyramidal cells of these brain regions and may to some extent account for the extreme vulnerability of the CA1 hippocampal neurons and relatively high resistance of the neocortical neurons to hypoxia.
Collapse
Affiliation(s)
- Anna Churilova
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology RAS, 199034 Saint-Petersburg, Russia; (A.C.); (K.B.)
| | - Tatiana Zachepilo
- Laboratory of Genetics of Higher Nervous Activity, Pavlov Institute of Physiology RAS, 199034 Saint-Petersburg, Russia;
| | - Ksenia Baranova
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology RAS, 199034 Saint-Petersburg, Russia; (A.C.); (K.B.)
| | - Elena Rybnikova
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology RAS, 199034 Saint-Petersburg, Russia; (A.C.); (K.B.)
- Correspondence: ; Tel.: +7-911-954-1596
| |
Collapse
|
9
|
Astrocytic glycogen mobilization participates in salvianolic acid B-mediated neuroprotection against reperfusion injury after ischemic stroke. Exp Neurol 2021; 349:113966. [PMID: 34973964 DOI: 10.1016/j.expneurol.2021.113966] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/22/2021] [Accepted: 12/23/2021] [Indexed: 01/01/2023]
Abstract
Astrocytic glycogen serves as an important glucose reserve, and its degradation provides extra support for neighboring neurons during energy deficiency. Salvianolic acid B (SAB) exerts a neuroprotective effect on reperfusion insult after cerebrovascular occlusion, but the effect of SAB on astrocytic glycogen and its relationship with neuroprotection are not completely understood. Here, we knocked down astrocyte-specific glycogen phosphorylase (GP, the rate-limiting enzyme in glycogenolysis) in vitro and in vivo and investigated the changes in key enzymes in glycogen metabolism by performing immunoblotting in vitro and immunofluorescence in vivo. Neurobehavioral and morphological assessments were conducted to uncover the outcomes during brain reperfusion. SAB accelerated astrocytic glycogenolysis by upregulating GP activity but not GP expression after reperfusion. Suppression of astrocytic glycogenolysis weakened SAB-mediated neuroprotection against the reperfusion insult. In addition, activation of glycogenolysis by SAB contributed to the survival of astrocytes and surrounding neurons by increasing antioxidant levels in astrocytes. Our data reveal that astrocytic GP represents an important metabolic target in SAB-induced protection against brain damage after cerebrovascular recanalization.
Collapse
|
10
|
Guo H, Fan Z, Wang S, Ma L, Wang J, Yu D, Zhang Z, Wu L, Peng Z, Liu W, Hou W, Cai Y. Astrocytic A1/A2 paradigm participates in glycogen mobilization mediated neuroprotection on reperfusion injury after ischemic stroke. J Neuroinflammation 2021; 18:230. [PMID: 34645472 PMCID: PMC8513339 DOI: 10.1186/s12974-021-02284-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Astrocytic glycogen works as an essential energy reserve for surrounding neurons and is reported to accumulate excessively during cerebral ischemia/reperfusion (I/R) injury. Our previous study found that accumulated glycogen mobilization exhibits a neuroprotective effect against I/R damage. In addition, ischemia could transform astrocytes into A1-like (toxic) and A2-like (protective) subtypes. However, the underlying mechanism behind accumulated glycogen mobilization-mediated neuroprotection in cerebral reperfusion injury and its relationship with the astrocytic A1/A2 paradigm is unknown. METHODS Astrocytic glycogen phosphorylase, the rate-limiting enzyme in glycogen mobilization, was specifically overexpressed and knocked down in mice and in cultured astrocytes. The I/R injury was imitated using a middle cerebral artery occlusion/reperfusion model in mice and an oxygen-glucose deprivation/reoxygenation model in cultured cells. Alterations in A1-like and A2-like astrocytes and the expression of phosphorylated nuclear transcription factor-κB (NF-κB) and phosphorylated signal transducer and activator of transcription 3 (STAT3) were determined by RNA sequencing, immunofluorescence and immunoblotting. Metabolites, including glycogen, NADPH, glutathione and reactive oxygen species (ROS), were analyzed by biochemical analysis. RESULTS Here, we observed that astrocytic glycogen mobilization inhibited A1-like astrocytes and enhanced A2-like astrocytes after reperfusion in an experimental ischemic stroke model in vivo and in vitro. In addition, glycogen mobilization could enhance the production of NADPH and glutathione by the pentose phosphate pathway (PPP) and reduce ROS levels during reperfusion. NF-κB inhibition and STAT3 activation caused by a decrease in ROS levels were responsible for glycogen mobilization-induced A1-like and A2-like astrocyte transformation after I/R. The astrocytic A1/A2 paradigm is closely correlated with glycogen mobilization-mediated neuroprotection in cerebral reperfusion injury. CONCLUSIONS Our data suggest that ROS-mediated NF-κB inhibition and STAT3 activation are the key pathways for glycogen mobilization-induced neuroprotection and provide a promising metabolic target for brain reperfusion injury in ischemic stroke.
Collapse
Affiliation(s)
- Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ze Fan
- Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lina Ma
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jin Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Doutong Yu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhen Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lin Wu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhengwu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenming Liu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Yanhui Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Glucocorticoid-Dependent Mechanisms of Brain Tolerance to Hypoxia. Int J Mol Sci 2021; 22:ijms22157982. [PMID: 34360746 PMCID: PMC8348130 DOI: 10.3390/ijms22157982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Adaptation of organisms to stressors is coordinated by the hypothalamic-pituitary-adrenal axis (HPA), which involves glucocorticoids (GCs) and glucocorticoid receptors (GRs). Although the effects of GCs are well characterized, their impact on brain adaptation to hypoxia/ischemia is still understudied. The brain is not only the most susceptible to hypoxic injury, but also vulnerable to GC-induced damage, which makes studying the mechanisms of brain hypoxic tolerance and resistance to stress-related elevation of GCs of great importance. Cross-talk between the molecular mechanisms activated in neuronal cells by hypoxia and GCs provides a platform for developing the most effective and safe means for prevention and treatment of hypoxia-induced brain damage, including hypoxic pre- and post-conditioning. Taking into account that hypoxia- and GC-induced reprogramming significantly affects the development of organisms during embryogenesis, studies of the effects of prenatal and neonatal hypoxia on health in later life are of particular interest. This mini review discusses the accumulated data on the dynamics of the HPA activation in injurious and non-injurious hypoxia, the role of the brain GRs in these processes, interaction of GCs and hypoxia-inducible factor HIF-1, as well as cross-talk between GC and hypoxic signaling. It also identifies underdeveloped areas and suggests directions for further prospective studies.
Collapse
|
12
|
Vetrovoy O, Sarieva K, Lomert E, Nimiritsky P, Eschenko N, Galkina O, Lyanguzov A, Tyulkova E, Rybnikova E. Pharmacological HIF1 Inhibition Eliminates Downregulation of the Pentose Phosphate Pathway and Prevents Neuronal Apoptosis in Rat Hippocampus Caused by Severe Hypoxia. J Mol Neurosci 2019; 70:635-646. [PMID: 31865524 DOI: 10.1007/s12031-019-01469-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/12/2019] [Indexed: 01/24/2023]
Abstract
The pentose phosphate pathway (PPP) of glucose metabolism in the brain serves as a primary source of NADPH which in turn plays a crucial role in multiple cellular processes, including maintenance of redox homeostasis and antioxidant defense. In our model of protective mild hypobaric hypoxia in rats (3MHH), an inverse correlation between hypoxia-inducible factor-1 (HIF1) activity and mRNA levels of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of PPP, was observed. In the present study, it was demonstrated that severe hypobaric hypoxia (SH) induced short-term upregulation of HIF1 alpha-subunit (HIF1α) in the hippocampal CA1 subfield and decreased the activity of G6PD. The levels of NADPH were also reduced, promoting oxidative stress, triggering apoptosis, and neuronal loss. Injection of a HIF1 inhibitor (HIF1i), topotecan hydrochloride (5 mg/kg, i.p.), before SH prevented the upregulation of HIF1α and normalized G6PD activity. In addition, HIF1i injection caused an increase in NADPH levels, normalization of total glutathione levels and of the cellular redox status as well as suppression of free-radical and apoptotic processes. These results demonstrate a new molecular mechanism of post-hypoxic cerebral pathology development which involves HIF1-dependent PPP depletion and support a recently suggested injurious role of HIF1 activation in the acute phase of cerebral hypoxia/ischemia. Application of PPP stimulators in early post-hypoxic/ischemic period might represent a promising neuroprotective strategy. Graphical abstract HIF1-dependent down-regulation of the pentose phosphate pathway contributes to the hypoxia-induced oxidative stress and neuronal apoptosis in the rat hippocampus.
Collapse
Affiliation(s)
- Oleg Vetrovoy
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, 199034, Saint Petersburg, Russia. .,Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7-9, 199034, Saint Petersburg, Russia.
| | - Kseniia Sarieva
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, 199034, Saint Petersburg, Russia
| | - Ekaterina Lomert
- Laboratory of Cell Biology in Culture, Institute of Cytology, Russian Academy of Sciences, Tihoretsky pr. 4, 194064, Saint Petersburg, Russia
| | - Peter Nimiritsky
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosov Ave. 27-10, 119192, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Lomonosov Ave. 31-5, 119192, Moscow, Russia
| | - Natalia Eschenko
- Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7-9, 199034, Saint Petersburg, Russia
| | - Olga Galkina
- Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7-9, 199034, Saint Petersburg, Russia
| | - Andrey Lyanguzov
- Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7-9, 199034, Saint Petersburg, Russia
| | - Ekaterina Tyulkova
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, 199034, Saint Petersburg, Russia
| | - Elena Rybnikova
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, 199034, Saint Petersburg, Russia
| |
Collapse
|
13
|
Vetrovoy O, Rybnikova E. Neuroprotective action of PHD inhibitors is predominantly HIF-1-independent: An Editorial for 'Sex differences in neonatal mouse brain injury after hypoxia-ischemia and adaptaquin treatment' on page 759. J Neurochem 2019; 150:645-647. [PMID: 31373011 DOI: 10.1111/jnc.14822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/09/2019] [Indexed: 01/02/2023]
Abstract
Hypoxia-inducible factor (HIF-1) as the primary factor mediating gene-dependent cellular responses to hypoxia represents an attractive target for the therapeutic interventions. The current Editorial comments on an as yet underestimated facet of HIF-1-related research. The activity of HIF-1 is being regulated by the availability of its α-subunit HIF-1α, which undergoes quick degradation. The process of degradation is initiated by prolyl 4-hydroxylase (PHD). PHD is an oxygen-dependent enzyme and therefore is inactivated in hypoxia, in turn resulting in HIF-1α stabilization, its dimerization with HIF-1β subunit thereby producing the transcriptionally active factor. It has been suggested that pharmacological inhibition of PHD activity might give the same results. Indeed, a large body of evidence on beneficial effects of PHD inhibitors has been accumulated in multiple laboratory and clinical trials. In addition to them, a paper by Li and colleagues published in this issue of Journal of Neurochemistry also reports that inhibition of PHD by adaptaquin reduces hypoxic-ischemic brain injury in a neonatal mouse model. When dissecting the underlying molecular mechanisms, Li and colleagues surprisingly found that the observed effects appear to be independent of HIF-1. These findings draw attention back to the question about possible HIF-1 effects independent of PHD inhibitors, which has been raised several years ago but has not received sufficient attention so far, and is being discussed in this Editorial. One of the possible mechanisms might be ascribed to the ferroptosis pathway affected by PHD inhibitors but this question needs further careful studies, as well as clarification of other mechanisms possibly involved. Even if they represent a prospective therapeutic strategy, the lack of current knowledge about endogenous targets of PHD inhibitors, except for PHD, calls for a careful and balanced approach toward their clinical use.
Collapse
Affiliation(s)
- Oleg Vetrovoy
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint-Petersburg, Russia.,Department of Biochemistry, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Elena Rybnikova
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|